Supporting Information for the Paper Entitled "Latent low-coordinate titanium imides supported by a sterically encumbering beta-diketiminate ligand"

Falguni Basuli, Rodney L. Clark, Brad C. Bailey, Doug Brown, John C. Huffman and Daniel J. Mindiola*

[‡]Department of Chemistry and Molecular Structure Center, Indiana University,

Bloomington, Indiana 47405

Experimental Section

General Considerations. Unless otherwise stated, all operations were performed in a M. Braun Lab Master double-dry box under an atmosphere of purified nitrogen or using high vacuum standard Schlenk techniques under an argon atmosphere.¹ Anhydrous *n*-Hexane, pentane, toluene, and benzene were purchased from Aldrich in sure-sealed reservoirs (18 L) and dried by passage through two columns of activated alumina and a Q-5 column.² Diethylether and CH₂Cl₂ were dried by passage through a column of activated alumina.² THF was distilled, under nitrogen, from purple sodium benzophenone ketyl and stored under sodium metal. Distilled THF was transferred under vacuum into bombs before being pumped into a dry box. FC₆H₅ was purchased from Acros Organics and filtered through activated alumina. C₆D₆ was purchased from Cambridge Isotope Laboratory (CIL), degassed and dried over CaH₂, then vacuum transferred to 4 Å molecular sieves. C_6D_5F and C_6D_5Cl were purchased from CIL and passed through a thin mat of activated alumina. THF- d_8 was purchased from CIL and used as received. Celite, alumina, and 4 Å molecular sieves were activated under vacuum overnight at 200 °C. Li(Nacnac) (Nacnac⁻ = $[ArNC(tBu)]_2CH$, Ar = 2.6-*i*Pr₂C₆H₃) was prepared according to the literature.³ LiCH₂SiMe₃ was recrystallized from pentane at -35 °C and LiMe(Et₂O)_x (x = 1-2) was obtained as a powder from a concentrated Et₂O solution at -35 °C. [HNMe₂Ph][B(C₆F₅)₄] and B(C₆F₅)₃ were purchased from Boulder Scientific, recrystallized from benzene and dried under reduced pressure. Note: The boron containing materials should not be exposed to coordinating solvents such as Et₂O and THF. All other chemical were used as received. CHN analyses were performed by Desert Analytics, Tucson, AZ. ¹H, ¹³C, ¹⁹F, ¹¹B, and ³¹P NMR spectra were recorded on Varian 400 or 300 MHz NMR spectrometers. ¹H and ¹³C NMR are reported with reference to solvent resonances

(residual C₆D₅H in C₆D₆, 7.16 ppm and 128.0 ppm; THF in THF- d_8 3.58, 1.73 and 67.4, 25.3 ppm; C₆H₅F in C₆D₅F 7.09, 6.92, 6.89 and 163.1, 129.5, 123.5, 115.0 ppm; C₆H₅Cl in C₆D₅Cl 7.09, 6.95, 6.92 and 134.2, 129.2, 128.3, 126.0 ppm). ¹⁹F NMR chemical shifts are reported with respect to external HOCOCF₃ (–78.5 ppm). ¹¹B NMR spectra were reported with respect to external BF₃•(OEt₂) (0.0 ppm). X-ray diffraction data were collected on a SMART6000 (Bruker) system under a stream of N₂ (g) at low temperatures.^{4,5}

Synthesis of (Nacnac)Ti=NAr(Cl) (1)

LiNacnac (1.51 g, 2.97 mmol) was sifted to a toluene (~50 mL) suspention of $TiCl_3(THF)_3$ [1.00 g, 2.70 mmol] at -35 °C. The mixture was stirred for 20 min then transferred to a bomb and heated to 80 °C for 3 days. The solution was filtered and all volatiles were removed *in vacuo*. The residue was extracted with hexane and the solution was passed through a pad of celite. The celite was washed with hexane and the filtrate was concentrated and cooled to -35 °C to yield red crystals of (Nacnac)Ti=NAr(Cl) (1) [800 mg, 1.05 mmol, 39% yield].

¹H NMR (23°C, 399.8 MHz, C_6D_6): δ 7.06-6.72 (m, 9H, Ar-*H*), 5.98 (ArN(tBu)CCHC(tBu)NAr), 3.69 (septet, 2H, CHMe₂), 3.30 (septet, 2H, CHMe₂), 3.23 (septet, 2H, CHMe₂), 1.56 (d, 6H, CHMe₂), 1.32 (d, 6H, CHMe₂), 1.16 (d, 6H, CHMe₂), 1.09-1.04 (m, 36H, CHMe₂ and ArN(*tBu*)CCHC(*tBu*)NAr). ¹³C NMR (23°C, 100.6 MHz, C₆D₆): δ 175.8 (ArN(tBu)CCHC(tBu)NAr), 146.2 (C₆H₃), 142.2 (C₆H₃), 140.6 (C₆H₃), 129.3 (C₆H₃), 128.6 (C₆H₃), 127.1 (C₆H₃), 125.3 (C₆H₃), 124.0 (C₆H₃), 122.5 (C₆H₃), 122.4 (C₆H₃), 94.8 (ArN(*t*Bu)C*C*HC(*t*Bu)NAr), 45.12 (ArN(CMe₃)CCHC(CMe₃)NAr), 32.01 ((ArN(CMe₃)CCHC(CMe₃)NAr), 29.23 (CHMe₂), 28.71 (CHMe₂), 28.05 (CHMe₂), 26.67

(*Me*), 25.29 (*Me*), 25.20 (*Me*), 25.07 (*Me*), 24.72 (*Me*). Anal. Calcd. for C₄₇H₇₀N₃ClTi : C, 74.27; H, 9.27; N, 5.52. Found: C, 74.29; H, 8.96; N, 5.31.

Synthesis of (Nacnac)Ti=NAr(OTf) (2)

In a flask was dissolved **1** [632 mg, 0.83 mmol] in THF (40 mL) and the solution was cooled to -35 °C. To the solution was added a cold THF (20 mL) solution containing AgOTf [277.6 mg, 1.08 mmol]. The solution was allowed to stir for 30 min, filtered and then dried in vacuo. The red residue was extracted with Et₂O and filtered. The resulting filtrate was concentrated and cooled to -35 °C to yield red crystals of (Nacnac)Ti=NAr(OTf) (**2**) [533 mg, 0.63 mmol, 76% yield].

¹H NMR (23°C, 399.8 MHz, C₆D₆): δ 7.04-6.68 (m, 9H, Ar-*H*), 5.80 (ArN(tBu)CCHC(tBu)NAr), 3.65 (septet, 2H, CHMe₂), 3.52 (septet, 2H, CHMe₂), 2.87 (septet, 2H, CHMe₂), 1.45 (d, 6H, CHMe₂), 1.43 (d, 6H, CHMe₂), 1.18 (d, 6H, CHMe₂), 1.11 (d, 6H, CHMe₂), 1.06 (s, 18H, ArN(tBu)CCHC(tBu)NAr), 1.02 (d, 12H, CHMe₂). ¹³C NMR (23°C, 100.6 MHz, C₆D₆): δ 175.5 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 159.2 (C₆H₃), 146.5 (C₆H₃), 144.0 (C₆H₃), 142.7 (C₆H₃), 139.8 (C₆H₃), 127.5 (C₆H₃), 125.3 (C₆H₃), 123.9 (C₆H₃), 123.6 122.8 $(C_{6}H_{3}),$ $(C_{6}H_{3}),$ 91.98 (ArN(*t*Bu)C*C*HC(*t*Bu)NAr), 44.96 (ArN(CMe₃)CCHC(CMe₃)NAr), 31.98 ((ArN(CMe₃)CCHC(CMe₃)NAr), 30.48 (CHMe₂), 28.69 (CHMe2), 27.90 (CHMe2), 26.86 (Me), 25.92 (Me), 25.04 (Me), 24.82 (Me), 24.61 (*Me*). ¹⁹F NMR (23°C, 282.3 MHz, C₆D₆): δ -77.44 (OSO₂CF₃). Anal. Calcd. for C₄₈H₇₀N₃O₃SF₃Ti : C, 65.96; H, 8.07; N, 4.81. Found: C, 65.82; H, 8.07; N, 4.79.

Synthesis of (Nacnac)Ti=NAr(Me) (3)

In a vial was dissolved **2** [372 mg, 0.43 mmol] in Et₂O (10 mL) and the solution was cooled to -35 °C. To the solution was added a cold THF solution of MeMgCl [3M solution, 0.14 mL, 0.43 mmol]. The solution was allowed to stir for 2 h and then dried in vacuo. The red residue was extracted with Et₂O and filtered. The resulting filtrate was concentrated and cooled to -35 °C to afford red crystals of (Nacnac)Ti=NAr(Me) (**3**) [283 mg, 0.38 mmol, 88% yield].

¹H NMR $(23^{\circ}C,$ 399.8 MHz. C₆D₆): δ 7.06-6.75 9H. (m, Ar-*H*), 5.93 (ArN(tBu)CCHC(tBu)NAr), 3.87 (septet, 2H, CHMe₂), 3.58 (septet, 2H, CHMe₂), 3.02 (septet, 2H, CHMe₂), 1.40 (d, 6H, CHMe₂), 1.31 (d, 6H, CHMe₂), 1.20 (d, 6H, CHMe₂), 1.19 (d, 6H, CHMe₂), 1.11 (d, 12H, CHMe₂), 1.08 (s, 18H, ArN(tBu)CCHC(tBu)NAr), 0.93 (s, 3H, Ti-Me) . ¹³C NMR (23°C, 100.6 MHz, C₆D₆): δ 174.8 (ArN(tBu)CCHC(tBu)NAr), 158.2 (C_6H_3) , 146.2 (C_6H_3) , 142.5 (C_6H_3) , 142.1 (C_6H_3) , 140.4 (C_6H_3) , 126.5 (C_6H_3) , 124.8 (C_6H_3) , 123.8 (C₆H₃), 122.3 (C₆H₃), 120.8 (C₆H₃), 93.55 (ArN(tBu)CCHC(tBu)NAr), 45.35 $(ArN(CMe_3)CCHC(CMe_3)NAr),$ 34.16 (Ti-*C*H₃, $J_{\text{C-H}}$ 114 Hz), 32.14 = ((ArN(CMe₃)CCHC(CMe₃)NAr), 29.48 (CHMe₂), 28.62 (CHMe₂), 27.84 (CHMe₂), 26.61 (Me), 25.82 (Me), 24.84 (Me), 24.80 (Me), 24.62 (Me). Anal. Calcd. for C₄₈H₇₃N₃Ti: C, 77.91; H, 9.94; N, 5.68. Found: C, 77.59; H, 9.60; N, 5.54.

Synthesis of (Nacnac)Ti=NAr(CH₂SiMe₃) (4)

In a vial was dissolved **2** [252 mg, 0.29 mmol] in Et_2O (10 mL) and the solution was cooled to -35 °C. To the solution was added a cold solution of LiCH₂SiMe₃ [29.83 mg, 0.32 mmol]. The solution was allowed to stir for 2 h and then dried in vacuo. The red residue was extracted with pentane and filtered, and the resulting filtrate was concentrated and cooled to

-35 °C to yield red crystals of (Nacnac)Ti=NAr(CH₂SiMe₃) (4) [203 mg, 0.25 mmol, 86% yield].

¹H NMR (23°C, 399.8 MHz, C₆D₆): δ 7.06-6.65 (m, 9H, Ar-*H*), 5.87 (ArN(tBu)CCHC(tBu)NAr), 3.27 (two overlapping septets, 4H, CHMe₂), 3.16 (septet, 2H, CHMe₂), 1.56 (d, 6H, CHMe₂), 1.35 (d, 6H, CHMe₂), 1.31 (s, 2H, Ti-CH₂SiMe₃), 1.17 (d, 6H, CHMe2), 1.07 (s, 18H, ArN(tBu)CCHC(tBu)NAr), 1.04 (d, 6H, CHMe2), 0.97 (d, 12H, CHMe₂), 0.34 (s, 9H, Ti-CH₂SiMe₃). ¹³C NMR (23°C, 100.6 MHz, C₆D₆): δ 176.8 (ArN(tBu)CCHC(tBu)NAr), 158.8 (C₆H₃), 146.0 (C₆H₃), 142.5 (C₆H₃), 141.5 (C₆H₃), 141.3 (C₆H₃), 126.6 (C₆H₃), 125.1 (C₆H₃), 124.3 (C₆H₃), 122.4 (C₆H₃), 121.0 (C₆H₃), 94.19 (ArN(tBu)CCHC(tBu)NAr), 56.14 99 (Ti-CH₂SiMe₃, $J_{\text{C-H}}$ Hz), 44.59 = (ArN(CMe₃)CCHC(CMe₃)NAr), 32.14 ((ArN(CMe₃)CCHC(CMe₃)NAr), 28.44 (CHMe₂), 28.32 (CHMe2), 27.61 (CHMe2), 26.85 (Me), 25.59 (Me), 25.39 (Me), 25.35 (Me), 24.80 (*Me*), 3.81 (Ti-CH₂Si(CH₃)₃). Anal. Calcd. for C₅₁H₈₁N₃SiTi : C, 75.42; H, 10.05; N, 5.17. Found: C, 75.35; H, 9.74; N, 4.81.

Synthesis of [(Nacnac)Ti=NAr(THF)][B(C₆F₅)₄] (5)

In a vial was dissolved **3** [273 mg, 0.37 mmol] in benzene (10 mL) and to the solution was added slowly to a solution of [HNMe₂Ph][B(C₆F₅)₄] [325.2 mg, 0.41 mmol]. The solution was allowed to stir for 5 min and then few drops of THF were added. The stirring was continued for 30 min and the orange solid thus obtained was collected by filtration. The resulting solid was washed with benzene to yield [(Nacnac)Ti=NAr(THF)][B(C₆F₅)₄] (**5**) [414 mg, 0.28 mmol, 76% yield]. Single crystals of **5** were grown slowly from the THF solution with few drops of hexane at -35 °C.

¹H NMR (23°C, 399.8 MHz, THF-*d*₈): δ 7.40-6.66 (m, 9H, Ar-*H*), 6.07 (ArN(*t*Bu)CC*H*C(*t*Bu)NAr), 3.63 (br, 4H, THF), 3.06 (septet, 2H, C*H*Me₂), 2.94 (septet, 2H, *CH*Me₂), 2.79 (septet, 2H, *CH*Me₂), 1.77 (br, 4H, THF), 1.50 (d, 12H, CH*M*e₂), 1.25 (d, 6H, CH*M*e₂), 1.23 (s, 18H, ArN(*tBu*)CCHC(*tBu*)NAr), 1.02 (d, 6H, CH*M*e₂), 0.67 (d, 12H, CH*M*e₂). ¹³C NMR (23°C, 100.6 MHz, THF-*d*₈): δ 178.6 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 160.5 (*C*₆H₃), 149.6 (br, (*C*₆F₅)₄B), 147.2 (br, (*C*₆F₅)₄B), 145.2 (*C*₆H₃), 143.9 (*C*₆H₃), 141.2 (*C*₆H₃), 140.3 (*C*₆H₃), 137.5 (br, (*C*₆F₅)₄B), 135.1 (br, (*C*₆F₅)₄B), 128.5 (*C*₆H₃), 122.3 (*C*₆H₃), 125.3 (*C*₆H₃), 125.2 (*C*₆H₃), 122.9 (*C*₆H₃), 89.17 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 67.43 (THF), 45.55 (ArN(*C*Me₃)CCHC(*C*Me₃)NAr), 31.22 ((ArN(*CM*e₃)CCHC(*CM*e₃)NAr), 30.76, 30.11, 28.94, 27.91, 25.58, 25.39, 25.04, 24.84, 24.01, 23.79. ¹⁹F NMR (23 °C, 128.4 MHz, THF-*d*₈): δ -133.3 (*C*₆F₅)₄B). Anal. Calcd. for C₇₅H₇₈N₃OF₂₀BTi : C, 61.03; H, 5.32; N, 2.85. Found: C, 60.54; H, 5.28; N, 2.81.

Synthesis of [(Nacnac)Ti=NAr(Et₂O)][B(C₆F₅)₄] (6)

In a vial was dissolved **3** [200 mg, 0.27 mmol] in benzene (10 mL) and to the solution was added a solution of [HNMe₂Ph][B(C₆F₅)₄] [225.8 mg, 0.28 mmol]. The solution was allowed to stir for 5 min and then few drops of Et₂O were added. The stirring was continued for 30 min and the orange solid thus obtained was collected by filtration. The resulting solid was washed with benzene to yield [(Nacnac)Ti=NAr(Et₂O)][B(C₆F₅)₄] (**6**) [328 mg, 0.22 mmol, 82% yield]. Single crystals were grown by layering the C₆H₅F solution of **6** with hexane at room tempareture. THF readily displaces Et₂O in complex **6**.

¹H NMR (23°C, 399.8 MHz, C₆D₅F): δ 7.20-6.50 (m, 9H, Ar-*H*), 5.70 (ArN(*t*Bu)CC*H*C(*t*Bu)NAr), 3.27 (quartet, 4H, Et₂O), 2.80 (septet, 2H, *CH*Me₂), 2.71 (septet, 2H, *CH*Me₂), 2.46 (septet, 2H, *CH*Me₂), 1.24 (d, 6H, *CHMe₂*), 1.18 (d, 6H, *CHMe₂*), 1.05 (t, 6H, Et₂O) 1.02 (d, 6H, *CHMe₂*), 0.91 (s, 18H, ArN(*tBu*)CCHC(*tBu*)NAr), 0.82 (d, 6H, *CHMe₂*), 0.56 (d, 12H, *CHMe₂*). ¹³C NMR (23°C, 100.6 MHz, C₆D₅F): δ 178.6 (ArN(*t*Bu)CCH*C*(*t*Bu)NAr), 160.8 (*C*₆H₃), 150.2 (br, (*C*₆F₅)₄B), 147.8 (br, (*C*₆F₅)₄B), 145.0 (*C*₆H₃), 144.1 (*C*₆H₃), 141.2 (*C*₆H₃), 139.9 (*C*₆H₃), 124.3 (*C*₆H₃), 123.4 (*C*₆H₃), 88.49 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 65.96 (Et₂O), 45.51 (ArN(*C*Me₃)CCHC(*C*Me₃)NAr), 31.58 ((ArN(*CMe₃*)CCHC(*CMe₃*)NAr), 30.13 (*C*HMe₂), 29.04 (*C*HMe₂), 28.18 (*C*HMe₂), 25.67 (*Me*), 25.48 (*Me*), 25.01 (*Me*), 24.98 (*Me*), 24.47 (*Me*), 24.25 (*Me*), 15.58 (Et₂O). ¹⁹F NMR (23 °C, 128.4 MHz, C₆D₅F): δ -16.28 (*C*₆F₅)₄B). Anal. Calcd. for C₇₅H₈₀N₃OF₂₀BTi : C, 60.94; H, 5.45; N, 2.84. Found: C, 61.09; H, 5.28; N, 2.80.

Synthesis of [(Nacnac)Ti=NAr(η^1 -C₆H₅NMe₂)][B(C₆F₅)₄] (7)

 C_6D_5F (0.6 mL) was added to the mixture of **3** [33 mg, 0.04 mmol] and [HNMe₂Ph][B(C₆F₅)₄] [37.52 mg, 0.05 mmol] in a J. Young NMR tube. Effervescence was noticed immediately. After allowing the reaction to proceed at room temperature for 10 min, ¹H NMR spectrum was collected which revealed that [(Nacnac)Ti=NAr(η^{1} - $C_6H_5NMe_2$)][B(C₆F₅)₄] (**7**) had been generated in quantitative yield. Single crystals were grown by layering the C₆H₅F solution of **7** with hexane at room tempareture. For comparison, the ¹H and ¹³C NMR spectra of the free amine NMe₂Ph were taken in C₆D₅F.

For NMe₂Ph: ¹H NMR (23°C, 399.8 MHz, C₆D₅F): δ 7.43 (t, 2H), 6.96 (t, 1H), 6.87 (d, 2H). ¹³C NMR (23°C, 100.6 MHz, C₆D₅F): δ 151.0, 129.2, 116.8, 112.8.

For 7: ¹H NMR (23°C, 399.8 MHz, C₆D₅F): δ 7.25 (t, 2 H, Ar-*H*), 7.2-6.9 (m, 6 H, Ar-*H*), 6.87 (t, 1H, *p*-C₆*H*₅NMe₂), 6.8-6.6 (m, 5H, Ar-*H*) 5.90 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 3.40 (br, 2H, C*H*Me₂), 3.21 (septet, 2H, C*H*Me₂), 2.74 (s, 6H, C₆H₅NMe₂), 2.56 (septet, 2H, C*H*Me₂), 1.47 (d, 6H, CHMe₂), 1.26-1.16 (overlapping doublets, 18H, CHMe₂), 1.14 (s, 18H, ArN(*tBu*)CCHC(*tBu*)NAr), 0.80 (d, 12H, CHMe₂). ¹³C NMR (23°C, 100.6 MHz, C₆D₅F): δ 175.9 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 159.5 (Ar), 150.1 (br, (C₆F₅)₄B), 147.7 (br, (C₆F₅)₄B), 145.5 (Ar), 143.9 (Ar), 140.5 (Ar), 140.0 (br, Ar), 139.8 (Ar), 138.1 (br, (C₆F₅)₄B), 137.5 (br, Ar), 135.6 (br, (C₆F₅)₄B), 128.7 (Ar), 125.1 (Ar), 124.8 (Ar), 122.8 (Ar), 118.6 (br, *p*-C₆H₅NMe₂), 31.21 ((ArN(*CMe*₃)CCHC(*CMe*₃)NAr), 40.69 (C₆H₅NMe₂), 32.35 (CHMe₂), 31.21 ((ArN(*CMe*₃)CCHC(*CMe*₃)NAr), 28.90 (CHMe₂), 28.53 (CHMe₂), 26.03 (*Me*), 25.58 (*Me*), 24.31 (*Me*), 23.97 (*Me*), 23.72 (*Me*). ¹⁹F NMR (23 °C, 282.3 MHz, C₆D₅F): δ -132.4 (C₆F₅)₄B), -163.5 (C₆F₅)₄B), -167.3 (C₆F₅)₄B). ¹¹B NMR (23 °C, 128.4 MHz, C₆D₅F): δ -16.54 (C₆F₅)₄B). Anal. Calcd. for C₇₉H₈₁N₄F₂₀BTi : C, 62.21; H, 5.35; N, 3.67. Found: C, 62.10; H, 5.87; N, 3.00.

S 9

¹H NMR spectrum of complex 7.

Supplementary Material (ESI) for Chemical Communications

This journal is $\mathbb O$ The Royal Society of Chemistry 2005

¹³C NMR spectrum of complex 7.

Synthesis of (Nacnac)Ti=NAr(µ-Me)B(C₆F₅)₃ (3)-B(C₆F₅)₃

 $C_6D_5Cl (0.6 \text{ mL})$ was added to the mixture of **3** [33 mg, 0.04 mmol] and $B(C_6F_5)_3$ [37.52 mg, 0.05 mmol] in a J. Young tube. After allowing the reaction to proceed at room temperature for 10 min, the ¹H NMR spectrum revealed that (Nacnac)Ti=NAr(μ -Me)B(C_6F_5)₃ (**3**)-B(C_6F_5)₃ had been generated in quantitative yield. Single crystals were grown by layering a C_6H_5F solution of (**3**)-B(C_6F_5)₃ with hexane at room temperature.

¹H NMR (23°C, 399.8 MHz, C₆D₅Cl): δ 7.1-6.5 (m, 9 H, Ar-*H*), 5.80 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 3.06 (septet, 2H, CHMe₂), 2.92 (septet, 2H, CHMe₂), 2.57 (septet, 2H, CHMe₂), 1.35 (br s, 3H, *Me*B(C₆F₅)₃) 1.19 (d, 6H, CH*Me₂*), 1.15 (d, 6H, CH*Me₂*),

1.02 (d, 6H, CH*Me*₂), 0.96 (s, 18H, ArN(*tBu*)CCHC(*tBu*)NAr), 0.88 (d, 6H, CH*Me*₂), 0.57 (d, 12H, CH*Me*₂). ¹³C NMR (23°C, 100.6 MHz, C₆D₅Cl): δ 176.5 (ArN(*t*Bu)CCHC(*t*Bu)NAr), 160.6 (*C*₆H₃), 150.2 (br, (*C*₆F₅)₄B), 147.8 (br, (*C*₆F₅)₄B), 146.0 (*C*₆H₃), 144.6 (*C*₆H₃), 141.1 (*C*₆H₃), 140.2 (*C*₆H₃), 138.4 (br, (*C*₆F₅)₄B), 137.5 (br, Ar), 136.0 (br, (*C*₆F₅)₄B), 125.3 (*C*₆H₃), 125.0 (*C*₆H₃), 124.9 (*C*₆H₃), 124.1 (*C*₆H₃), 122.9 (*C*₆H₃), 88.81 (ArN(tBu)CCHC(tBu)NAr), 45.04 (ArN(*C*Me₃)CCHC(*C*Me₃)NAr), 31.38 ((ArN(*CMe*₃)CCHC(*CMe*₃)NAr), 30.94 (CHMe₂), 28.63 (CHMe₂), 28.17 (CHMe₂), 25.98 (*Me*), 25.84 (*Me*), 24.75 (*Me*), 24.69(*Me*), 24.63 (*Me*), 13.94 (br, *Me*B(C₆F₅)₃). ¹⁹F NMR (23 °C, 282.3 MHz, C₆D₅Cl): δ –133.4 (MeB(C₆F₅)₃), -164.5 (MeB(C₆F₅)₃), -167.9 (MeB(C₆F₅)₃). ¹¹B NMR (23 °C, 128.4 MHz, C₆D₅Cl): δ –13.50 Me(C₆F₅)₃B). Anal. Calcd. for C₆₆H₇₃N₃F₁₅BTi.C₆H₅F : C, 64.14; H, 5.83; N, 3.12. Found: C, 63.67; H, 5.64; N, 3.10.

Data Collection, Structure Solution and Refinement for Single Crystal X-ray Diffraction Studies of Complexes 1-3 and 5-7.

Inert atmosphere techniques were used to place the crystal onto the tip of a diameter glass capillary (0.1-0.2 mm) and mounted on a SMART6000 (Bruker) at 118-126 K. A preliminary set of cell constants was calculated from reflections obtained from three nearly orthogonal sets of 20-30 frames. The data collection was carried out using graphite monochromated Mo K α radiation with a frame time of 2-30 seconds with a detector distance of 5.0 cm. A randomly oriented region of a sphere in reciprocal space was surveyed. Three sections of 606 frames were collected with 0.30° steps in ω at different ϕ settings with the detector set at -43° in 20. Final cell constants were calculated from the xyz centroids of strong reflections from the actual data collection after integration (SAINT). The structure was solved using

SHELXS-97 and refined with SHELXL-97. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares/difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters, and all hydrogen atoms were refined with isotropic displacement parameters (unless otherwise specified).

Crystal data for **5**; C₇₉H₈₆BF₂₀N₃O₂Ti: Triclinic, $P\bar{i}$, a = 13.505(1), b = 15.087(2), c = 18.955(4) Å, $\alpha = 99.273(2)$, $\beta = 104.999(2)$, $\gamma = 93.197(2)^{\circ}$, $Z = 2 \mu$ (Mo–K α) = 0.217 mm⁻¹, V = 3662.6(5) Å³, $D_c = 1.404$ mg mm⁻³, GoF on $F^2 = 0.833$, $R_1 = 4.25\%$ and w $R_2 = 9.34\%$ (F^2 , all data). Out of a total of 59016 reflections collected 16905 were unique and 9698 were observed ($R_{int} = 7.68\%$) with $I > 2\sigma I$ (red-pink prism, $0.28 \times 0.18 \times 0.15$ mm, $27.55^{\circ} \ge \theta \ge 1.98^{\circ}$). Disorder occurs in the THF solvent, a *t*Bu and *i*Pr group in the molecule. With the exception of the disordered atoms, hydrogen atoms were located in subsequent Fourier maps and included as isotropic contributors in the final cycles of refinement. Two independent molecules were confined per asymmetric unit.

Crystal data for **3-B**(**C**₆**F**₅)₃; C₇₂H₇₈BF₁₆N₃Ti: Triclinic, $P\bar{i}$, a = 13.372(4), b = 14.027(4), c = 17.625(8) Å, a = 79.495(3), $\beta = 88.114(3)$, $\gamma = 86.204(3)^{\circ}$, $Z = 2 \mu$ (Mo–K α) = 0.224 mm⁻¹, V = 3242.5(6) Å³, $D_{c} = 1.381$ mg mm⁻³, GoF on $F^{2} = 0.905$, $R_{1} = 3.84\%$ and w $R_{2} = 9.41\%$ (F^{2} , all data). Out of a total of 109449 reflections collected 24759 were unique and 16524 were observed ($R_{int} = 6.25\%$) with $I > 2\sigma I$ (red-pink prism, $0.28 \times 0.25 \times 0.25$ mm, $33.16^{\circ} \ge \theta \ge 2.05^{\circ}$).

Crystal data for 7; C₇₉H₈₁BF₂₀N₄Ti: Triclinic, $P\bar{i}$, a = 12.645(7), b = 17.067(2), c = 17.378(2)Å, $\alpha = 94.190(4)^{\circ}$, $\beta = 106.094(4)$, $\gamma = 93.621(4)$, Z = 2, μ (Mo–K α) = 0.220 mm⁻¹, V =

3580.0(8) Å³, $D_c = 1.415 \text{ mg mm}^{-3}$, GoF on $F^2 = 0.874$, R(F) = 5.77% and R(wF) = 12.93%. Out of a total of 22136 reflections collected 16157 were independent and 6812 were observed $(R_{int} = 6.53\%)$ with $I > 2\sigma I$ (orange prism, $0.25 \times 0.25 \times 0.20 \text{ mm}$, $27.54^\circ \ge \theta \ge 2.13^\circ$). All hydrogen atoms with the exception of the two methyl groups C59 and C60 were located in subsequent Fourier maps and included as isotropic contributors in the final cycles of refinement. The hydrogen atoms on C59 and C60 were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters.

References

- For a general description of the equipment and techniques used in carrying out this chemistry see: Burger, B. J.; Bercaw, J. E. In *Experimental Organometallic Chemistry*; Wayda, A. L.; Darensbourg, M. Y., Edx.; ACS Symposium Series 357; American Chemical Society; Washington D. C., 1987; pp 79-98.
- (2) A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics 1996, 15, 1518.
- (3) P. H. M. Budzelaar, A. B. van Oort and A. G. Orpen, A. G. Eur. J. Inorg. Chem. 1998, 1485-1494.
- (4) SAINT 6.1, Bruker Analytical X-Ray Systems, Madison, WI.
- (5) SHELXTL-Plus V5.10, Bruker Analytical X-Ray Systems, Madison, WI.