SUPPORTING INFORMATION

Isolated Single-Molecule Magnets on native gold

L. Zobbi, M. Mannini, M. Pacchioni, G. Chastanet , D. Bonacchi, C. Zanardi, R. Biagi, U. Del Pennino, D. Gatteschi, A. Cornia, R. Sessoli

Synthesis. A slurry of complex $1(204 \mathrm{mg}, 0.0990 \mathrm{mmol})$ in anhydrous toluene (10 mL) was treated with 4(methylthio)benzoic acid ($333 \mathrm{mg}, 1.98 \mathrm{mmol}$). The mixture was concentrated at reduced pressure to remove acetic acid as the toluene azeotrope. When almost all the toluene had been removed more toluene (10 mL) was added and removed by evaporation, and the process was repeated 3 times. After the final evaporation the resulting black solid was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and layered with n-hexane to afford black needles in two weeks. The crystals were redissolved in CHCl_{3} and the solution was allowed to slowly evaporate at room temperature. The large blocks of $2 \cdot 8 \mathrm{CHCl}_{3}$ obtained in two weeks were collected on a glass frit and dried in vacuum ($0.1-0.2 \mathrm{mmHg}, 75 \mathrm{~min}$). Yield 220 mg , (62%).

FT-IR $(\mathrm{KBr}$ pellet $): 1593\left(\mathrm{v}_{\mathrm{AS}}(\mathrm{OCO})\right), 1407\left(\mathrm{v}_{\mathrm{S}}(\mathrm{OCO})\right), 1185$, $1089,768 \mathrm{~cm}^{-1}$.

MALDI-ToF (1,8-dihydroxy-9(10H)-anthracenone) $m / z=3385$ $[(\mathrm{M}-L) \mathrm{CO}]^{+}, 3218 \quad[(\mathrm{M}-2 L) \mathrm{CO}]^{+}, 3049 \quad[(\mathrm{M}-3 L) \mathrm{CO}]^{+}$, with $\mathrm{M}=\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{~L})_{16}\right](\mathrm{m} / \mathrm{z}=3524)$.

X-ray analysis

Selected bond lengths [\AA] and angles [deg]: Mn1-O1 1.911(4), $\mathrm{Mn} 1-\mathrm{O}^{\mathrm{a}} 1.915(5), \mathrm{Mn} 1-\mathrm{O1}^{\mathrm{c}} 1.923(5)$, $\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{c}} 1.890(5)$, Mn1O3 1.858(5), Mn1-O4 1.902(4), Mn2-O3 1.903(5), Mn2-O2 ${ }^{\text {c }}$ 1.903(6), Mn2-O8 1.946(5), Mn2-O10 1.955(5), Mn2-O6 2.177(5), Mn2-O5 2.230(5), Mn3-O3 1.880(5), Mn3-O2 1.891(5), Mn3-O11 ${ }^{\mathrm{a}}$ 1.953(5), Mn3-O9 1.965(5), Mn3-O7 ${ }^{\mathrm{a}}$ 2.098(6), Mn3-O12 2.268(6), O3-Mn1-O2 ${ }^{\mathrm{c}}$ 84.82(18), O3-Mn1O4 91.7(2), $\mathrm{O}^{\mathrm{c}}-\mathrm{Mn} 1-\mathrm{O} 4$ 93.7(2), O3-Mn1-O1 89.8(2), O2 ${ }^{\mathrm{c}}-$ $\mathrm{Mn} 1-\mathrm{O} 192.2(2), \mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 1$ 174.0(2), O3-Mn1-O1 ${ }^{\text {a }} 97.3(2)$, $\mathrm{O}^{\mathrm{c}}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{a}}$ 175.7(2), $\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{a}}$ 90.0(2), $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{a}}$ 84.1(2), $\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O1}^{\mathrm{c}}$ 173.4(2), $\mathrm{O}^{\mathrm{c}}-\mathrm{Mn} 1-\mathrm{O1}^{\mathrm{c}}$ 97.1(2), O4$\mathrm{Mn} 1-\mathrm{Ol}^{\mathrm{c}} \quad 94.4(2), \quad \mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Ol}^{\mathrm{c}} \quad 83.9(2), \quad \mathrm{Ol}^{\mathrm{a}}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{c}}$ 80.39(19), O3-Mn2-O2 2^{c} 83.24(17), O3-Mn2-O8 94.7(2), O2 ${ }^{\mathrm{c}}-$ $\mathrm{Mn} 2-\mathrm{O} 8 \quad 177.8(2), \quad \mathrm{O} 3-\mathrm{Mn} 2-\mathrm{O} 10 \quad 173.1(2), \quad \mathrm{O} 2^{\mathrm{c}}-\mathrm{Mn} 2-\mathrm{O} 10$ 95.7(2), O8-Mn2-O10 86.5(2), O3-Mn2-O6 94.6(2),

O2 ${ }^{\mathrm{c}}-\mathrm{Mn} 2-\mathrm{O} 6$ 93.3(2), O8-Mn2-O6 86.1(2), O10-Mn2-O6 92.3(3), O3-Mn2-O5 84.0(2), O2 ${ }^{\mathrm{c}}-\mathrm{Mn} 2-\mathrm{O} 5$ 89.6(2), O8-Mn2O5 91.0(2), O10-Mn2-O5 89.2(2), O6-Mn2-O5 176.7(2), O3$\mathrm{Mn} 3-\mathrm{O} 2$ 95.11(18), $\mathrm{O} 3-\mathrm{Mn} 3-\mathrm{O} 11^{\mathrm{a}}$ 172.6(2), $\mathrm{O} 2-\mathrm{Mn} 3-\mathrm{O} 11^{\mathrm{a}}$ $90.9(2), \mathrm{O} 3-\mathrm{Mn} 3-\mathrm{O} 9$ 90.7(2), O2-Mn3-O9 171.2(2), O11 ${ }^{\mathrm{a}-}$ Mn3-O9 82.8(2), O3-Mn3-O7 ${ }^{\text {a }} 93.2(2), \mathrm{O} 2-\mathrm{Mn} 3-\mathrm{O}^{\mathrm{a}} 97.9(2)$, $\mathrm{O} 11^{\mathrm{a}}-\mathrm{Mn} 3-\mathrm{O}^{\mathrm{a}}$ 90.1(3), O9-Mn3-O7 ${ }^{\mathrm{a}}$ 88.3(3), O3-Mn3-O12 89.8(2), O2-Mn3-O12 86.8(2), O11ª $-\mathrm{Mn} 3-\mathrm{O} 12$ 86.3(3), O9-Mn3-O12 86.6(3), O7 ${ }^{\text {a }}-\mathrm{Mn} 3-\mathrm{O} 12$ 174.1(3), Mn1-O1-Mn1 ${ }^{\mathrm{c}}$ $95.3(2), \mathrm{Mn} 1-\mathrm{O} 1-\mathrm{Mn}^{\mathrm{a}}$ 95.1(2), Mn1 ${ }^{\mathrm{c}}-\mathrm{O} 1-\mathrm{Mn}^{\mathrm{a}}$ 99.59(18), $\mathrm{Mn} 1^{\mathrm{a}}-\mathrm{O} 2-\mathrm{Mn} 3$ 130.8(3), $\mathrm{Mn}^{\mathrm{a}}-\mathrm{O} 2-\mathrm{Mn}^{\mathrm{a}}$ 94.4(2), Mn3-O2Mn^{a} 122.7(3), Mn1-O3-Mn3 131.9(3), Mn1-O3-Mn2 95.5(2), Mn3-O3-Mn2 131.3(3).

Figure S1. Structure of the Mn/O core of $\mathbf{2}$, with the carboxylate and $\alpha-\mathrm{C}$ atoms and the atom labelling scheme. Thermal ellipsoids are shown at $50-$ \% probability level. Hydrogen atoms omitted for clarity.

CCDC-XXXXXX (2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
${ }^{1} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta=12.6(8 \mathrm{H} ; \mathrm{CH}(\mathrm{m}$, ax. III-III)), 10.8 (8 H ; CH (o, ax. III-IV)), 9.3 ($8 \mathrm{H} ; \mathrm{CH}(m$, ax. III-IV)), 7.6 (8 H ; CH (o, ax. III-III)), $5.5(16 \mathrm{H} ; \mathrm{CH}$ (m, eq.), 4.1 ($24 \mathrm{H} ; \mathrm{CH}_{3}$ (eq.)), 3.4 ($12 \mathrm{H} ; \mathrm{CH}_{3}$ (ax., III-IV)), $2.9\left(12 \mathrm{H} ; \mathrm{CH}_{3}\right.$ (ax. III-III)), $1.6 \mathrm{ppm}(16 \mathrm{H} ; \mathrm{CH}(o$, eq. $)$).
For reference spectra see: Aubin, S.M.J. et al. Inorg.Chem. 2001, 40, 2127.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Electrochemical data (CV and DPV, CH2Cl2+TBAPF6 0.1 M , $25^{\circ} \mathrm{C}, \mathrm{Pt}$-disk working, GC auxiliary, SCE reference electrode) E1/2 vs. $\mathrm{Fc} / \mathrm{Fc}+: 0.77$ (1st oxidn), 0.07 (1st redn), -0.39 V (2nd redn).
For a reference CV see: Eppley, H.J. et al. J.Am.Chem.Soc. 1995,117, 301.

Figure S3. Cyclic voltammogram of 1 mM 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}+0.1 \mathrm{M} \mathrm{TBAPF}_{6}$, $\mathrm{v}=0.05 \mathrm{~V} / \mathrm{s}$.

Tof-SIMS spectra

ToF-SIMS analysis was carried out with a TRIFT III time-offlight secondary ion mass spectrometer (Physical Electronics, Eden Prairie, MN, USA) equipped with a ${ }^{69} \mathrm{Ga}^{+}$liquid-metal primary ion source. Positive and negative ion spectra were acquired with a pulsed, bunched 15 keV primary ion beam at 600 pA by rastering the ion beam over a $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ sample area. The primary ion dose was kept below 10^{13} ions $/ \mathrm{cm}^{2}$ to maintain static SIMS conditions.

Table S1. Characteristic peaks in the positive and negative ion ToF-SIMS spectra of $\mathbf{2}$ SAMs on Au.

Peak (m/z)	Molecular Formula	Ion description
Positive ion mode	$\mathrm{CH}_{3} \mathrm{~S}^{+}$	Ligand fragment
47	Mn^{+}	
55	$\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}$	Ligand fragment
91	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{OS}^{+}$	$\mathrm{CH}_{3} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$
151	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{SMn}^{+}$	$\mathrm{CH}_{3} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{COOMn}^{+}(\mathrm{OH})_{2}{ }^{+}$
256		
Negative ion mode	S^{-}	Ligand fragment
32	$\mathrm{CH}_{3} \mathrm{~S}^{-}$	
47	MnO_{2}	Ligand fragment
87	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$	Ligand fragment $^{\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~S}^{-}}$
108	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}^{-}$	Intact ligand molecule -H
123	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{5} \mathrm{SMn}^{-}$	$\mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{COOMnO}_{3}{ }^{-}$
167		

Profile analysis and statistics on STM images

Further investigations on the organization of 2 on the $\mathrm{Au}(111)$ surface are shown here. The profile section evidences the size of 2 (calculated from the point of maximum slope of each profile) as well as the distance between two nearest-neighbor particles. The particle-size distribution has been evaluated from a set of 6 images obtained independently but in identical conditions. The software for data fitting is Origin (version 7.5, 2003) supplied by OriginLab Corp.

Figure S4. Profile section of Constant-current STM drawn along the line represented in the inset .

Figure S5. Size distribution of 2 calculated from ca. 400 measurements. The best-fit gaussian distribution is shown as a blue curve $\left(\mathrm{R}^{2}=0.97, \mathrm{x}_{\mathrm{c}}=\right.$ $2.7 \mathrm{~nm}, \sigma=0.5 \mathrm{~nm}$).

