ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

The First Enantioselective Total Synthesis of the Anti-Helicobacter Pylori Agent (+)-Spirolaxine Methyl Ether

James E. Robinson and Margaret A. Brimble*
Department of Chemistry, The University of Auckland, 23 Symonds St., Auckland, New Zealand. E-mail: m.brimble@auckland.ac.nz; Fax: +6493737599; tel; +6493737599 ext 88259

Experimental Details

(3R, $2^{\prime \prime} R, 5^{\prime \prime} R, 7^{\prime \prime} R$)-5,7-Dimethoxy-3-[5'-(2'-methyl-1",6"-dioxaspiro[4.5]dec-7'-yl)pent-3'-enyll-3H-isobenzofuran-1-one

Sulphone $3\left(150 \mathrm{mg}, 0.39 \mathrm{mmol}\right.$) was dissolved in tetrahydrofuran $\left(7.5 \mathrm{~cm}^{-3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. To this stirred solution was added dropwise lithium diisopropylamine $\left(0.43 \mathrm{~cm}^{-3}, 0.43 \mathrm{mmol}, 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$. The resultant deep yellow solution was stirred for 0.75 h before the dropwise addition of aldehyde $4(98 \mathrm{mg}, 0.39$ mmol) in tetrahydrofuran $\left(2.5 \mathrm{~cm}^{-3}\right)$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 4 h the solution was allowed to slowly warm to room temperature and was stirred for a further 0.75 h . The reaction was quenched by the addition of brine $\left(3 \mathrm{~cm}^{-3}\right)$ and the aqueous layer was extracted with ethyl acetate ($3 \times 15 \mathrm{~cm}^{-3}$). The combined extracts were dried over magnesium sulfate, filtered and the solvent removed in vacuo. The resultant oil was purified by flash column chromatography using hexane-ethyl acetate (9:1-1:1) as the eluent to give the title compound ($65 \mathrm{mg}, 40 \%$) as a yellow oil; $[\alpha]_{\mathrm{D}}+58.6$ (c 0.97 in $\left.\mathrm{CH}_{3} \mathrm{Cl}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2929,1758 \mathrm{~s}(\mathrm{CO}), 1613 \mathrm{~s}, 1462,1338,1218,1159,1056$ and 980; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 1.08-1.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 8{ }^{2}{ }_{\mathrm{a}}$ and $\mathrm{H}^{\prime \prime}{ }_{\mathrm{a}}{ }^{*}$), $1.21(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}$, Me), 1.22 ($3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Me}^{*}$), 1.34-1.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3{ }_{\mathrm{a}}{ }_{\mathrm{a}}$ and H3" ${ }_{\mathrm{a}}{ }^{*}$), 1.55-1.59 (2 H, m, H8"b and H8"b*), 1.62-1.67 (6 H, m, H9" ${ }_{\mathrm{a}}, \mathrm{H} 9{ }^{2}{ }_{\mathrm{a}}{ }^{*}$, H10" and H10"*), 1.70-1.79 (4 H,
 2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 \mathrm{~b}_{\mathrm{b}}$ and $\mathrm{H} 1^{\prime}{ }_{\mathrm{b}}{ }^{*}$), 2.03-2.11 (4 H, m, (E)-H5' ${ }_{\mathrm{a}}$, $(E)-\mathrm{H}^{\prime}{ }_{\mathrm{a}}{ }^{*}$, H3" ${ }_{\mathrm{b}}$ and H3" ${ }^{*}$), 2.12-2.17 ($4 \mathrm{H}, \mathrm{m},(E)-\mathrm{H} 5{ }^{\prime} \mathrm{b},(E)-\mathrm{H} 5^{\prime} \mathrm{b}^{*},(Z)-\mathrm{H} 5$ ' and $\left.(Z)-\mathrm{H} 5^{\prime *}\right), 2.18-2.25(4 \mathrm{H}, \mathrm{m},(E)-\mathrm{H} 2$ ',
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
$(E)-\mathrm{H} 2^{\prime *},(Z)-\mathrm{H}^{\prime}{ }_{\mathrm{a}}$ and $\left.(Z)-\mathrm{H}^{\prime}{ }_{\mathrm{a}}{ }^{*}\right), 2.26-2.34\left(2 \mathrm{H}, \mathrm{m},(Z)-\mathrm{H} 2^{\prime} \mathrm{b}\right.$ and $\left.(Z)-\mathrm{H} 2^{\prime}{ }^{*}{ }^{*}\right), 3.71-3.80$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{l}$ and $\mathrm{H} 7{ }^{\prime *}$), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ *), 3.95 ($6 \mathrm{H}, \mathrm{s}$, OMe and OMe*), 4.13 ($1 \mathrm{H}, \mathrm{qd}, J=6.3$ and $6.3 \mathrm{~Hz}, \mathrm{H} 2$ "), $4.15\left(1 \mathrm{H}, \mathrm{qd}, J=6.3\right.$ and $\left.6.3 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime *}\right)$, 5.31 ($1 \mathrm{H}, \mathrm{dd}, J=8.3$ and $3.4 \mathrm{~Hz}, \mathrm{H} 3$), $5.33\left(1 \mathrm{H}, \mathrm{dd}, J=8.3\right.$ and $\left.3.4, \mathrm{H} 3^{*}\right)$, 5.41-5.55 (4 H, m, H3', H3'*, H4' and H4'*), 6.40-6.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6$ and H6*), 6.42 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4$ and H4*); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.3\left(\mathrm{CH}_{2}, \mathrm{C} 9 "\right), 20.3\left(\mathrm{CH}_{2}, \mathrm{C} 9{ }^{\prime *}\right)$, $21.1\left(\mathrm{CH}_{3}, \mathrm{Me}\right), 21.2$ $\left(\mathrm{CH}_{3}, \mathrm{Me}^{*}\right), 22.8\left(\mathrm{CH}_{2},(Z)-\mathrm{C}^{\prime}\right), 27.8\left(\mathrm{CH}_{2},(E)-\mathrm{C}^{\prime}\right), 30.4\left(\mathrm{CH}_{2}, \mathrm{C} 8{ }^{\prime \prime}\right), 31.3\left(\mathrm{CH}_{2}, \mathrm{C} 3{ }^{\prime \prime}\right)$, $33.4\left(\mathrm{CH}_{2}, \mathrm{C10}{ }^{\prime \prime}\right), 33.5\left(\mathrm{CH}_{2}, \mathrm{C} 10^{\prime \prime *}\right), 34.0\left(\mathrm{CH}_{2},(\mathrm{Z})-\mathrm{C}^{\prime}\right), 34.8\left(\mathrm{CH}_{2}, \mathrm{Cl}\right), 34.8\left(\mathrm{CH}_{2}\right.$, C1'*), $38.0\left(\mathrm{CH}_{2}, \mathrm{C} 4 "\right), 38.0\left(\mathrm{CH}_{2}, \mathrm{C} 4{ }^{\prime *}\right), 39.5\left(\mathrm{CH}_{2},(E)-\mathrm{C}^{\prime}\right), 55.9\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 56.0$ $\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 69.9\left(\mathrm{CH}, \mathrm{C} 7{ }^{\prime}\right), 73.6(\mathrm{CH}, \mathrm{C} 2 "), 73.7(\mathrm{CH}, \mathrm{C} 2 " *), 79.0(\mathrm{CH}, \mathrm{C} 3), 79.2(\mathrm{CH}$, C3*), 97.3 (CH, C6), 98.7 (CH, C4), 106.1 (quat., C5"), 106.8 (quat., C7a), 106.9 (quat., C7a*), 127.9 (CH, C3'), 128.8 (CH, C3 ${ }^{*}$), 129.0 (CH, C4'), 129.9 (CH, C4**), 155.1 (quat., C3a), 155.2 (quat., C3a*), 159.6 (quat., C7), 166.7 (quat., C5), 168.5 (quat., C1); m / z (EI): 416 ($\mathrm{M}^{+}, 3 \%$), 398 (11), 316 (7), 262 (14), 207 (42), 193 (50), 155 (100), 137 (39), 111 (47), 98 (25), 95 (26), 55 (38), 41 (36); HRMS (EI): Found M ${ }^{+}$, 416.21999. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}$ requires $M, 416.21989$.

Notes

- The use of * is used to denote either (E) or (Z) isomers.
- The ratio of $(E):(Z)$ isomers was unable to be determined and was not relevant to the synthesis.
(3R, $2^{\prime \prime} R, 5{ }^{\prime \prime} R, 7^{\prime \prime} R$)-5,7-Dimethoxy-3-[5'-(2'-methyl-1",6"-dioxaspiro[4.5]dec-7'-yl)pentyl]-3H-isobenzofuran-1-one (2)

The above alkene ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) was dissolved in tetrahydrofuran $\left(10 \mathrm{~cm}^{-3}\right)$ and stirred under a double balloon containing hydrogen in the presence of $\mathrm{PtO}_{2}(1 \mathrm{mg})$ for 6 h . The catalyst was removed by filtration through a pad of Celite ${ }^{\circledR}$ and the solvent removed under reduced pressure. Purification of the resultant oil by flash column
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
chromatography using pentane-diethyl ether (4:6-2:8) as the eluent gave the title compound $2(10 \mathrm{mg}, 99 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}+63.7\left(c 0.85 \mathrm{in} \mathrm{CH}_{3} \mathrm{Cl}\right)\left(\right.$ lit. ${ }^{2}[\alpha]_{\mathrm{D}}+62(\mathrm{c}$ $\left.=0.22, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2933,2860,1756 \mathrm{~s}(\mathrm{CO}), 1605 \mathrm{~s}, 1494,1459,1432,1336$, $1218,1158,1052,1029$ and $980 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.14 (1 H, dddd, $J=13.0,13.0$, 13.0 and $3.8 \mathrm{~Hz}, \mathrm{H} 8{ }^{\prime \prime}{ }_{\mathrm{a}}$), $1.23(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{Me}), 1.25-1.48\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime}\right.$ and H3"a), 1.51-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8{ }^{\prime \prime} \mathrm{b}$), 1.59-1.72 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}{ }_{\mathrm{a}}{ }^{2}, \mathrm{H} 9{ }^{\prime}{ }_{\mathrm{a}}$ and H10"), $1.74(1 \mathrm{H}$, ddd, $J=12.7,10.4$ and $6.6 \mathrm{~Hz}, \mathrm{H}^{2}{ }_{\mathrm{a}}$), 1.80-1.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime \prime}{ }_{\mathrm{b}}$ and $\mathrm{H} 9{ }^{\prime \prime}{ }_{\mathrm{b}}$), 1.94-2.01 (1 H , $\mathrm{m}, \mathrm{H} 1_{\mathrm{b}} \mathrm{b}$), 2.12 (1 H , dddd, $J=11.9,8.8,6.6$ and $6.6 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}{ }_{\mathrm{b}}$), 3.66-3.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7{ }^{\prime \prime}$), $3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.14(1 \mathrm{H}, \mathrm{qd}, J=6.6$ and $6.6 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{C}), 5.30(1$ $\mathrm{H}, \mathrm{dd}, J=7.8$ and $3.8 \mathrm{~Hz}, \mathrm{H} 3), 6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 6.42(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{H} 4) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.4\left(\mathrm{CH}_{2}, \mathrm{C} 9{ }^{\prime \prime}\right)$, $21.3\left(\mathrm{CH}_{3}, \mathrm{Me}\right), 24.5\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 25.4\left(\mathrm{CH}_{2}, \mathrm{C} 4\right)$, 29.3 ($\left.\mathrm{CH}_{2}, \mathrm{C} 3^{\prime}\right), 30.9\left(\mathrm{CH}_{2}, \mathrm{C} 8{ }^{\prime \prime}\right), 31.3\left(\mathrm{CH}_{2}, \mathrm{C} 3{ }^{\prime}\right)$), $\left.33.5\left(\mathrm{CH}_{2}, \mathrm{Cl}\right)^{\prime \prime}\right), 34.8\left(\mathrm{CH}_{2}, \mathrm{Cl} 1^{\prime}\right), 36.1$ ($\mathrm{CH}_{2}, \mathrm{C}^{\prime}$ '), $38.0\left(\mathrm{CH}_{2}, \mathrm{C} 4 "\right), 55.9\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 56.0\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 69.9\left(\mathrm{CH}, \mathrm{C} 7{ }^{\prime \prime}\right), 73.9$ (CH, C2"), 79.9 (CH, C3), 97.3 (CH, C6), 98.6 (CH, C4), 106.0 (quat., C5"), 107.0 (quat., C7a), 155.2 (quat., C3a), 159.6 (quat., C7), 166.6 (quat., C5), 168.5 (quat., C1); $m / z(E I):$ 418 ($\mathrm{M}^{+}, 6 \%$), 361 (28), 318 (41), 293 (22), 290 (15), 261 (18), 207 (46), 193 (66), 155 (44), 111 (29), 98 (100), 57 (45), 55 (41), 43 (34), 41 (45); HRMS (EI): Found M ${ }^{+}$, 418.23585. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $M, 418.23554$. This data was in agreement with that reported in the literature. ${ }^{1,2}$
1.For the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of natural spirolaxine methyl ether: M. A. Gaudiana, L. H. Huang, T. Kaneko, and P. C. Watts, PCT Int. Appl., 1996, WO 9605204; CAN 125:58200.
2.For the IR and optical rotation $+62^{\circ}\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right)$ of semi-synthetic spirolaxine methyl ether (prepared by methylation of natural spirolaxine): T. Adaci, I. Takagi, K. Kondo, A. Kawashima, A. Kobayashi, I. Taneoka, S. Morimoto, B. M. Hi, and Z. Chen, PCT Int. Appl., 1996, WO 9610020; CAN 125:86482.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
(2'S)-((3S)-1-(tert-butyldiphenylsilyloxy)hept-6-en-3-yl)-3',3',3'-trifluoro-2'-methoxy-2'-phenylpropanoate

To a suspension of (S)-2-methoxy-2-trifluoromethyl-2-phenylacetic acid ($48 \mathrm{mg}, 0.20$ mmol), 4-dimethylaminopyridine ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) and dicyclohexylcarbodiimide (70 $\mathrm{mg}, 0.34 \mathrm{mmol})$ in dichloromethane $\left(1 \mathrm{~cm}^{-3}\right)$ was added alcohol ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dichloromethane $\left(1 \mathrm{~cm}^{-3}\right)$. After stirring at room temperature for 72 h the reaction was quenched by the addition of brine $\left(2 \mathrm{~cm}^{-3}\right)$. The mixture was diluted with diethyl ether (5 cm^{-3}) and the aqueous layer extracted with diethyl ether ($3 \times 5 \mathrm{~cm}^{-3}$). The combined extracts were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. Flash column chromatography using hexane-diethyl ether $(9: 1)$ as the eluent gave the title compound ($65 \mathrm{mg}, 82 \%$) as a colourless oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{t} B u \mathrm{Ph}_{2}\right)$, 1.67-1.74 (2 H, m, H4), 1.82-1.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), 1.90-2.02 (2 H , m, H5), 3.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.70(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{H} 1), 4.92-4.98$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$), 5.36 (1 $\mathrm{H}, \mathrm{q}, J=6.2 \mathrm{~Hz}, \mathrm{H} 3), 5.71(1 \mathrm{H}, \mathrm{dddd}, J=17.6,9.7,6.5$ and $6.5 \mathrm{~Hz}, \mathrm{H} 6), 7.38-7.42(9 \mathrm{H}$, $\mathrm{m}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu} P h_{2}, p$ and m and ArH, p and o or m), 7.50-7.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, o$ or m), 7.62-7.66 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu} h_{2}, o\right)$; $\delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-72.47\left(0.09 \mathrm{~F}, \mathrm{CF}_{3}\right),-72.29\left(2.91 \mathrm{~F}, \mathrm{CF}_{3}\right)$. Integration of these resonances established the enantiomeric excess to be 94%.

