ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

The First Enantioselective Total Synthesis of the Anti-*Helicobacter Pylori* Agent (+)-Spirolaxine Methyl Ether

James E. Robinson and Margaret A. Brimble*

Department of Chemistry, The University of Auckland, 23 Symonds St., Auckland, New Zealand. E-mail: <u>m.brimble@auckland.ac.nz</u>; Fax: +64 9 3737599; tel; +64 9 3737599 ext 88259

Experimental Details

(*3R*, *2''R*, *5''R*, *7''R*)-5,7-Dimethoxy-3-[5'-(2''-methyl-1'',6''-dioxaspiro[4.5]dec-7''yl)pent-3'-enyl]-*3H*-isobenzofuran-1-one

Sulphone **3** (150 mg, 0.39 mmol) was dissolved in tetrahydrofuran (7.5 cm⁻³) and cooled to -78 °C under an atmosphere of nitrogen. To this stirred solution was added dropwise lithium diisopropylamine (0.43 cm⁻³, 0.43 mmol, 1 mol dm⁻³). The resultant deep yellow solution was stirred for 0.75 h before the dropwise addition of aldehyde 4 (98 mg, 0.39 mmol) in tetrahydrofuran (2.5 cm⁻³). After stirring at -78 °C for 4 h the solution was allowed to slowly warm to room temperature and was stirred for a further 0.75 h. The reaction was guenched by the addition of brine (3 cm^{-3}) and the aqueous layer was extracted with ethyl acetate $(3 \times 15 \text{ cm}^{-3})$. The combined extracts were dried over magnesium sulfate, filtered and the solvent removed in vacuo. The resultant oil was purified by flash column chromatography using hexane-ethyl acetate (9:1-1:1) as the eluent to give the *title compound* (65 mg, 40%) as a yellow oil; $[\alpha]_D$ +58.6 (c 0.97 in CH₃Cl); v_{max}(film)/cm⁻¹ 2929, 1758s (CO), 1613s, 1462, 1338, 1218, 1159, 1056 and 980; $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.08-1.30 (2 H, m, H8["]_a and H8["]_a*), 1.21 (3 H, d, J = 6.3 Hz, Me), 1.22 (3 H, d, J = 6.3 Hz, Me*), 1.34-1.42 (2 H, m, H3["]_a and H3["]_a*), 1.55-1.59 (2 H, m, H8"_b and H8"_b*), 1.62-1.67 (6 H, m, H9"_a, H9"_a*, H10" and H10"*), 1.70-1.79 (4 H, m, H4"_a, H4"_a*, H1'_a and H1'_a*), 1.80-1.89 (4 H, m, H4"_b, H4"_b*, H9"_b and H9"_b*), 1.96-2.03 (2 H, m, H1'_b and H1'_b*), 2.03-2.11 (4 H, m, (E)-H5'_a, (E)-H5'_a*, H3"_b and H3"_b*), 2.12-2.17 (4 H, m, (E)-H5'b, (E)-H5'b*, (Z)-H5' and (Z)-H5'*), 2.18-2.25 (4 H, m, (E)-H2',

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

(E)-H2'*, (Z)-H2'_a and (Z)-H2'_a*), 2.26-2.34 (2 H, m, (Z)-H2'_b and (Z)-H2'_b*), 3.71-3.80 (2 H, m, H7" and H7"*), 3.89 (3 H, s, OMe), 3.89 (3 H, s, OMe*), 3.95 (6 H, s, OMe and OMe*), 4.13 (1 H, qd, J = 6.3 and 6.3 Hz, H2"), 4.15 (1 H, qd, J = 6.3 and 6.3 Hz, H2"*), 5.31 (1 H, dd, J = 8.3 and 3.4 Hz, H3), 5.33 (1 H, dd, J = 8.3 and 3.4, H3*), 5.41-5.55 (4 H, m, H3', H3'*, H4' and H4'*), 6.40-6.41 (2 H, m, H6 and H6*), 6.42 (2 H, s, H4 and H4*); δ_C (100 MHz, CDCl₃): 20.3 (CH₂, C9"), 20.3 (CH₂, C9"*), 21.1 (CH₃, Me), 21.2 (CH₃, Me*), 22.8 (CH₂, (Z)-C2'), 27.8 (CH₂, (E)-C2'), 30.4 (CH₂, C8"), 31.3 (CH₂, C3"), 33.4 (CH₂, C10"), 33.5 (CH₂, C10"*), 34.0 (CH₂, (Z)-C5'), 34.8 (CH₂, C1'), 34.8 (CH₂, C1'*), 38.0 (CH₂, C4"), 38.0 (CH₂, C4"*), 39.5 (CH₂, (E)-C5'), 55.9 (CH₃, OMe), 56.0 (CH₃, OMe), 69.9 (CH, C7"), 73.6 (CH, C2"), 73.7 (CH, C2"*), 79.0 (CH, C3), 79.2 (CH, C3*), 97.3 (CH, C6), 98.7 (CH, C4), 106.1 (quat., C5"), 106.8 (quat., C7a), 106.9 (quat., C7a*), 127.9 (CH, C3'), 128.8 (CH, C3'*), 129.0 (CH, C4'), 129.9 (CH, C4'*), 155.1 (quat., C3a), 155.2 (quat., C3a*), 159.6 (quat., C7), 166.7 (quat., C5), 168.5 (quat., C1); *m/z* (EI): 416 (M⁺, 3%), 398 (11), 316 (7), 262 (14), 207 (42), 193 (50), 155 (100), 137 (39), 111 (47), 98 (25), 95 (26), 55 (38), 41 (36); HRMS (EI): Found M⁺, 416.21999. C₂₄H₃₂O₆ requires *M*, 416.21989.

Notes

- The use of * is used to denote either (*E*) or (*Z*) isomers.
- The ratio of (*E*):(*Z*) isomers was unable to be determined and was not relevant to the synthesis.

(*3R*, *2''R*, *5''R*, *7''R*)-5,7-Dimethoxy-3-[5'-(2''-methyl-1'',6''-dioxaspiro[4.5]dec-7''yl)pentyl]-*3H*-isobenzofuran-1-one (2)

The above alkene (10 mg, 0.02 mmol) was dissolved in tetrahydrofuran (10 cm⁻³) and stirred under a double balloon containing hydrogen in the presence of PtO_2 (1 mg) for 6 h. The catalyst was removed by filtration through a pad of Celite[®] and the solvent removed under reduced pressure. Purification of the resultant oil by flash column

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

chromatography using pentane-diethyl ether (4:6-2:8) as the eluent gave the title *compound* **2** (10 mg, 99%) as a yellow oil; $[\alpha]_D$ +63.7 (*c* 0.85 in CH₃Cl) (lit.² $[\alpha]_D$ +62 (*c* = 0.22, CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 2933, 2860, 1756s (CO), 1605s, 1494, 1459, 1432, 1336, 1218, 1158, 1052, 1029 and 980; $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.14 (1 H, dddd, J = 13.0,13.0 and 3.8 Hz, H8["]_a), 1.23 (3 H, d, J = 6.6 Hz, Me), 1.25-1.48 (7 H, m, H3', H4', H5' and H3"_a), 1.51-1.56 (1 H, m, H8"_b), 1.59-1.72 (4 H, m, H1'_a, H9"_a and H10"), 1.74 (1 H, ddd, J = 12.7, 10.4 and 6.6 Hz, H4"_a), 1.80-1.89 (2 H, m, H4"_b and H9"_b), 1.94-2.01 (1 H, m, H1'_b), 2.12 (1 H, dddd, J = 11.9, 8.8, 6.6 and 6.6 Hz, H3"_b), 3.66-3.72 (1 H, m, H7"), 3.89 (3 H, s, OMe), 3.95 (3 H, s, OMe), 4.14 (1 H, qd, J = 6.6 and 6.6 Hz, H2"), 5.30 (1 H, dd, J = 7.8 and 3.8 Hz, H3), 6.40 (1 H, s, H6), 6.42 (1 H, d, J = 1.7 Hz, H4); $\delta_{\rm C}$ (100 MHz, CDCl₃): 20.4 (CH₂, C9"), 21.3 (CH₃, Me), 24.5 (CH₂, C2'), 25.4 (CH₂, C4'), 29.3 (CH₂, C3'), 30.9 (CH₂, C8"), 31.3 (CH₂, C3"), 33.5 (CH₂, C10"), 34.8 (CH₂, C1'), 36.1 (CH₂, C5'), 38.0 (CH₂, C4"), 55.9 (CH₃, OMe), 56.0 (CH₃, OMe), 69.9 (CH, C7"), 73.9 (CH, C2"), 79.9 (CH, C3), 97.3 (CH, C6), 98.6 (CH, C4), 106.0 (quat., C5"), 107.0 (quat., C7a), 155.2 (quat., C3a), 159.6 (quat., C7), 166.6 (quat., C5), 168.5 (quat., C1); *m/z* (EI): 418 (M⁺, 6%), 361 (28), 318 (41), 293 (22), 290 (15), 261 (18), 207 (46), 193 (66), 155 (44), 111 (29), 98 (100), 57 (45), 55 (41), 43 (34), 41 (45); HRMS (EI): Found M⁺, 418.23585. C₂₄H₃₄O₆ requires *M*, 418.23554. This data was in agreement with that reported in the literature.^{1,2}

- 1.For the ¹H and ¹³C NMR data of natural spirolaxine methyl ether: M. A. Gaudliana, L. H. Huang, T. Kaneko, and P. C. Watts, *PCT Int. Appl.*, 1996, WO 9605204; CAN 125:58200.
- 2.For the IR and optical rotation +62° (c = 0.22, CHCl₃) of *semi-synthetic* spirolaxine methyl ether (prepared by methylation of natural spirolaxine): T. Adaci, I. Takagi, K. Kondo, A. Kawashima, A. Kobayashi, I. Taneoka, S. Morimoto, B. M. Hi, and Z. Chen, *PCT Int. Appl.*, 1996, WO 9610020; CAN 125:86482.

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

(2'S)-((3S)-1-(*tert*-butyldiphenylsilyloxy)hept-6-en-3-yl)-3',3',3'-trifluoro-2'methoxy-2'-phenylpropanoate

To a suspension of (*S*)-2-methoxy-2-trifluoromethyl-2-phenylacetic acid (48 mg, 0.20 mmol), 4-dimethylaminopyridine (3 mg, 0.03 mmol) and dicyclohexylcarbodiimide (70 mg, 0.34 mmol) in dichloromethane (1 cm⁻³) was added alcohol (50 mg, 0.14 mmol) in dichloromethane (1 cm⁻³). After stirring at room temperature for 72 h the reaction was quenched by the addition of brine (2 cm⁻³). The mixture was diluted with diethyl ether (5 cm⁻³) and the aqueous layer extracted with diethyl ether (3 x 5 cm⁻³). The combined extracts were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. Flash column chromatography using hexane-diethyl ether (9:1) as the eluent gave the *title compound* (65 mg, 82%) as a colourless oil; $\delta_{\rm H}$ (300 MHz, CDCl₃): 1.05 (9 H, s, Si^tBuPh₂), 1.67-1.74 (2 H, m, H4), 1.82-1.89 (2 H, m, H2), 1.90-2.02 (2 H, m, H5), 3.45 (3 H, s, OMe), 3.70 (2 H, t, *J* = 6.3 Hz, H1), 4.92-4.98 (2 H, m, H7), 5.36 (1 H, q, *J* = 6.2 Hz, H3), 5.71 (1 H, dddd, *J* = 17.6, 9.7, 6.5 and 6.5 Hz, H6), 7.38-7.42 (9 H, m, Si^tBuPh₂, *p* and *m* and ArH, *p* and *o* or *m*), 7.50-7.52 (2 H, m, ArH, *o* or *m*), 7.62-7.66 (4 H, m, Si^tBuPh₂, *o*); $\delta_{\rm F}$ (282 MHz, CDCl₃) -72.47 (0.09F, CF₃), -72.29 (2.91F, CF₃). Integration of these resonances established the enantiomeric excess to be 94%.