A Supramolecular Poly[3]pseudorotaxane from Self-Assembly of a Homoditopic Cylindrical Bis(crown ether) Host and a Bisparaquat Derivative

Feihe Huang and Harry W. Gibson* Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212

Supplemental Material (2 pages)

Some other parts of the MALDI-TOF mass spectrum of **4**: The spectrum was measured in the positive-ion mode using 2,5-dihydroxbenzoic acid as the matrix and acetone as the solvent.

Assignments of some peaks:

- 1) Five more peaks for dimer $(1 \bullet 3)_2$: m/z 4688.79 $[(1 \bullet 3)_2 3CH_3]^+$, 4545.40 $[(1 \bullet 3)_2 PF_6 3CH_3 + H]^+$, 4364.40 $[(1 \bullet 3)_2 2HPF_6 C_6H_4 H]^+$, 4231.31 $[(1 \bullet 3)_2 3PF_6 C_7H_6O + K]^+$, and 4085.23 $[(1 \bullet 3)_2 3PF_6 C_7H_6O HPF_6 + K]^+$.
- 2) Peaks for $3 \bullet (1 \bullet 3)_2$: m/z 4848.39 $[3 \bullet (1 \bullet 3)_2 3PF_6 3HPF_6 C_6H_4 + K]^+$ and 5033.46 $[3 \bullet (1 \bullet 3)_2 4PF_6 HPF_6]^+$.
- 3) Peaks for trimer $(1 \bullet 3)_3$: m/z 6707.24 $[(1 \bullet 3)_3 PF_6 HPF_6 C_6H_4O]^+$, 6482.03 $[(1 \bullet 3)_3 3PF_6 HPF_6 C_6H_4 + K]^+$, 6343.66 $[(1 \bullet 3)_3 4PF_6 HPF_6 2CH_3]^+$, 6109.76 $[(1 \bullet 3)_3 2PF_6 4HPF_6 C_7H_6O]^+$, 5865.51 $[(1 \bullet 3)_3 C_{11}H_{11}N_2 3PF_6 4HPF_6 3CH_3]^+$, 5755.14 $[(1 \bullet 3)_3 C_{11}H_{11}N_2 8PF_6 CH_3 + H]^+$, 5637.34 $[(1 \bullet 3)_3 10PF_6 CH_3 + H]^+$, and 5277.68 $[(1 \bullet 3)_3 C_{11}H_{11}N_2 8PF_6 C_6H_4O + K]^+$.
- 4) Peaks for $3 \bullet (1 \bullet 3)_3$: m/z 7605.75 $[3 \bullet (1 \bullet 3)_3 C_{11}H_{11}N_2 2PF_6 4CH_3]^+$ and 7372.05 $[3 \bullet (1 \bullet 3)_3 3HPF_6 PF_6 C_{11}H_{11}N_2]^+$.
- 5) Peaks for $(1 \bullet 3)_3 \bullet 1$: m/z 7755.63 $[(1 \bullet 3)_3 \bullet 1 C_7H_6O 4PF_6 + H]^+$ and 7041.46 $[(1 \bullet 3)_3 \bullet 1 2HPF_6 7PF_6 C_6H_4O]^+$.
- 6) Peaks for tetramer $(1 \bullet 3)_4$: m/z 8866.22 $[(1 \bullet 3)_4 4HPF_6 CH_4]^+$, 8640.35 $[(1 \bullet 3)_4 C_{11}H_{11}N_2 4PF_6 C_6H_4 + H]^+$, 8205.35 $[(1 \bullet 3)_4 C_{11}H_{11}N_2 7PF_6 C_6H_4 + H]^+$, and 8060.74 $[(1 \bullet 3)_4 C_{11}H_{11}N_2 8PF_6 C_6H_4 + H]^+$.
- 7) A peak for $3 \bullet (1 \bullet 3)_4$: m/z 9622.70 $[3 \bullet (1 \bullet 3)_4 6PF_6]^+$.
- 8) Peaks for $(1 \bullet 3)_4 \bullet 1$: m/z 9502.93 $[(1 \bullet 3)_4 \bullet 1 9PF_6]^+$, 9327.89 $[(1 \bullet 3)_4 \bullet 1 10PF_6 2CH_3]^+$, and 9168.75 $[(1 \bullet 3)_4 \bullet 1 12PF_6 + H]^+$.
- 9) A peak for $3 \cdot (1 \cdot 3)_4$: m/z 9753.83 $[3 \cdot (1 \cdot 3)_4 5PF_6 CH_3 + H]^+$.

Determination of Δ_0 of H_1 on **3**:

