Conceivable origins of homochirality in the amino acid catalyzed neogenesis of carbohydrates

Armando Córdova*, Magnus Engqvist, Jesús Casas, Ismail Ibrahem and Henrik Sundén
The Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE10691Stockholm, Sweden

Supporting Information

General. Chemicals and solvents were either purchased puriss p.A. from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid (25 g), $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{~mL})$ followed by heating or by treatment with a solution of p-anisaldehyde (23 mL), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(35 \mathrm{~mL})$, acetic acid $(10 \mathrm{~mL})$, and ethanol (900 mL) followed by heating. Flash chromatography was performed using silica gel Merck 60 (particle size $0.040-0.063 \mathrm{~mm}$), ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian AS 400 . Chemical shifts are given in δ relative to tetramethylsilane (TMS), the coupling constants J are given in Hz. The spectra were recorded in CDCl_{3} as solvent at room temperature, TMS served as internal standard ($\delta=$ 0 ppm) for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} was used as internal standard ($\delta=77.0 \mathrm{ppm}$) for ${ }^{13}$ C NMR. GC was carried out using a Varian 3800 GC Instrument. Chiral GC-column used: CP-Chirasil-Dex CB $25 \mathrm{~m} \times 0.32 \mathrm{~mm}$. Optical rotations were recorded on a Perkin Elemer 241 Polarimeter ($\lambda=589 \mathrm{~nm}, 1 \mathrm{dm}$ cell). Optical rotations were recorded on a Perkin Elemer 241 Polarimeter ($\lambda=589 \mathrm{~nm}, 1 \mathrm{dm}$ cell). High resolution mass spectra were recorded on an IonSpec FTMS mass spectrometer with a DHB-matrix.

Typical experimental procedure for one-step proline-catalyzed asymmetric

 synthesis of allose 1. A solution of benzyloxyacetaldehyde (2 mmol) and proline (10 mol $\%$, the e.e of the proline was varied according to Figure 1) in DMF (2 mL) was stirred at room temperature for 2 days. The reaction was quenched by extraction. The combined aqueous layers were back-extracted with 3 portions of EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}, which was subsequently removed by filtration. Next, the solvent was removed under reduced pressure following purification of the crude product mixture by silica-gel column chromatography (EtOAc:pentane-mixtures or toluene:EtOAc mixtures) to afford the desired tetrose and protected allose 1. Remaining starting material was reused in a second reaction sequence to further improve the yield.

2, 4-Benzyl-O-D-erythrose: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.62(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.92 (dd, $J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 10 \mathrm{H}), 9.71(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 69.6,70.6,73.0,73.2,83.5,127.6,17.8,127.9,128.0,128.1$, 128.2, 136.8, 137.4, 201.8; $[\alpha]_{\mathrm{D}}{ }^{25}=-8.1\left(c=3.4, \mathrm{CHCl}_{3}\right) ;$ MALDI-TOF MS: 323.1261; $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 323.1259). The enantiomeric excess of the tetrose was determined by in situ reduction with NaBH_{4} at $0{ }^{\circ} \mathrm{C}$ to furnish the corresponding diol. HPLC (Daicel Chiralpak AD, hexanes $/ i-\operatorname{PrOH}=96: 4$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm})$: major isomer: $\mathrm{t}_{\mathrm{R}(\text { anti) }}=82.33 \mathrm{~min}$; minor isomer: $\mathrm{t}_{\mathrm{R}(\text { anti) }}=91.55 \mathrm{~min}$; major isomer: $\mathrm{t}_{\mathrm{R}(\mathrm{syn})}=97.08 \mathrm{~min}$; minor isomer: $\mathrm{t}_{\mathrm{R}(\mathrm{syn})}=98.56 \mathrm{~min}$.

2, 4, 6-tri- O-benzyl-allose 2 ($\alpha: \beta-1: 2$): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) β-anomer: δ (ppm) $3.18(\mathrm{dd}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.81(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{t}, 1 \mathrm{H}), 4.18-4.86(\mathrm{~m}$, $6 \mathrm{H}), 5.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 15 \mathrm{H}) ; \alpha$-anomer: $\delta(\mathrm{ppm}) 3.41(\mathrm{~m}, 0.5 \mathrm{H}), 3.61-$ $3.90(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 0.5 \mathrm{H}), 4.18-4.86(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{bs}, 0.5 \mathrm{H}), 7.28(\mathrm{~m}, 7.5 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α - and β - anomer: δ (ppm) 65.1, 67.1, 68.6, 68.8, 69.4, 70.8, $71.0,71.9,72.0,73.4,73.8,92.5,100.3,125.6,128.2,128.3,128.5,128.6,128.8,138.1$, 138.2. MALDI-TOF MS: 473.1943; $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 473.194). The allose $\mathbf{1}$ was peracetylated according to the general procedure and the enantiomeric excess determined.

General determination of the enantiomeric excesses of allose 2: The hexose (180 mg) was dissolved in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ followed by addition of excess acetic anhydride and a catalytic amount of DMAP ($0.1 \mathrm{~mol} \%$). The reaction was stirred at room temperature until all the hexose 2 had been acetylated as determined by TLC analyses. The reactions were quenched by extraction. The combined aqueous layers were back-extracted with 3 portions of EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, which was subsequently removed by filtration. Next, the solvent was removed under reduced pressure following purification of the crude product mixture by silica-gel column chromatography (EtOAc:pentane-mixtures) to quantitatively afford the desired 1, 3-di-acetyl-2, 4, 6-tri-O-benzyl-hexoses. Next, the hexoses were dissolved in MeOH and hydrogenated in the presence of a catalytic amount of $\mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~mol} \%)$. After 17 h the catalyst was filtered off and the solvent removed under reduced pressure. The crude benzyl-free hexoses were immediately acetylated vide infra to furnish the pentaacetylated sugars. All data of the isolated pure penta- O-acetylated β-anomers of hexose 2 was in accordance with $1,2,3,4,6$-Penta- O-acetyl- β-L-allopyranoside. ${ }^{[1]}$

1, 2, 3, 4, 6-Penta-O-acetyl- β-L-allopyranoside: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{~m}$, $2 \mathrm{H}), 5.69(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 20.4, 20.6, 20.9, 21.1, 61.8, 65.5, 68.1, 68.2, 71.0, 90.0, 169.0, 169.6, 170.1, 170.3, 170.9; GC: (CP-Chirasil-Dex CB); $\mathrm{T}_{\text {inj }}=250^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {det }}=275{ }^{\circ} \mathrm{C}$, flow $=1.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{i}}=100^{\circ} \mathrm{C}(10 \mathrm{~min}), \mathrm{t}_{\mathrm{f}}=200^{\circ} \mathrm{C}\left(1.5^{\circ} \mathrm{C} / \mathrm{min}\right)$: major isomer: $\mathrm{t}_{\mathrm{R}}=62.72 \mathrm{~min}$;
minor isomer: $\mathrm{t}_{\mathrm{R}}=61.77 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{25}=+15.1\left(c=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ e.e. $) ;$ MALDI-TOF MS: 413.1061; $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{11}\left(\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 413.1060). ${ }^{[1]}$

Table 1S. The relation of the enantiomeric excess of L-proline and that of the newly formed sugar 2.

	$\xrightarrow[\text { DMF, } 2 \text { days,rt }]{\text { L-proline }}$		
Entry	L-proline	2	
	Ee (\%)	Yield (\%) ${ }^{[\text {a] }}$	$\mathrm{Ee}(\%)^{[b]}$
1	>99	26	>99
2	80	23	>99
3	60	20	>99
4	50	15	99
5	40	<15	99
6	30	<15	88
7	20	n.d. ${ }^{[c]}$	55
8	10	n.d. [c]	33
9	0	23	0

[^0]Direct amino acid catalyzed synthesis of $\mathbf{4}$. The cross-aldol adduct $\mathbf{3}$ was synthesized according to MacMillan's and ours procedures utilizing D,L-proline ($10 \mathrm{~mol} \%$) as the catalyst. ${ }^{[2]}$ The racemic cross-aldol product 3 was dissolved in 1 mL of DMF, with 10 $\mathrm{mol} \%$ of D-proline. Next, a suspension of propionaldehyde (2 equivalents) in 2 mL DMF was added slowly over the course of 16 h to the reaction mixture at $4{ }^{\circ} \mathrm{C}$. Next, the solution was allowed to react at room temperature and stirred for 24 h . The reaction was quenched by extraction. The combined aqueous layers were back-extracted with 3 portions of EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}, which was subsequently removed by filtration. Next, the solvent was removed under reduced pressure following purification of the crude product mixture by silica-gel column chromatography (EtOAc:pentane-mixtures) to afford the desired hexose 4 together with the starting aldehyde 3. The remaining racemic β-hydroxyaldehyde $\mathbf{3}$ was reused in a second cross-aldol addition to further improve the yield.

[^1]
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):(\alpha$-anomer) $0.89(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}) 1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{bs}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1 \mathrm{H} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ 10.6. 12.9, 14.4, 20.4, 23.1, 34.9, 38.5, 71.7, 77.0, 97.1; GC peracetylated 3: (CP-Chirasil-Dex CB); $\mathrm{T}_{\text {inj }}=250^{\circ} \mathrm{C}, \mathrm{T}_{\text {det }}=275^{\circ} \mathrm{C}$, flow $=1.8 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{i}}=100^{\circ} \mathrm{C}(35 \mathrm{~min})$, $\mathrm{t}_{\mathrm{f}}=200^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{C} / \mathrm{min}\right):(\beta$-anomer $)$ major isomer: $\mathrm{t}_{\mathrm{R}}=36.12 \mathrm{~min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=$ 36.16 min , (α-anomer) major isomer: $\mathrm{t}_{\mathrm{R}}=36.42 \mathrm{~min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=36.55 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{25}=-35.5\left(c=1, \mathrm{CHCl}_{3}\right)$; MALDI-TOF MS: 211,1311; $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{Na}^{+}:\right.$calcd 211.1310).

[^2]
[^0]: [a] Isolated yield after silica-gel column chromatography. [b] The ee of hexose 2 was determined by chiralphase GC analyses of the peracetylated hexose. Racemic hexose 2 was obtained by D,L-proline catalysis.[c] not determined.

[^1]: ${ }^{[1]}$ All the data were in accordance with the peracetylated commercially available β-D-(-)-allopyranose obtained from Sigma. Litt. $[\alpha]_{D}=-15.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$. E. Lee, P. Browne, P. McArdle, D. Cunningham, Carbohydr. Res., 224, 285. (1992).; R. U. Lemieux, J. D. Stevens, Can. J. Chem., 43, 2059 (1965).

[^2]: ${ }^{[2]}$ (a) A. B. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 6798. (b) J. Casas, M. Engqvist, B. Kaynak, Angew. Chem. Int. Ed. 2005, Early view.

