Supplementary Information

"The synthesis, characterisation and electronic structure of *N*heterocyclic carbene adducts of P(I)"

Bobby D. Ellis,^a C. Adam Dyker,^b Andreas Decken^c and Charles L. B. Macdonald^{*a}

^a Department of Chemistry and Biochemistry, The University of Windsor, Windsor, Ontario N9B 3P4, Canada. Fax: (519) 973-7098; Tel: (519) 253-3000 ext. 3991; E-mail: cmacd@uwindsor.ca
 ^b Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada.
 ^c Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2, Canada.

This package contains a discussion of Lewis-type bonding models, a summary of DFT and semi-empirical calculation results.

Bonding Models for Phosphamethine Cyanines

Pictured below are several Lewis-type structures that, despite the known limitations of such drawings, may be possibly used to denote the structural properties (and implied bonding models) of imidazolium-based phosphamethine cyanine cations. Model A formally contains a P^V center and is directly analogous to allene; such a model would be consistent with a linear C-P-C framework and NHC rings that are perpendicular to each other. Model **B** formally contains a P^{III} center and, in the delocalized form **B'**, is the model most commonly drawn for such cations; such a model would be consistent with a bent C-P-C unit, shorter-than-single P-C distances and the π -delocalization should be maximized by a planar structure. Model C formally contains a P^I center, which is emphasized by the donor-acceptor form C', and appears to the model most consistent with structural features observed in this work; such a model implies a bent C-P-C moiety with single P-C bonds and planar NHC rings that are not necessarily in the C-P-C plane. It should be noted that the electronic structure calculated for **2f** appears to be intermediate between **B'** and **C'**, and is thus consistent with a degree of P \rightarrow NHC π -backbonding; we have commented previously on the importance of P \rightarrow ligand π -backbonding in enhancing the stability of P^I centers.¹

Summary of Density Functional Theory Calculations

Density Functional Theory (DFT) calculations were performed using the Gaussian98² suite of programs on a dual Xeon processor Dell Precision workstation. Single point calculations were performed using the B3PW91/6-311+g(3df,2p) level of theory.^{3,4} Each model was fully optimized in the point group indicated at the B3PW91/6-31g(d) level of theory; frequency calculations were also performed at the B3PW91/6-31g(d) level to confirm the nature of the stationary points and to obtain the zero point vibrational energy (ZPVE). Absolute energies are reported in hartrees (note: $E_{total} = E(B3PW91/6-$ 311+g(3df,2p)) + ZPVE, relative energies are given in units of kJ mol⁻¹ bond lengths are reported in Å and angles are given in degrees. Atomic charges (in atomic units) and Wiberg Bond Indices (WBI) were calculated using the NBO^{5,6} method as implemented in Gaussian98 and orbital visualizations were done using MOLDEN⁷ or Gaussview 3.0. The occupancy of the 3p orbital on the P atom perpendicular to the C-P-C plane (i.e. the orbital that may become part of the potential π system) is given in units of electrons. The "back-bonding" from the central atom to the NHC ligands (π -delocalization) is demonstrated by the decreased occupancy of the 3p (π) orbital and is manifested in the appearance of the third highest occupied molecular orbital (HOMO-3) in the models.

T 11 C1	α 1 1 1 1	•	C	• ,	C A C
Lable VI -	('alculated	energieg	tor	variante	AT 11
1 abic bi -		CHUISIUS	101	variants	
		0	-		

Model	Symmetry	N _{imag}	E(6-31g(d))	E(6-311+g(3df,2p))	ZPVE	E _{total}	Rel. E
P(NHC) ₂	D _{2d}	3	-793.2483263	-793.4308977	0.149057	-793.2818407	304.13
	C _{2v} (planar)	2	-793.3572562	-793.5403034	0.149705	-793.3905984	18.58
	C _{2v} (non planar)	2	-793.3563459	-793.5365099	0.151137	-793.3853729	32.30
	C ₂	0	-793.3673841	-793.5485113	0.150835	-793.3976763	0.00
	Cs	1	-793.3635832	-793.5446418	0.150805	-793.3938368	10.08

Table	S2 –	Calcula	ated pr	operties	for	variants	of 2f
1 4010		Careare	tea pi	operties	101	, ai iaiico	

14010 02	Curvaturea	propertie	o ioi vai						
Model	Symmetry	НОМО	LUMO	Р 3р π рор.	q(P)	q(C)	P-C WBI	P-C	C-P-C
P(NHC) ₂	D _{2d}	-0.32321	-0.21950	1.59212	0.19857	0.10729	1.3162	1.7115	180.00
	C _{2v} (planar)	-0.31751	-0.16711	1.43228	0.33389	0.08650	1.1447	1.7911	106.52
	C _{2v} (non planar)	-0.31234	-0.17184	1.77730	0.08195	0.13080	0.9790	1.8349	97.08
	C ₂	-0.31846	-0.17020	1.49223	0.30507	0.08109	1.1088	1.7988	98.12
	Cs	-0.31375	-0.18075	1.58829	0.23336	0.09377	1.1528	1.7935	97.63
						0.10191	0.9754	1.8282	

Figure S1. DFT Optimized Geometries of 2f.

Figure S2. Gaussview[®] depiction of the frontier DFT orbitals of 2f in C₂ symmetry.

Summary of calculations including optimized geometries (in Cartesian coordinates or Zmatrix format):

$P(NHC)_2$, **2f**, D_{2d} symmetry:

1\1\GINC-NEIL\SP\RB3PW91\6-311+G(3df,2p)\C6H8N4P1(1+)\CHUCK\31-Aug-200
4\0\\# B3PW91/6-311+G(3DF,2P) GEOM=CHECKPOINT SCF=TIGHT #P GFINPUT IOP
(6/7=3) TEST\\Orbitals of carbene-P-carbene+ D2d\\1,1\P,0.,0.,0.\C,0.,
0.,1.7115131466\N,-1.0781997147,0.,2.5399101507\N,1.0781997147,0.,2.53
99101507\C,-0.6776152093,0.,3.8635130555\C,0.6776152093,0.,3.863513055
5\H,-2.0300836626,0.,2.2017038711\H,2.0300836626,0.,2.2017038711\H,-1.
3852697338,0.,4.678221434\H,1.3852697338,0.,4.678221434\C,0.,0.,-1.711
5131466\N,0.,1.0781997147,-2.5399101507\N,0.,-1.0781997147,-2.53991015
07\C,0.,0.6776152093,-3.8635130555\C,0.,-0.6776152093,-3.8635130555\H,
0.,2.0300836626,-2.2017038711\H,0.,-2.0300836626,-2.2017038711\H,0.,1.
3852697338,-4.678221434\H,0.,-1.3852697338,-4.678221434\\Version=x86-L
inux-G98RevA.11.1\HF=-793.4308977\RMSD=1.869e-09\Dipole=0.,0.,0.\PG=D0
2D [O(P1),C2(C1.C1),2SGD(C2H4N2)]\\@

$P(NHC)_2$, **2f**, C_{2v} (planar) symmetry:

1\1\GINC-NEIL\SP\RB3PW91\6-311+G(3df,2p)\C6H8N4P1(1+)\CHUCK\01-Sep-200
4\0\\# B3PW91/6-311+G(3DF,2P) GEOM=CHECKPOINT SCF=TIGHT #P GFINPUT IOP
(6/7=3) TEST\\Orbitals of carbene-P-carbene+ C2v planar\\1,1\P,-1.3407
363707,0.,0.\C,-0.2693162021,0.,1.4353653366\N,-0.8567532597,0.,2.6631
783664\N,1.0600099166,0.,1.7159144752\C,0.0776554646,0.,3.6784291427\C
,1.2927143042,0.,3.0850715002\H,-1.8594105454,0.,2.796809113\H,1.80018
89438,0.,1.0362122799\H,-0.203060136,0.,4.7201149085\H,2.28868519,0.,
3.4996190299\C,-0.2693162021,0.,-1.4353653366\N,-0.8567532597,0.,-2.66
31783664\N,1.0600099166,0.,-1.7159144752\C,0.0776554646,0.,-3.67842914
27\C,1.2927143042,0.,-3.0850715002\H,-1.8594105454,0.,-2.796809113\H,1
.8001889438,0.,-1.0362122799\H,-0.203060136,0.,-4.7201149085\H,2.28868
6519,0.,-3.4996190299\\Version=x86-Linux-G98RevA.11.1\State=1-A1\HF=-7
93.5403034\RMSD=5.881e-09\Dipole=0.9983519,0.,0.\PG=C02V [C2(P1),SGV(C
6H8N4)]\\@

$P(NHC)_2$, **2f**, C_{2v} (non-planar) symmetry:

1\1\GINC-NEIL\SP\RB3PW91\6-311+G(3df,2p)\C6H8N4P1(1+)\CHUCK\01-Sep-200 4\0\\# B3PW91/6-311+G(3DF,2P) GEOM=CHECKPOINT SCF=TIGHT #P GFINPUT IOP (6/7=3) TEST\\Orbitals of carbene-P-carbene+ C2v not planar\\1,1\P,-1. 5712645031,0.,0.\C,-0.356332492,0.,1.375129318\N,0.1060110622,-1.06336 27663,2.070411406\N,0.1060110622,1.0633627663,2.070411406\C,0.84274612 98,-0.6812271074,3.1666282719\C,0.8427461298,0.6812271074,3.1666282719 \H,-0.1298159144,-2.0131805427,1.8129610918\H,-0.1298159144,2.01318054 27,1.8129610918\H,1.2925010626,-1.3877631163,3.8473318755\H,1.29250106 26,1.3877631163,3.8473318755\C,-0.356332492,0.,-1.375129318\N,0.106011 0622,1.0633627663,-2.070411406\N,0.1060110622,-1.0633627663,-2.0704114 06\C,0.8427461298,0.6812271074,-3.1666282719\C,0.8427461298,-0.6812271 074,-3.1666282719\H,-0.1298159144,2.0131805427,-1.8129610918\H,-0.1298 159144, -2.0131805427, -1.8129610918\H, 1.2925010626, 1.3877631163, -3.8473 318755\H,1.2925010626,-1.3877631163,-3.8473318755\\Version=x86-Linux-G 98RevA.11.1\State=1-A1\HF=-793.5365099\RMSD=3.539e-09\Dipole=1.7279847 ,0.,0.\PG=C02V [C2(P1),SGV(C2),X(C4H8N4)]\\@

$P(NHC)_2$, **2f**, C_2 symmetry:

1\1\GINC-NEIL\SP\RB3PW91\6-311+G(3df,2p)\C6H8N4P1(1+)\B0BBY\09-Jun-200 4\0\\# B3PW91/6-311+G(3DF,2P) SCF=TIGHT #P GFINPUT IOP

(6/7=3) TEST\\Si

ngle Point and Molden carbene-P-carbene+\\1,1\P,0,0.,0.,1.542085\C,0,0 .,1.358756,0.363378\N,0,0.523246,2.576343,0.647515\N,0,-0.582871,1.523 71,-0.85335\C,0,0.253784,3.491294,-0.352253\C,0,-0.441621,2.825358,-1. 305938\H,0,1.063037,2.762605,1.482719\H,0,-1.171943,0.824282,-1.282546 \H,0,0.584955,4.516809,-0.302512\H,0,-0.839021,3.154272,-2.253572\C,0, 0.,-1.358756,0.363378\N,0,-0.523246,-2.576343,0.647515\N,0,0.582871,-1 .52371,-0.85335\C,0,-0.253784,-3.491294,-0.352253\C,0,0.441621,-2.8253 58,-1.305938\H,0,-1.063037,-2.762605,1.482719\H,0,1.171943,-0.824282,-1.282546\H,0,-0.584955,-4.516809,-0.302512\H,0,0.839021,-3.154272,-2.2 53572\\Version=x86-Linux-G98RevA.11.1\State=1-A\HF=-793.5485113\RMSD=3 .793e-09\Dipole=0.,0.,-1.199182\PG=C02 [C2(P1),X(C6H8N4)]\@

$P(NHC)_2$, **2f**, C_s symmetry:

1\1\GINC-NEIL\SP\RB3PW91\6-311+G(3df,2p)\C6H8N4P1(1+)\CHUCK\01-Sep-200
4\0\\# B3PW91/6-311+G(3DF,2P) GEOM=CHECKPOINT SCF=TIGHT #P GFINPUT IOP
(6/7=3) TEST\\Orbitals of carbene-P-carbene+ Cs\\1,1\P,-1.5582253831,0
.,-0.0061815184\C,-0.4014521872,0.,1.364431086\N,-0.8157815329,0.,2.65
80063698\N,0.953587581,0.,1.4520631029\C,0.2564180751,0.,3.5342378753\
C,1.3753988344,0.,2.7758380582\H,-1.7889845994,0.,2.9307136083\H,1.568
6335617,0.,0.6533662191\H,0.1244566503,0.,4.6048375766\H,2.4190583837,
0.,3.048350944\C,-0.3301369397,0.,-1.3604645238\N,0.133663307,1.065152
2643,-2.0523907351\N,0.133663307,-1.0651522643,-2.0523907351\C,0.86519
379,0.6817111685,-3.1512464894\C,0.865193379,-0.6817111685,-3.1512464
894\H,-0.0975706036,2.016716439,-1.7921353666\H,-0.0975706036,-2.01671
6439,-1.7921353666\H,1.312871039,1.388564525,-3.8332939783\H,1.3128710
39,-1.388564525,-3.8332939783\\Version=x86-Linux-G98RevA.11.1\State=1A'\HF=-793.5446418\RMSD=3.961e-09\Dipo1e=1.3719501,0.,-0.6932712\PG=CS
[SG(C4H4N2P1),X(C2H4N2)]\\@

All attempts using the unsaturated NHC (1f) to optimize stationary points analogous to the cyclopropylphosphenium intermediate suggested by Schmidpeter resulted only in the acyclic structures tabulated above. Similarly, all attempts using the saturated analogue of 1f to obtain such a structure resulted in acyclic optimized structure; details of the results are summarized below.

14010 00	0 00 0 00			prop e nes 101 t			• • • = = • •	
Model	Symm	N _{imag}	E(6-31G(d))	E(6-311g(3df,2p)	ZPVE	E _{total}	HOMO	LUMO
P(satNHC) ₂	C ₂	0	-795.7960787	-795.9767418	0.19856	-795.7781818	-0.34181	-0.17856
			Р 3р π рор.	q(P)	q(C)	P-C WBI	P-C	C-P-C
			1.39527	0.37121	0.1488	1.1559	1.7914	99.87

Table S3 – Calculated energies and properties for the saturated analogue of 2f.

P(saturated NHC)₂, C₂ symmetry:

1\1\GINC-NEIL\SP\RB3PW91\6-311+G(3df,2p)\C6H12N4P1(1+)\CHUCK\01-Sep-20 04\0\\#B3PW91/6-311+G(3DF,2P) GEOM=CHECKPOINT SCF=TIGHT #P GFINPUT IOP (6/7=3) TEST\\Orbitals of saturated carbene-P-carbene+ C2 - close to C=C\\1,1\P,-1.5520610565,0.,0.\C,-0.3989934704,-0.1653101282,1.3609863 761\N,-0.8327202821,-0.5786635089,2.5583702191\N,0.9229310015,0.121541 4348,1.4551860463\C,0.2457290406,-0.6903617421,3.5404238692\C,1.354353 8282,0.1309255237,2.8633571439\H,-1.7237188923,-1.0424731267,2.6730860

72\H,1.3213861486,0.7897914198,0.807443854\H,0.5318695144,-1.740876417 7,3.6715731578\H,-0.0547885637,-0.2802115527,4.5071498085\H,1.38518322 59,1.1594582972,3.2415641193\H,2.3425150651,-0.3203435732,2.9736937124 \C,-0.3989934704,0.1653101282,-1.3609863761\N,-0.8327202821,0.57866350 89,-2.5583702191\N,0.9229310015,-0.1215414348,-1.4551860463\C,0.245729 0406,0.6903617421,-3.5404238692\C,1.3543538282,-0.1309255237,-2.863357 1439\H,-1.7237188923,1.0424731267,-2.673086072\H,1.3213861486,-0.78979 14198,-0.807443854\H,0.5318695144,1.7408764177,-3.6715731578\H,-0.0547 885637,0.2802115527,-4.5071498085\H,1.3851832259,-1.1594582972,-3.2415 641193\H,2.3425150651,0.3203435732,-2.9736937124\\Version=x86-Linux-G9 8RevA.11.1\State=1-A\HF=-795.9767418\RMSD=2.592e-09\Dipole=0.9676557,0 .,0.\PG=C02 [C2(P1),X(C6H12N4)]\@

Summary of Semi-Empirical Computational Investigations

Fujitsu's CAChe 6.1 suite of programs⁸ was used to perform semi-empirical PM3 calculations on selected fully-substituted model cations. The symmetry of each model was not restricted during the optimization procedure (C₁); selected bond distances are reported in angstroms and angles are reported in degrees. The B88PW91 energies (in a.u.) listed below were obtained from single-point calculations after replacing the R₁ and R₂ substituents in the optimized geometries with H atoms placed in idealized positions. The relative energies ($E_{relative}$) caused by the geometrical influences of the substituents on the "core" heavy atoms (i.e. the distortions of the model **2f**) are reported in kJ mol⁻¹.

R ₁	R ₂	E(B88-PW91)	E _{relative}	P-C(1) dist.	P-C(2) dist.	P-C avg.	C-P-C angle
Н	Н	-793.5862018	0.00	1.8581	1.8458	1.8520	106.56
Me	Н	-793.5804401	15.13	1.8832	1.8838	1.8835	104.90
Me	Me	-793.5802302	15.68	1.8909	1.8622	1.8766	106.29
Et	Н	-793.5810631	13.49	1.8862	1.8844	1.8853	104.07
Et	Me	-793.5794749	17.66	1.8909	1.8850	1.8880	104.53
'Pr	Н	-793.5776455	22.46	1.8957	1.8785	1.8871	107.11
'Pr	Me	-793.5794041	17.85	1.8950	1.8785	1.8868	105.48
^t Bu	Н	-793.5683087	46.98	1.9415	1.9302	1.9359	111.94
Mes	Н	-793.5754902	28.12	1.8957	1.8967	1.8962	111.08

PM3 optimized atomic positions for $R_1 = H$, $R_2 = H$.

1 N 0.0000000 0.0000000 0.0	00000000
	00000000
2 C 0.03894400 0.75751900 1.1	18767800
3 C 1.35607700 1.10033200 1.3	39667400
4 N 2.09151500 0.56351900 0.1	32283800
5 C 1.26477000 -0.12384500 -0.	53885400
6 P 2.01451000 -1.11700700 -1.9	90244200
7 C 0.76069600 -1.16708200 -3.	27298000
8 N 0.55804200 -2.33532700 -3.	97198100
9 C -0.23757000 -2.10324900 -5.	10738400
10 C -0.55286900 -0.76045800 -5	.10406200
11 N 0.07582700 -0.19976000 -3	.97759500
12 Н -0.82023000 -0.39874800 -0	.38093300
13 H -0.84195300 0.99311400 1	.79274500
14 H 1.79891700 1.67521700 2.	.21598400
15 Н 3.07261900 0.64179700 0.	.21277600
16 Н 0.94775200 -3.21089900 -3	.72119000

17	Н	-0.52373100	-2.87680700	-5.82724900
18	Н	-1.15956100	-0.19268900	-5.81637000
19	Н	0.04321800	0.75875300	-3.73781200

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = H$, $R_2 = H$.

Ν	0 00000000	0 00000000	0 00000000
C	0.03793000	0.75821200	1 18709500
C	1 35502000	1 10099500	1 39659600
N	2 09127400	0 56328400	0.32360700
C	1 26466200	-0 12383400	-0.53862500
D	2.01415200	1 11664400	1 00222200
r	2.01413200	-1.11004400	-1.90232300
С	0.76153700	-1.16311800	-3.27388400
Ν	0.55992300	-2.33181200	-3.97243400
С	-0.23696200	-2.10080600	-5.10727900
С	-0.55315700	-0.75823600	-5.10474000
Ν	0.07661100	-0.19634900	-3.97942100
Н	-0.84538000	-0.40184700	-0.40528000
Н	-0.81108900	1.02230700	1.81758700
Н	1.75139300	1.67767100	2.23231900
Н	3.09848400	0.66801300	0.20129800
Н	0.93692400	-3.24066300	-3.70362200
Н	-0.54543500	-2.84001700	-5.84654300
Н	-1.17134600	-0.23413600	-5.83361600
Н	0.03273100	0.78943000	-3.72113100
	N C C N C C N C C N H H H H H H H H H H	N 0.0000000 C 0.03793000 C 1.35502000 N 2.09127400 C 1.26466200 P 2.01415200 C 0.76153700 N 0.55992300 C -0.23696200 C -0.55315700 N 0.07661100 H -0.84538000 H -0.81108900 H 1.75139300 H 3.09848400 H 0.93692400 H -0.54543500 H -1.17134600 H 0.03273100	N 0.0000000 0.0000000 C 0.03793000 0.75821200 C 1.35502000 1.10099500 N 2.09127400 0.56328400 C 1.26466200 -0.12383400 P 2.01415200 -1.11664400 C 0.76153700 -1.16311800 N 0.55992300 -2.33181200 C -0.23696200 -2.10080600 C -0.55315700 -0.75823600 N 0.07661100 -0.19634900 H -0.84538000 -0.40184700 H -0.81108900 1.02230700 H 3.09848400 0.66801300 H 0.93692400 -3.24066300 H -0.54543500 -2.84001700 H -0.3273100 0.78943000

PM3 optimized atomic positions for $R_1 = Me$, $R_2 = H$.

	1	1	-	/ =
1	Ν	0.00000000	0.00000000	0.00000000
2	С	-0.02299600	0.92687600	1.06141600
3	С	1.14199800	1.65795500	0.97879700
4	Ν	1.84698200	1.17412400	-0.13954200
5	С	1.14921300	0.15284700	-0.75255700
6	Р	1.92276900	-0.90758300	-2.10378900
7	С	0.71669900	-0.80920700	-3.54673500
8	Ν	0.20243100	-1.93824400	-4.15205100
9	С	-0.49157900	-1.59979600	-5.32915000
10	С	-0.41014700	-0.23061400	-5.45948100
11	Ν	0.34364700	0.23986200	-4.36566500
12	С	0.35798300	-3.31307500	-3.66337300
13	С	0.68605400	1.65361900	-4.17847900
14	С	-1.05910100	-0.99054900	-0.21861000
15	С	3.15152700	1.68965100	-0.57000600
16	Н	-0.83471100	1.00091700	1.79152600
17	Н	1.50125600	2.46067400	1.62984400
18	Н	-0.98072700	-2.32839900	-5.98261100
19	Н	-0.82014400	0.41418600	-6.24268400

20	Н	0.90592900	-3.29906600	-2.70389000
21	Н	0.92573200	-3.92015700	-4.38376300
22	Η	-0.62543700	-3.78032200	-3.51361000
23	Н	1.60901500	1.74716200	-3.58481200
24	Н	0.84592900	2.13794900	-5.15314800
25	Н	-0.12333100	2.18561500	-3.65758500
26	Н	-0.66822200	-1.84822300	-0.78757900
27	Η	-1.44164100	-1.35629000	0.74566600
28	Η	-1.89720700	-0.54892700	-0.77674400
29	Н	3.92254200	1.47715100	0.18487900
30	Н	3.10364900	2.77659600	-0.72237100
31	Н	3.44177600	1.19854900	-1.51645000

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = Me$, $R_2 = H$.

1	Ν	0.0000000 0.0000000 0.0000000
2	С	-0.02299600 0.92687600 1.06141600
3	С	1.14199800 1.65795500 0.97879700
4	Ν	1.84698200 1.17412400 -0.13954200
5	С	1.14921300 0.15284700 -0.75255700
6	Р	1.92276900 -0.90758300 -2.10378900
7	С	0.71669900 -0.80920700 -3.54673500
8	Ν	0.20243100 -1.93824400 -4.15205100
9	С	-0.49157900 -1.59979600 -5.32915000
10	С	-0.41014700 -0.23061400 -5.45948100
11	Ν	0.34364700 0.23986200 -4.36566500
12	Η	-0.72972700 -0.68775400 -0.18679300
13	Η	-0.81131000 1.04311700 1.80515600
14	Η	1.45702700 2.45692900 1.64998800
15	Η	2.74988700 1.52956100 -0.45390900
16	Н	0.31049400 -2.88769000 -3.79529400
17	Η	-0.99618600 -2.28833900 -6.00692600
18	Η	-0.84533900 0.37299400 -6.25595100
19	Η	0.58085800 1.21817600 -4.20124800

PM3 optimized atomic positions for $R_1 = Me$, $R_2 = Me$.

	1	1	•	/ -
1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.30786400	-0.29817700	1.35214800
3	С	1.65399300	-0.03256800	1.52504400
4	Ν	2.14691800	0.40667100	0.27381900
5	С	1.13647200	0.42118100	-0.66989100
6	Р	1.53091300	1.09067700	-2.36224200
7	С	0.40806500	0.16868700	-3.57244000
8	Ν	0.57084800	-1.10055600	-4.09074300
9	С	-0.29429500	-1.30527600	-5.18915100

10	С	-1.00128600	-0.12451300	-5.36143700
11	Ν	-0.55848900	0.76380400	-4.35520500
12	С	1.52057800	-2.10741500	-3.60726800
13	С	-1.08234000	2.12719400	-4.20246000
14	С	-1.34654000	-0.11961500	-0.56497500
15	С	3.53401200	0.81267300	0.02483100
16	С	-0.63465100	-0.79247800	2.37128400
17	С	2.43871800	-0.17930400	2.76339400
18	С	-0.37946900	-2.54693700	-5.97880700
19	С	-2.01089500	0.20490900	-6.38491400
20	Н	2.26049700	-1.63744700	-2.94041200
21	Н	2.05036100	-2.56795700	-4.45489100
22	Н	0.99555700	-2.90235200	-3.05745300
23	Н	-0.26980300	2.83568300	-3.98104700
24	Н	-1.81134500	2.16891000	-3.37934800
25	Н	-1.59035000	2.42991900	-5.13584100
26	Н	-1.49163300	0.60653300	-1.37858400
27	Н	-1.51584600	-1.13156600	-0.96075600
28	Н	-2.10094600	0.07391300	0.21275400
29	Н	4.22863600	0.03434200	0.37255000
30	Н	3.68054300	0.97587000	-1.05881200
31	Н	3.76703000	1.74671200	0.55757800
32	Н	-0.08170600	-0.96374500	3.31131500
33	Н	-1.10255800	-1.74017000	2.07224600
34	Н	-1.43451300	-0.06670200	2.57597700
35	Н	3.29032100	-0.86079600	2.62962500
36	Н	1.78639600	-0.59229900	3.55167900
37	Н	2.82803600	0.78666200	3.11426400
38	Н	0.56421500	-2.75193100	-6.50575900
39	Н	-0.60712600	-3.41556700	-5.34463200
40	Н	-1.17300000	-2.46485900	-6.73455900
41	Н	-1.65268900	-0.07491400	-7.38547500
42	Н	-2.94559400	-0.34298200	-6.20137600
43	Н	-2.24212600	1.28408700	-6.39361200

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = Me$, $R_2 = Me$.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.30786400	-0.29817700	1.35214800
3	С	1.65399300	-0.03256800	1.52504400
4	Ν	2.14691800	0.40667100	0.27381900
5	С	1.13647200	0.42118100	-0.66989100
6	Р	1.53091300	1.09067700	-2.36224200
7	С	0.40806500	0.16868700	-3.57244000
8	Ν	0.57084800	-1.10055600	-4.09074300
9	С	-0.29429500	-1.30527600	-5.18915100

10	С	-1.00128600	-0.12451300	-5.36143700
11	Ν	-0.55848900	0.76380400	-4.35520500
12	Н	-0.92616000	-0.08383200	-0.41904800
13	Н	-0.38400400	-0.66616000	2.10978100
14	Н	2.22493300	-0.14074500	2.44722900
15	Н	3.11407400	0.67550400	0.09288100
16	Н	1.22543800	-1.79488500	-3.73043800
17	Н	-0.38773600	-2.21349300	-5.78455900
18	Н	-1.75248500	0.07886100	-6.12461400
19	Н	-0.90601600	1.71402300	-4.22594000

PM3 optimized atomic positions for $R_1 = Et$, $R_2 = H$.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	-0.04274900	0.94436900	1.04602600
3	С	1.13931500	1.64986500	0.99810000
4	Ν	1.87639500	1.13632500	-0.08572300
5	С	1.17923900	0.12210900	-0.71095300
6	Р	1.97029400	-0.91314200	-2.07236700
7	С	0.71939100	-0.84924900	-3.48261500
8	Ν	0.23172800	-1.99526900	-4.07626300
9	С	-0.52991300	-1.67634600	-5.21600400
10	С	-0.51452400	-0.30360200	-5.33491200
11	Ν	0.26897100	0.19115000	-4.27316200
12	С	0.48878600	-3.37403400	-3.59834300
13	С	0.57457500	1.62588400	-4.06599700
14	С	-1.08392600	-0.96984100	-0.27880100
15	С	3.21080400	1.62909200	-0.50166600
16	Н	-0.88078400	1.04701500	1.74198800
17	Н	1.49328700	2.45572100	1.64834800
18	Н	-1.01734800	-2.42049200	-5.85320200
19	Н	-0.98961000	0.32825800	-6.09151100
20	Н	1.19256300	-3.29060500	-2.73382800
21	Н	1.02588600	-3.92200200	-4.40028400
22	С	-0.78049200	-4.10084000	-3.20462900
23	Н	1.31270700	1.69209200	-3.23683300
24	С	1.11579800	2.30130500	-5.31052500
25	Н	-0.35044800	2.13042600	-3.71809900
26	Н	-0.73194000	-1.64796200	-1.08738300
27	С	-1.48954100	-1.77398900	0.94023200
28	Н	-1.95222300	-0.40838300	-0.68202600
29	С	4.25252300	1.51221800	0.59158700
30	Н	3.09859900	2.68431300	-0.82563800
31	Н	3.50289400	1.03596300	-1.40274900
32	Н	-0.53845200	-5.12699300	-2.89498400
33	Н	-1.49943400	-4.17226800	-4.03277000

34	Н	-1.29161400	-3.61951400	-2.35865400
35	Н	2.02625500	1.81696000	-5.68953400
36	Н	0.38279900	2.32152400	-6.12961500
37	Н	1.37420200	3.34533400	-5.08393600
38	Н	-0.65464300	-2.35044800	1.36164800
39	Н	-2.27288300	-2.49338200	0.66406400
40	Н	-1.89771100	-1.14461100	1.74392300
41	Н	5.21663600	1.88810900	0.22180500
42	Н	4.41253100	0.47419300	0.91269600
43	Н	3.99297500	2.10130200	1.48246300

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = Et$, $R_2 = H$.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	-0.04274900	0.94436900	1.04602600
3	С	1.13931500	1.64986500	0.99810000
4	Ν	1.87639500	1.13632500	-0.08572300
5	С	1.17923900	0.12210900	-0.71095300
6	Р	1.97029400	-0.91314200	-2.07236700
7	С	0.71939100	-0.84924900	-3.48261500
8	Ν	0.23172800	-1.99526900	-4.07626300
9	С	-0.52991300	-1.67634600	-5.21600400
10	С	-0.51452400	-0.30360200	-5.33491200
11	Ν	0.26897100	0.19115000	-4.27316200
12	Н	-0.73503200	-0.67733000	-0.20335300
13	Η	-0.85616500	1.08867600	1.75710300
14	Н	1.44519600	2.45164400	1.67017700
15	Н	2.79824100	1.46783500	-0.36980300
16	Н	0.39984600	-2.94215100	-3.73633600
17	Η	-1.03498400	-2.38010100	-5.87761600
18	Η	-1.01318900	0.28689500	-6.10351300
19	Η	0.47446200	1.17700700	-4.11111200

PM3 optimized atomic positions for $R_1 = Et$, $R_2 = Me$.

	-	_		-
1	Ν	0.00000000	0.00000000	0.00000000
2	С	-0.04858800	0.93549700	1.06351100
3	С	1.14697100	1.63405200	1.03579900
4	Ν	1.89506000	1.11673700	-0.04829000
5	С	1.18974400	0.12049100	-0.69217400
6	Р	1.98311400	-0.87505500	-2.08232300
7	С	0.70119800	-0.85386200	-3.47214100
8	Ν	0.22882000	-2.01730200	-4.04238300
9	С	-0.54114500	-1.72973400	-5.19262400
10	С	-0.54536100	-0.35067900	-5.33325700
11	Ν	0.23607000	0.16964000	-4.27366800

12	С	0.49666100	-3.37700300	-3.51832700
13	С	0.52012800	1.61109200	-4.08628200
14	С	-1.07942300	-0.97168300	-0.28742800
15	С	3.24611700	1.57971600	-0.44424100
16	С	-1.17752900	1.09745900	1.99822400
17	С	1.59075100	2.71736300	1.93243500
18	С	-1.18767300	-2.73801800	-6.05284800
19	С	-1.21735600	0.45813000	-6.36723100
20	Н	1.23265500	-3.26187800	-2.68480800
21	Н	0.99753900	-3.96108400	-4.31825200
22	С	-0.76027500	-4.08237000	-3.04873000
23	Н	1.04924300	1.72928400	-3.11723500
24	С	1.34486800	2.19945500	-5.21558600
25	Н	-0.45207500	2.13964400	-3.99684000
26	Н	-0.84623000	-1.47070000	-1.25223800
27	С	-1.25032200	-2.00253100	0.81249100
28	Н	-2.01991000	-0.40041700	-0.43437500
29	С	4.30078400	1.30865900	0.61082400
30	Н	3.18074100	2.66611600	-0.66049700
31	Н	3.49473900	1.06042800	-1.40207200
32	Н	-0.51260700	-5.09783900	-2.71155700
33	Н	-1.50848100	-4.17593600	-3.85540600
34	Н	-1.24084200	-3.56728700	-2.20484900
35	Н	2.33665100	1.73496700	-5.29796800
36	Н	0.84115400	2.09044000	-6.19236100
37	Н	1.50017900	3.27294400	-5.04428900
38	Н	-0.34555200	-2.60503700	0.96977300
39	Н	-2.06239700	-2.69489500	0.55266900
40	Н	-1.51249600	-1.53205500	1.77667200
41	Н	5.27505500	1.67803500	0.26344500
42	Н	4.41725800	0.23837100	0.82743600
43	Н	4.07302900	1.82110700	1.56192900
44	Н	-0.87735500	1.72386300	2.85139200
45	Н	-1.51867300	0.12207500	2.38881500
46	Н	-2.03404900	1.58225800	1.50778900
47	Н	2.64174800	2.58140400	2.24303400
48	Η	0.96555800	2.74441200	2.83693100
49	Н	1.51004600	3.69649900	1.43897800
50	Н	-0.44225000	-3.29632500	-6.63772300
51	Н	-1.76146600	-3.46737200	-5.45377400
52	Н	-1.87596300	-2.25327600	-6.76012700
53	Н	-0.51069900	1.15796900	-6.84801600
54	Н	-1.64152300	-0.19247200	-7.14560000
55	Н	-2.03818100	1.05117500	-5.93941300

Atomic positions used in the single-point B88PW91 calculation of 2f from $R_1 = Et$, $R_2 =$ Me.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	-0.04858800	0.93549700	1.06351100
3	С	1.14697100	1.63405200	1.03579900
4	Ν	1.89506000	1.11673700	-0.04829000
5	С	1.18974400	0.12049100	-0.69217400
6	Р	1.98311400	-0.87505500	-2.08232300
7	С	0.70119800	-0.85386200	-3.47214100
8	Ν	0.22882000	-2.01730200	-4.04238300
9	С	-0.54114500	-1.72973400	-5.19262400
10	С	-0.54536100	-0.35067900	-5.33325700
11	Ν	0.23607000	0.16964000	-4.27366800
12	Н	-0.73843800	-0.66743600	-0.22279800
13	Н	-0.86860000	1.07774600	1.76739000
14	Н	1.45244800	2.42829500	1.71694600
15	Н	2.82601900	1.43578000	-0.31648200
16	Н	0.40982100	-2.95497400	-3.68403900
17	Н	-1.03535300	-2.45190900	-5.84248700
18	Н	-1.05235100	0.22231600	-6.10961900
19	Н	0.42821500	1.16008100	-4.12364500

PM3 optimized atomic positions for $R_1 = {}^iPr$, $R_2 = H$.

	1	1	•	/ -
1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.01380200	0.69383200	1.23044400
3	С	1.18878500	1.40546400	1.27917300
4	Ν	1.87653800	1.14089900	0.07783000
5	С	1.15551900	0.26841300	-0.71501600
6	Р	1.99010600	-0.43714100	-2.24285100
7	С	0.67909500	-0.51244400	-3.61000500
8	Ν	0.01546300	-1.62378700	-4.09061100
9	С	-0.62571500	-1.32399100	-5.30630600
10	С	-0.35856300	-0.00004500	-5.58568900
11	Ν	0.44978000	0.48074500	-4.54111100
12	С	-0.01634100	-2.97155000	-3.44169300
13	С	1.01262800	1.86408300	-4.47904000
14	С	-1.08759100	-0.93735600	-0.41394600
15	С	3.20077500	1.73763500	-0.28162200
16	Н	-0.78992000	0.63959300	1.97085900
17	Н	1.57292000	2.06143300	2.06634200
18	Н	-1.20745200	-2.04774400	-5.88580800
19	Н	-0.67888800	0.60527400	-6.43957700
20	Н	0.43360000	-2.83281400	-2.41066000
21	С	0.81748900	-3.96983600	-4.23555300
22	С	-1.44900900	-3.47202500	-3.29434000

23	С	1.85321400	2.16731500	-5.71399200
24	С	-0.09765700	2.89497400	-4.31852800
25	Н	1.67606300	1.86583000	-3.56759000
26	С	-0.73000300	-2.37482300	-0.04661500
27	С	-2.43619400	-0.55264400	0.18118300
28	Н	-1.15633600	-0.85402400	-1.52964800
29	С	4.27046100	1.34855000	0.73101500
30	С	3.09264400	3.25358600	-0.39308200
31	Н	3.45504800	1.29895900	-1.29123700
32	Н	1.86961500	-3.66443100	-4.31401300
33	Н	0.80120900	-4.94975400	-3.73860200
34	Н	0.43195900	-4.11530200	-5.25486400
35	Н	-1.45318800	-4.43174700	-2.75795400
36	Н	-1.93924300	-3.64264700	-4.26330700
37	Н	-2.07571000	-2.77726700	-2.71655700
38	Н	1.26171500	2.14217600	-6.64065300
39	Н	2.68995300	1.46546200	-5.83196800
40	Н	2.28489400	3.17492700	-5.63244800
41	Н	-0.78596900	2.90384000	-5.17608000
42	Н	-0.69480400	2.72990200	-3.41206900
43	Н	0.33721700	3.90145300	-4.24209000
44	Н	0.11330000	-2.74985800	-0.65447100
45	Н	-1.58443300	-3.03846600	-0.24461100
46	Н	-0.46722200	-2.48941900	1.01315400
47	Н	-2.48290100	-0.73106900	1.26549100
48	Н	-3.22938700	-1.16180200	-0.27589800
49	Н	-2.69242400	0.50042000	0.00255800
50	Н	5.24203400	1.75861500	0.42174000
51	Н	4.39078000	0.26011400	0.81459200
52	Н	4.05712800	1.74126100	1.73568200
53	Н	4.06251200	3.67523700	-0.69200400
54	Н	2.81311600	3.72494400	0.56004900
55	Н	2.35735900	3.56224500	-1.14865400

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = {}^{i}Pr$, $R_2 = H$.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.01380200	0.69383200	1.23044400
3	С	1.18878500	1.40546400	1.27917300
4	Ν	1.87653800	1.14089900	0.07783000
5	С	1.15551900	0.26841300	-0.71501600
6	Р	1.99010600	-0.43714100	-2.24285100
7	С	0.67909500	-0.51244400	-3.61000500
8	Ν	0.01546300	-1.62378700	-4.09061100
9	С	-0.62571500	-1.32399100	-5.30630600
10	С	-0.35856300	-0.00004500	-5.58568900

11	Ν	0.44978000	0.48074500	-4.54111100
12	Н	-0.75291900	-0.61101300	-0.31650500
13	Н	-0.76108500	0.66947200	1.99664000
14	Н	1.52425300	2.05062200	2.09116600
15	Н	2.78192500	1.53868100	-0.17205700
16	Н	-0.00673000	-2.53332700	-3.62947800
17	Н	-1.22037100	-2.00774800	-5.91207900
18	Н	-0.70722600	0.56480600	-6.45025700
19	Н	0.81584200	1.43080600	-4.47960700
-				
PM3 op	timize	d atomic positio	ons for $R_1 = {}^{i}P_1$	$R_2 = Me.$
1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.31938800	-0.37431800	1.33123800
3	С	1.67163800	-0.14226100	1.50106900
4	Ν	2.16243400	0.34364100	0.26568400
5	С	1.14108200	0.41942900	-0.66191300
6	Р	1.50533700	1.16520400	-2.34714500
7	Ċ	0.46987500	0.16347300	-3.57816300
8	Ň	0 65271200	-1 11446000	-4 06440800
9	C	-0 22331100	-1 35051700	-5 14670400
10	C	-0 95392300	-0 18583600	-5 33860400
11	Ň	-0 50414800	0 73878400	-4 37160700
12	C	1 57771300	-2 13127100	-3 47762700
13	C	-1 04367900	2 11089800	-4 11508800
14	C	-1 37274300	-0.08034100	-0 58371100
15	C	3 58801400	0 71360900	-0.00577900
16	C	-0.61495100	-0.91922000	2 33393600
17	C	2 46725600	-0 35795300	2 72401700
18	C	-0 33451600	-2 60261300	-5 91803600
19	C	-2 00389300	0.01761800	-6 35448600
20	н	2 11668700	-1 60734100	-2 64256400
20	C II	2.11000700	-2 60240200	-4 50293200
$\frac{21}{22}$	C	0.77836900	-2.00240200	-91884100
22	C	-1 0/076000	2 97440700	-5 36702500
23	C	-2 / 3031300	2.01850100	-3.30702300
2 4 25	с н	-0.32694000	2 557/1000	-3 36128300
25	C II	-0.32094000 1 833/1/00	2.33741000	-5.50128500
20	C	2 36158100	-1.33297200	0 203/12400
27	с ц	1 32001000	0.77404000	1.62660000
20	II C	-1.32001000	0.34783800	-1.02000000
29 30	C	4.47/14400	1 85728700	0.100/2200
30 31	с ц	4.03400/00	1.03/30/00	1 082/2000
21	п u	2 25162700	1.03301100	-1.00243900 1.00243900
32 22	п	3.23102/00	-1./8452000	-4.842/3800
33 24	H U	3.2300/300	-3.3/210900	-4.00202800
54 25	H	2.125//500	-3.04383300	-3.39031300
55	Н	1.45248900	-4.05236500	-2.48131000

36	Н	0.18830900	-3.80987600	-3.70533100
37	Н	0.07423100	-2.99109700	-2.12854100
38	Н	-1.44572300	3.97083200	-5.12738000
39	Н	-1.68229400	2.55402900	-6.16759200
40	Н	-0.04130400	3.11420400	-5.77853900
41	Н	-3.17431900	1.58305400	-4.17168000
42	Н	-2.41567300	1.41018600	-2.56667500
43	Н	-2.78787800	3.02016100	-3.21589400
44	Н	-1.16778200	-2.15422700	-1.27543200
45	Н	-2.84134600	-1.59602500	-1.08157100
46	Н	-1.87269900	-1.99569400	0.35182200
47	Н	-2.42421100	0.47683600	1.26491800
48	Н	-3.36803800	0.67393200	-0.22585400
49	Н	-2.09874400	1.84007200	0.17231600
50	Н	5.54363900	-0.21215500	-0.00863900
51	Н	4.25784300	-1.29482000	-0.55674300
52	Н	4.43273100	-0.93073300	1.17561300
53	Н	3.45974700	2.77590600	0.71992800
54	Н	5.09051200	2.09405200	0.71296500
55	Н	3.93413900	1.60150200	1.96825100
56	Н	-0.06612100	-1.14802300	3.26138000
57	Н	-1.09787600	-1.84091100	1.96495800
58	Н	-1.41768700	-0.19809000	2.56594200
59	Н	3.28423700	-1.07814300	2.54150300
60	Н	1.81816600	-0.74719900	3.52400600
61	Н	2.93277500	0.58423400	3.06284700
62	Н	0.63582300	-2.88418900	-6.36323500
63	Н	-0.65087400	-3.43739100	-5.26827600
64	Н	-1.07218200	-2.47237100	-6.72587700
65	Н	-1.87175100	0.96680900	-6.90052900
66	Н	-1.97311700	-0.81585200	-7.07639100
67	Н	-3.00453300	0.03098700	-5.89815100

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = {}^{i}Pr$, $R_2 = Me$.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.31938800	-0.37431800	1.33123800
3	С	1.67163800	-0.14226100	1.50106900
4	Ν	2.16243400	0.34364100	0.26568400
5	С	1.14108200	0.41942900	-0.66191300
6	Р	1.50533700	1.16520400	-2.34714500
7	С	0.46987500	0.16347300	-3.57816300
8	Ν	0.65271200	-1.11446000	-4.06440800
9	С	-0.22331100	-1.35051700	-5.14670400
10	С	-0.95392300	-0.18583600	-5.33860400
11	Ν	-0.50414800	0.73878400	-4.37160700

12	Н	-0.93370500	-0.03493500	-0.40911500
13	Н	-0.36998900	-0.76939900	2.07740800
14	Н	2.24897700	-0.30270800	2.41158300
15	Н	3.13275600	0.60139800	0.08558200
16	Н	1.32247500	-1.78991900	-3.69620700
17	Н	-0.30941900	-2.27224200	-5.72212500
18	Н	-1.72527900	-0.01793700	-6.09021600
19	Н	-0.84844900	1.69381900	-4.27278800

PM3 optimize	d atomic	positions	for R	$_{1} = {}^{t}Bu$	$R_2 = H_1$
			-		

PM3 op	PM3 optimized atomic positions for $R_1 = {}^tBu$, $R_2 = H$.					
1	Ν	0.00000000	0.00000000	0.00000000		
2	С	-0.06952800	0.93254300	1.05321100		
3	С	1.09417100	1.65849100	1.02966300		
4	Ν	1.86959500	1.17632400	-0.04349100		
5	С	1.18024400	0.17409100	-0.71721700		
6	Р	1.97466500	-0.81997100	-2.16857100		
7	С	0.79617900	-0.92236700	-3.70814500		
8	Ν	0.35633300	-2.10858000	-4.27736400		
9	С	-0.32212000	-1.84569000	-5.48583900		
10	С	-0.27741600	-0.49295300	-5.69663000		
11	Ν	0.42588800	0.07143800	-4.61401300		
12	С	0.42197500	-3.56461400	-3.82896800		
13	С	0.81648200	1.54200100	-4.62707900		
14	С	-1.03771700	-1.09538000	-0.15768600		
15	С	3.28516900	1.68189200	-0.28611400		
16	Н	-0.91133500	1.02872200	1.74688800		
17	Н	1.39347100	2.46638000	1.70592300		
18	Η	-0.76229200	-2.63892900	-6.10659300		
19	Η	-0.69101100	0.06971300	-6.54039400		
20	С	1.56679100	-3.83559300	-2.85944400		
21	С	0.64120900	-4.45763500	-5.06316400		
22	С	-0.92601400	-3.92742400	-3.19378100		
23	С	2.33708700	1.62517600	-4.79951900		
24	С	0.17339200	2.28003100	-5.81127700		
25	С	0.35239800	2.23414700	-3.33907600		
26	С	-0.32727800	-2.45314700	-0.12039700		
27	С	-2.05528600	-1.07307600	0.99212900		
28	С	-1.80791100	-0.89727400	-1.46906500		
29	С	4.25216400	0.49298100	-0.28211600		
30	С	3.72022200	2.65434500	0.81870400		
31	С	3.35161200	2.41318400	-1.62806000		
32	Η	1.60695700	-4.26325300	-5.54957800		
33	Н	0.63441600	-5.51518800	-4.76447700		
34	Н	-0.14919900	-4.32704800	-5.82157100		
35	Н	-0.91122000	-4.96792100	-2.84064200		

36	Н	-1 75413000	-3 84027200	-3 91161900
37	Н	-1 17751800	-3 29443500	-2 31893000
38	Н	2.66701700	1.18975700	-5.75296100
39	Н	2.87024200	1.10125200	-3.98336800
40	Н	2.66805300	2.67342100	-4.79169600
41	Н	0.50724500	1.89207800	-6.78472600
42	Н	-0.92528400	2.24865400	-5.78867800
43	Н	0.46327000	3.34047900	-5.77781200
44	Н	0.60463300	-2.45880200	-0.72396200
45	Н	-0.97832300	-3.23998900	-0.53871900
46	Н	-0.06223100	-2.75217900	0.90257800
47	Н	-1.58881700	-1.24141500	1.97355600
48	Н	-2.78559700	-1.88145100	0.84292900
49	Н	-2.62374800	-0.13309500	1.04283300
50	Н	5.26045700	0.82547700	-0.56467600
51	Н	3.95149200	-0.28750900	-1.00685000
52	Н	4.32820600	0.02641800	0.70951100
53	Н	4.76234000	2.96263600	0.64750300
54	Н	3.68824000	2.20148500	1.82001700
55	Н	3.11650700	3.57263100	0.83373800
56	Н	1.51083200	-4.86980300	-2.49124400
57	Н	1.54526400	-3.16345200	-1.97865200
58	Н	2.54846800	-3.71594300	-3.34025900
59	Н	1.11897000	2.93972400	-2.96735800
60	Н	0.16100600	1.52530500	-2.52040300
61	Н	-0.57471000	2.80630100	-3.48765300
62	Н	-1.19331600	-0.45057600	-2.26310000
63	Н	-2.16549000	-1.86935300	-1.85331000
64	Н	-2.68604700	-0.24940900	-1.33868900
65	Н	4.25315600	3.03861700	-1.68523100
66	Н	3.39754700	1.69610700	-2.46840000
67	Н	2.48127000	3.06831600	-1.81106700

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = {}^tBu$, $R_2 = H$.

1	Ν	0.00000000	0.00000000	0.00000000
2	С	-0.06952800	0.93254300	1.05321100
3	С	1.09417100	1.65849100	1.02966300
4	Ν	1.86959500	1.17632400	-0.04349100
5	С	1.18024400	0.17409100	-0.71721700
6	Р	1.97466500	-0.81997100	-2.16857100
7	С	0.79617900	-0.92236700	-3.70814500
8	Ν	0.35633300	-2.10858000	-4.27736400
9	С	-0.32212000	-1.84569000	-5.48583900
10	С	-0.27741600	-0.49295300	-5.69663000
11	Ν	0.42588800	0.07143800	-4.61401300

12	Η	-0.71125100	-0.70115500	-0.20713100
13	Η	-0.89395000	1.05459800	1.75572900
14	Н	1.36846800	2.46056800	1.71488900
15	Н	2.80028100	1.51313200	-0.29003300
16	Н	0.50236700	-3.03642700	-3.87965300
17	Н	-0.79531900	-2.58385100	-6.13337300
18	Н	-0.70524200	0.04534300	-6.54238600
19	Н	0.63431200	1.06426900	-4.50796900

PM3 o	ptimize	d atomic positio	ons for $R_1 = M$	es, $R_2 = H$.
1	N	0 00000000	0 00000000	0 000000

1	Ν	0.00000000	0.00000000	0.00000000
2	С	0.08917500	1.15847000	0.79891300
3	С	1.29789700	1.74866600	0.51399500
4	Ν	1.92487900	0.95121200	-0.46513800
5	С	1.12900300	-0.13494000	-0.79321400
6	Р	1.77437500	-1.60823100	-1.79657800
7	С	0.61417300	-2.00946300	-3.24243600
8	Ν	0.13910500	-3.28863900	-3.48424100
9	С	-0.43265700	-3.37159900	-4.77013100
10	С	-0.32456400	-2.12433800	-5.33866600
11	Ν	0.32559700	-1.29939100	-4.39779300
12	С	0.21247100	-4.48281000	-2.65661300
13	С	0.66141000	0.06795200	-4.75784600
14	С	-1.13378500	-0.89497900	0.15849800
15	С	3.26577000	1.29163100	-0.91516500
16	С	-0.96614600	-5.00209800	-2.08917800
17	С	-0.89705400	-6.18041000	-1.34804400
18	С	0.31485900	-6.84770100	-1.17065300
19	С	1.47491500	-6.32646700	-1.74003100
20	С	1.44034100	-5.14785800	-2.48518000
21	С	-0.36531800	1.02306000	-4.88596100
22	С	-0.04312900	2.31301200	-5.30073300
23	С	1.27364500	2.65970900	-5.60722900
24	С	2.27925400	1.70275200	-5.49264800
25	С	1.99085500	0.40336900	-5.07123000
26	С	4.36763300	0.53803400	-0.47029300
27	С	5.65188300	0.91611000	-0.86225200
28	С	5.85194500	2.02499200	-1.68161700
29	С	4.75240700	2.76613700	-2.11489100
30	С	3.45654200	2.41644500	-1.73941400
31	С	-2.40301100	-0.49562400	-0.30037700
32	С	-3.49493300	-1.33501000	-0.09010800
33	С	-3.34609700	-2.54871900	0.58202900
34	С	-2.09003700	-2.92155500	1.05652600
35	С	-0.97497400	-2.10689800	0.85496600

36	С	-2.63122200	0.80789200	-0.97935600
37	Н	-4.48933600	-1.03226800	-0.44527800
38	С	-4.51482800	-3.44390600	0.77775800
39	Н	-1.97585400	-3.86930400	1.60022400
40	С	0.34069300	-2.54953700	1.38616400
41	С	-2.29184100	-4.34538200	-2.24809400
42	Н	-1.81067200	-6.59459900	-0.90104100
43	С	0.36127800	-8.11376200	-0.39623600
44	Н	2.42977100	-6.85173600	-1.60141700
45	С	2.70931500	-4.63354600	-3.06674200
46	С	-1.79310200	0.70206500	-4.61924700
47	Н	-0.83608300	3.06625200	-5.40279900
48	С	1.59148300	4.03461800	-6.06980000
49	Н	3.31460200	1.97070300	-5.74404600
50	С	3.10268400	-0.57796500	-4.97221800
51	С	4.21037500	-0.65751100	0.40079000
52	Н	6.51637100	0.33189200	-0.51854500
53	С	7.22192700	2.43158000	-2.08491300
54	Н	4.91506700	3.64133200	-2.75781800
55	С	2.33155700	3.25412900	-2.23510800
56	Н	-0.68322900	1.47193400	1.50732900
57	Н	1.74083900	2.65462100	0.93844700
58	Н	-0.86139100	-4.28691600	-5.18880900
59	Н	-0.64758800	-1.78596900	-6.32757100
60	Н	-2.31567600	1.65018900	-0.34664600
61	Н	-3.69241100	0.96507200	-1.21912000
62	Н	-2.07262200	0.87038400	-1.92795500
63	Н	-4.44068300	-4.01422800	1.71361500
64	Н	-4.57178800	-4.16784400	-0.04923400
65	Н	-5.46153500	-2.88846000	0.80128000
66	Н	0.69608200	-1.87437800	2.17706100
67	Н	0.29176400	-3.55817500	1.81885200
68	Н	1.10024400	-2.56986000	0.58140300
69	Н	-2.48850600	-4.05027100	-3.28816800
70	Н	-3.11501200	-5.00819000	-1.94197600
71	Н	-2.35882400	-3.44361600	-1.61772600
72	Н	1.35649000	-8.30061000	0.02900000
73	Н	0.11422100	-8.96486100	-1.04627700
74	Н	-0.35994800	-8.11073800	0.43204400
75	Н	3.57647000	-5.23376600	-2.75727400
76	Н	2.89818100	-3.59315100	-2.73979300
77	Н	2.68155800	-4.64783100	-4.16483300
78	Н	-2.13735400	-0.14569000	-5.22892000
79	Н	-1.95398700	0.44382700	-3.55932800
80	Н	-2.45343200	1.55089200	-4.84736200
81	Н	2.64542800	4.29313400	-5.89974500

82	Н	1.39692000	4.12784400	-7.14746000
83	Н	0.97674600	4.78649200	-5.55657900
84	Н	4.08036800	-0.11080800	-5.15419200
85	Н	2.98710500	-1.38500800	-5.70853900
86	Н	3.13534500	-1.03259400	-3.96312700
87	Н	5.17171000	-1.15099300	0.60019500
88	Н	3.77574600	-0.39079900	1.37409900
89	Н	3.54959400	-1.40619100	-0.07674700
90	Н	7.97206500	1.66690900	-1.84282200
91	Н	7.27779700	2.62321000	-3.16501500
92	Н	7.51369800	3.35729000	-1.56930300
93	Н	2.68072400	4.23870800	-2.57875600
94	Н	1.56963600	3.43733000	-1.46516500
95	Н	1.83926400	2.76992400	-3.09448800

Atomic positions used in the single-point B88PW91 calculation of **2f** from $R_1 = Mes$, $R_2 = H$.

1	N		n0
1		0.0000000 0.0000000 0.00000000	
2	C	0.0891/500 1.1584/000 0./9891300	0
3	С	1.29789700 1.74866600 0.51399500	0
4	Ν	1.92487900 0.95121200 -0.46513800)0
5	С	1.12900300 -0.13494000 -0.79321400)0
6	Р	1.77437500 -1.60823100 -1.79657800	0
7	С	0.61417300 -2.00946300 -3.24243600)0
8	Ν	0.13910500 -3.28863900 -3.48424100)0
9	С	-0.43265700 -3.37159900 -4.77013100	00
10	С	-0.32456400 -2.12433800 -5.33866600	00
11	Ν	0.32559700 -1.29939100 -4.39779300	00
12	Н	-0.78669200 -0.64922300 0.00499000	00
13	Н	-0.65753800 1.51755100 1.50713600	00
14	Н	1.69581200 2.66000200 0.96034800	00
15	Η	2.83806300 1.14665500 -0.87537900	00
16	Н	0.19537300 -4.06326300 -2.82303600	00
17	Н	-0.87615200 -4.25635300 -5.22688400	00
18	Н	-0.67464600 -1.82949800 -6.32791400	00
19	Н	0.55227500 -0.31610000 -4.54663900	00

Figure S3. Space-filling picture of the PM3 optimized structure of **2** where $R_1 = {}^tBu$ and $R_2 = H$, showing the steric overcrowding of the putative molecule.

References:

- 1 B. D. Ellis, M. Carlesimo and C. L. B. Macdonald, *Chem. Commun.*, 2003, 1946-1947.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople Gaussian 98 A.11.1; Gaussian Inc., Pittsburg, 2001.
- 3 A. D. Becke, *Journal of Chemical Physics*, 1993, **98**, 5648-5652.
- 4 J. P. Perdew and Y. Wang, *Physical Review B*, 1992, **45**, 13244-13249.
- 5 E. D. Glendening, A. E. Reed, J. E. Carpenter and R. Weinhold NBO 3.1;
- 6 A. E. Reed, L. A. Curtiss and F. Weinhold, *Chemical Reviews*, 1988, **88**, 899-926.
- 7 G. Shaftenaar MOLDEN 3.4; CAOS/CAMM Center Nijmegen: Toernooiveld, Nijmegen, The Netherlands, 1991.
- 8 *CAChe Worksystem Pro*; Version 6.1.10, CAChe Group, Fujitsu, Beaverton, OR