\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding

Jonathan L. Sessler,* ${ }^{a}$ Janarthanan Jayawickramarajah, ${ }^{a}$ Andreas Gouloumis, ${ }^{\boldsymbol{b}}$
Tomás Torres,* ${ }^{\mathbf{b}}$ Dirk M. Guldi,* ${ }^{\mathbf{c}}$ Stephen Maldonado ${ }^{\text {a }}$ and Keith J. Stevenson**
${ }^{a}$ Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, 1 University Station, A5300, University of Texas at Austin, Austin, Texas 78712-0165, USA.

E-mail: sessler@mail.utexas.edu; Fax: +1 512471 7550; Tel: +1 5124715009
${ }^{b}$ Universidad Autónoma de Madrid, Departmento de Química Orgánica, Campus de Cantoblanco, Madrid, Spain.

E-mail: tomas.torres@uam.es; Fax: +34 91497 3966; Tel: +34 914974151.
${ }^{c}$ Universität Erlangen, Institute for Physical and Theoretical Chemistry, 91058 Erlangen, Germany.

E-mail: dirk.guldi@chemie.uni-erlangen.de; Fax: +49 9131852 8307; Tel: +49 91318527341.

Supporting Information

I. Synthetic Experimental
II. Electrochemical Analysis

IIIa. Estimation of Driving Force
IIIb. Estimation of $k_{c s,} \phi$ and K_{a}
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

I. Synthetic Experimental

4-Amino-5-[(5"-ethynylphenyl)-10'", 15 ', 20 "'-triphenylporphinatoZn(II)]-1-[2',3',5'-tri-O-(tert-butyl-dimethylsilyl)-ß3-D-ribofuranosidyl]-pyrimidin-4-one (1):

 Porphyrin $3^{1}(0.06 \mathrm{~g}, 0.09 \mathrm{mmol})$ and iodocytidine $(0.1 \mathrm{~g}, 0.14 \mathrm{mmol}) 4^{2}$ were added to a mixture of dry toluene/triethylamine (2:1) (6 ml) under an argon atmosphere. The resulting solution was bubbled with argon for 20 min . At this point, $\mathrm{CuI}(0.08 \mathrm{~g}, 0.04$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.02 \mathrm{~g}, 0.02 \mathrm{mmol})$ were added. The reaction mixture was then stirred and heated at $50^{\circ} \mathrm{C}$ for 12 hr . Subsequently, the solvents were removed in vacuo and the crude material was purified using column chromatography on a silica gel column using ethylacetate/hexanes $(2 / 3)$ as the eluent. A second silica gel column using the same eluent system, was performed to provide $\mathbf{1}$ in the form of a purple solid. $\left(7.7 \times 10^{-3} \mathrm{~g}, 67\right.$ $\%$ yield). M.P. $210{ }^{\circ} \mathrm{C}$ (decomp); UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\right.$ in $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 420(4.9 \mathrm{x}$ $\left.10^{5}\right), 548\left(2.0 \times 10^{4}\right), 578\left(5.0 \times 10^{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ with a drop of $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.92-8.85(\mathrm{~m}, 8 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.23-8.21(\mathrm{~m}, 6$ H), $7.90(J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 9 \mathrm{H}), 5.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9$ H), $0.95(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.32(\mathrm{~s}, 6 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.144(\mathrm{~s}, 3 \mathrm{H}), 0.137(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ with a drop of MeOD) $\delta 163.8,154.2,149.5$, $149.43,149.35,148.9,143.5,143.2,142.5,133.9,133.8,131.1,131.00,130.95,130.5$, 128.9, 126.6, 125.7, 120.5, 120.3, 120.1, 118.7, 95.0, 90.7, 89.0, 83.9, 80.3, 76.0, 70.2, $61.3,28.9,25.4,24.9,17.9,17.3,17.2,-5.2,-5.5,-5.8,-5.87,-5.93,-6.2 ;$ HR-MS (CI): $m / z \quad 1284.4961 \quad[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{73} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Zn}:$ 1284.4977; calcd for```
Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
C}\mp@subsup{}{73}{}\mp@subsup{H}{81}{}\mp@subsup{N}{7}{}\mp@subsup{\textrm{O}}{5}{}\mp@subsup{\textrm{Si}}{3}{}\textrm{Zn}\cdot\textrm{MeOH}\cdot\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{}: C 64.20, H 6.25,N 6.99; found C 64.33, H 6.73,N
6.36.
```


## 8-Formyl-2-isobutyramido-9-[2', $\mathbf{3}^{\prime}, 5^{\prime}$-tri- $O$-(tert-butyldimethylsilyl)-ß3-D-

 ribofuranosidyl]-purin-6-one (6):Nucleoside $\mathbf{5}^{3}(1.25 \mathrm{~g}, 1.73 \mathrm{mmol})$, dissolved in 90 ml of dry dichloromethane, was treated with ozone at $-78^{\circ} \mathrm{C}$ for 3 hr . The solution was purged with argon, followed by the addition of methyl sulfide $(0.16 \mathrm{ml}, 2.25 \mathrm{mmol})$. The reaction was left to stir for 12 hr while warming to room temperature. Subsequently, the solvent was removed in vacuo and the resulting crude mixture was purified by column chromatography on a silica gel column using ethylacetate/hexanes $(1 / 1)$ as the eluent. This yielded the formyl derivative 6 in the form of a white powder ( $0.6 \mathrm{~g}, 52 \%$ yield). M.P. $190{ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 12.2(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96 (m, 1 H ), 4.39 (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}) 2.67(\mathrm{~m}, 1 \mathrm{H})$, 1.23 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19$ (d, $J=6.8, \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (s, 9 H$), 0.82$ (s, 9 H$), 0.70$ (s, 9 H), 0.12 (s, 3 H ), 0.10 (s, 3 H ), 0.01 (s, 3 H ), -0.03 (s, 3 H ), -0.13 (s, 3 H ), -0.40 (s, 3 H ) ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 182.2,178.7,155.5,150.8,148.9,144.3,123.0,88.0$, 85.7, 72.9, 72.1, 62.5, 36.5, 25.8, 25.5, 19.0, 18.6, 18.3, 18.0, 17.7, -4.4, -4.5, -4.6, -5.2, 5.4, -5.5; HR-MS (FAB): $m / z 724.3969[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{33} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}_{3}: 724.3957$; calcd for $\mathrm{C}_{33} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}_{3}$ : C 54.74, H 8.49, N 9.67; found C 54.94, H 8.50, N 9.48.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

## 

 (tert-butyldimethylsilyl)-ß-D-ribofuranosidyl]-purin-6-one (7):A mixture of nucleoside $6(0.246 \mathrm{~g}, 0.34 \mathrm{mmol}), \mathrm{C}_{60}(0.245 \mathrm{~g}, 0.34 \mathrm{mmol})$ and N methylglycine ( $0.151 \mathrm{~g}, 1.7 \mathrm{mmol}$ ) in dry toluene ( 150 ml ) was heated to reflux under an argon atmosphere for 24 h . After cooling, the solution was evaporated and the residue purified by column chromatography on a silica gel column using toluene and toluene/ ethylacetate $(4 / 1)$ as the eluents. The resulting product was triturated with methanol, filtered, and washed with methanol and with hexanes, yielding 7 as a dark brown solid ( $0.14 \mathrm{~g}, 28 \%$ ). M.P. $250{ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 11.93$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.57 $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.47\left(\mathrm{dd}, J^{\prime}=J^{\prime}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.93(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz} 1 \mathrm{H}), 4.35(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H})$, 3.75-3.60 (m, 2 H$), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$, 0.92 (s, 9 H ), 0.84 (s, 9 H ), 0.17 (s, 3 H ), 0.16 (s, 3 H ), 0.09 (s, 3 H ), 0.07 (s, 3 H ), -0.02 $(\mathrm{s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H})) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,155.4,155.2,153.9$, $153.4,151.3,149.6,147.4,147.3,146.9,146.6,146.5,146.4,146.3,146.2,146.1,146.0$, $145.9,145.8,145.7,145.6,145.5,145.4,145.3,145.2,145.1,145.0,144.9,144.7,144.6$, $144.5,144.3,143.1,143.0,142.6,142.5,142.4,142.3,142.2,142.1,142.0,141.9,141.8$, 141.7, 141.6, 141.5, 141.4, 140.3, 140.0, 139.8, 138.3, 136.7, 136.0, 122.3, 86.1, 84.4, $75.7,72.4,71.7,69.2,63.3,39.9,36.8,26.1,26.0,25.9,19.0,18.9,18.5,18.1,-3.4,-4.3,-$ 4.4, -5.2, -5.4 ; ES-MS : $m / z 1471[\mathrm{M}+\mathrm{H}]^{+}$, UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\right.$ in $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ : $257\left(6.3 \times 10^{4}\right), 320(\mathrm{sh}), 431(20)$.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

## 8-\{2"-(1'"-methyl-3",4"[C60]fulleropyrrolidinyl)\}-2-amino-9-[2',3',5'-tri-O-(tert-

## butyldimethylsilyl)-ß3-D-ribofuranosidyl]-purin-6-one (2):

Fulleropyrrolidine-nucleoside $6(0.147 \mathrm{~g}, 0.1 \mathrm{mmol})$ was treated with an ammonia saturated solution of dichloromethane/methanol (3/1) and allowed to stir at room temperature. During this time, the reaction was monitored by TLC analysis. When the reaction was deemed complete (ca. 24 h ), the solvent was removed and the residue was triturated with hexanes. It was then filtered and the precipitate collected in this way was washed with hexanes. The crude product was extracted in a soxhlet apparatus with dichloromethane for 24 h , yielding $\mathbf{2}$ as a dark brown solid ( $0.09 \mathrm{~g}, 65 \%$ ). M.P. $250{ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ with a drop of $\mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 12.45$ (brs, 1 H ), 5.70 $\left(\mathrm{dd}, J^{\prime}=J^{\prime}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=9.4 \mathrm{~Hz} 1 \mathrm{H}), 4.51(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1$ H), $4.31(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 2 \mathrm{H})$, 2.85 (s, 3H), 0.98 (s, 9 H), 0.89 (s, 9 H), 0.83 (s, 9 H ), 0.09 (s, 6 H$), 0.03$ (s, 3 H ), 0.01 (s, $3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H})$ ); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,153.0,152.8$, 149.6, 149.0, 148.4, 147.9, 147.6, 147.3, 146.4, 146.2, 146.0, 145.8, 145.5, 145.3, 144.7, $144.5,144.3,143.1,143.0,142.6,142.1,141.7,140.3,140.0,135.8,122.3,85.9,84.2$, $75.8,74.0,72.3,69.5,69.2,63.9,40.2,26.1,26.0,25.7,25.3,18.9,18.3,18.1,-3.6,-4.4,-$ 5.0; ES-MS : $m / z 1401[\mathrm{M}+\mathrm{H}]^{+}$, UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\right.$ in $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 256(6.0 \mathrm{x}$ $10^{4}$ ), 320 (sh), 430 (20).

\# Supplementary Material (ESI) for Chemical Communications

\# This journal is © The Royal Society of Chemistry 2005

## II. Electrochemical Analysis.

A single-compartment, three electrode, glass electrochemical cell was employed for the cyclic voltammetric studies. Platinum mesh (Aldrich) and silver wire (Alfa Aesar) were used as the counter and quasi-reference electrodes, respectively, while a gold disk UME $(\mathrm{r}=12.5 \mu \mathrm{~m})$ was used as the working electrode. Measurements were performed with a CH Instruments 700A potentiostat. All electrochemical studies were taken with a quiescent solution and at room temperature $\left(23 \pm 2^{\circ} \mathrm{C}\right)$. Prior to reductive measurements, the solution was purged with $\mathrm{N}_{2}$ for several minutes. Electrolyte solutions were prepared using recrystallized tetrabutylammonium hexafluorophosphate (Aldrich) and A.C.S spectranalyzed dichloromethane (Fisher). Following each measurement, ferrocene $\left(\mathrm{FeCp}_{2}\right)$ was added $\left(\left[\mathrm{FeCp}_{2}\right] \sim 1 \mathrm{mM}\right)$ and all potentials were referenced to the potential for the ferrocene/ferrocenium couple. All scans were recorded at $20 \mathrm{mV} \mathrm{s}^{-1}$.


Figure 1. Room temperature cyclic voltammogram of $\mathbf{2}(\sim 1 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with ( $n$ $\left.\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{PF}_{6}(0.1 \mathrm{M})$. Inset depicts multiple further reductions at more negative applied potentials. From these studies, an $E^{0}$ of $-1.082 \mathrm{~V} \mathrm{vs} .\mathrm{Fc} / \mathrm{Fc}^{+}$was calculated for 2.


Figure 2. Room temperature cyclic voltammogram of $\mathbf{1}(\sim 1 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with ( $n$ $\left.\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{PF}_{6}(0.1 \mathrm{M})$. From these studies, an $E^{0}$ of 0.317 V vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$was calculated for $\mathbf{1}$.

## IIIa. Estimation of Driving Force

## Estimation of $\boldsymbol{\Delta} \mathbf{G}^{\mathbf{0}}{ }_{\mathbf{E T}}$

$\Delta G_{\mathrm{CS}}{ }^{0} / \mathrm{eV}=e\left[E^{o}\left(\mathrm{D}^{+\boldsymbol{e}} / \mathrm{D}\right)-E^{o}\left(\mathrm{~A} / \mathrm{A}^{-0}\right)\right]-E_{00}$
Where, $e=$ elementary charge
$\boldsymbol{E}^{o}\left(\mathbf{D}^{+\cdot} / \mathbf{D}\right)=$ the first oxidation potential of Zn -porphyrin-cytidine $\mathbf{1}$

$$
=\mathbf{0 . 3 1 7} \mathbf{V} \text { (vs. ferrocene in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text { ) }
$$

$\boldsymbol{E}^{o}\left(\mathbf{A} / \mathbf{A}^{-0}\right)=$ the first reduction potential of guanosine-C ${ }_{60} \mathbf{2}$
$=\mathbf{- 1 . 0 8 2} \mathrm{V}$ (vs. ferrocene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ )
$\boldsymbol{E}_{00}=$ The energy of the lowest excited singlet state of the Zn-porphyrin-cytidine $\mathbf{1}$
( $E_{00}$ was calculated from the intersection of the normalized absorption and emission spectra of $\mathbf{1}$, resulting in a wavelength of 560 nm )
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
$\mathrm{E}=\mathrm{hc} / \lambda$. Therefore, $\mathrm{E}=\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.997 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}\right) / 560 \times 10^{-9} \mathrm{~m}$

$$
=3.546 \times 10^{-19} \mathrm{~J}
$$

Since $1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$3.546 \times 10^{-19} \mathrm{~J}=\mathbf{2 . 2 1} \mathbf{e V}$
Substituting the values of $E^{o}\left(\mathrm{D}^{+\bullet} / \mathrm{D}\right), E^{o}\left(\mathrm{~A} / \mathrm{A}^{-0}\right)$, and $E_{00}$ into Eqn.1:
$\Delta \boldsymbol{G}^{\mathbf{0}}{ }_{\mathbf{E T}} / \mathbf{e V}=[0.317-(-1.082)]-2.21=\mathbf{- 0 . 8 1} \mathbf{e V}$

$$
\text { Estimation of } \begin{aligned}
\Delta \boldsymbol{G}_{\mathbf{C R}}{ }^{0} & =-\left[\boldsymbol{E}^{o}\left(\mathbf{D}^{+\cdot} / \mathbf{D}\right)-\boldsymbol{E}^{o}\left(\mathbf{A} / \mathbf{A}^{-0}\right)\right] \\
& =-(0.317-(-1.082)) \\
& =-\mathbf{1 . 4} \mathbf{e V}
\end{aligned}
$$

## IIIb. Estimation of $\boldsymbol{k}_{c s}, \phi$ and $\boldsymbol{K}_{\mathrm{a}}$

The rate constant for the forward electron transfer $\left(k_{c s}\right)$ can be estimated from Eqn. 2, where $\tau_{1}(2.1 \mathrm{~ns})$ is the lifetime for the longer lived component and $\tau_{2}(0.6 \mathrm{~ns})$ is the lifetime of the shorter lived component.

$$
\begin{aligned}
k_{c s} & =\left(1 / \tau_{2}\right)-\left(1 / \tau_{1}\right) \\
& =1.2 \times 10^{9} \mathrm{~s}^{-1}
\end{aligned}
$$

The corresponding quantum efficiency is $0.71\left(\phi=\tau_{2} k_{c s}\right)$
On the assumption that the fractional amplitudes $\left(\mathrm{A}_{2}\right.$ and $\left.\mathrm{A}_{1}\right)$ are proportional to the concentration of each emitting species is true, it is possible to calculate the binding constant $\left(K_{a}\right)$ of the H-bonded dyad $\mathbf{I}$ from Eqn. 3.
$K_{a}=\mathrm{A}_{2} / \mathrm{A}_{1}[\mathrm{Q}]$
Eq. 3

A plot of $\mathrm{A}_{2} / \mathrm{A}_{1}$ versus [Q] (the concentration of the quencher 2) yielded a value for the association constant, $K_{a}\left(c a .3 .3 \times 10^{4} \mathrm{M}^{-1}\right)$.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

[1/20/2005 13:46 "/Graph1" (2453390)]
Linear Regression for Datal_B:
$\mathrm{Y}=\mathrm{A}+\mathrm{B} * \mathrm{X}$
Parameter Value Error

| A | 2.13362 | 0.24463 |
| :---: | :---: | :---: |
| B | 32996.25468 | 6996.58775 |



## References

1) O. Mongin and A. Gossauer, Tetrahedron, 1997, 53, 6835.
2) J. L. Sessler, C. T. Brown and R. Wang, T. Hirose, Inorg. Chim. Acta., 1996, 251, 135.
3) J. L. Sessler, J. Jayawickramarajah, C. L. Sherman and J. S. Brodbelt, Org. Lett., 2003, 5, 2627.
4) D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
