Stereodifferentiation in the formation and decay of the encounter complex in bimolecular electron transfer with photoactivated acceptors

Julia Pérez-Prieto,* Raquel E. Galian, Maria C. Morant-Miñana, Miguel A. Miranda*

Departamento de Química Orgánica/ICMOL, Universidad de Valencia, Av. Vicent Ándrés Estellés s/n, 46100 Burjassot, Valencia. Departamento de Química/Instituto de Tecnología Química UPV-CSIC; Universidad Politécnica de Valencia, Camino de Vera s/n, 46071 Valencia.

Supporting Information

S2: Transient absorption spectra of (R)-1 in deaerated acetonitrile. Transient absorption spectra of (R)-1 in deaerated dichloromethane.

S3: Transient absorption spectra in deaerated acetonitrile of (R)-1 in the presence of (R)-2. Transient absorption spectra in deaerated acetonitrile of (R)-1 in the presence of (R)-3.

S4: Transient absorption spectra in deaerated dichloromethane of (R)-1 in the presence of (R)-2. Transient absorption spectra in deaerated dichloromethane of (R)-1 in the presence of (R)-3.

S5-S12: Plots of the observed rate constant for the decay of (*R*)-1 or (*S*)-1 versus [(*R*)-2 or (*R*)-3] either in acetonitrile or dichloromethane, their double-reciprocal evaluation according to equation 5 and comparison between the experimental values and the calculated line for several non-linear quenching plot based on the K_{EC} and k_{d} values recovered from the double-reciprocal plot.

Figure S2: Transient absorption spectra of a deaerated dichloromethane solution of (*R*)-1 (1.1 mM) obtained 0.2 μ s after the laser pulse.

Figure S3: Transient absorption spectra of a deaerated acetonitrile solution of (*R*)-1 (1.1 mM) in the presence of (*R*)-2 (80 mM) obtained 0.2 and 10 μ s after the laser pulse.

Figure S5: Transient absorption spectra of a deaerated dichloromethane solution of (*R*)-1 (1.1 mM) in the presence of (*R*)-2 (12 mM) obtained 0.2 and 10 μ s after the laser pulse.

Figure S6: Transient absorption spectra of a deaerated dichloromethane solution of (*R*)-1 (1.1 mM) in the presence of (*R*)-3 (11 mM) obtained 0.2 and 10 μ s after the laser pulse.

Figure S7: a) Saturation behavior of the observed rate constants for the quenching of (*R*)-1 triplet excited state at 630 nm by (*R*)-2 in acetonitrile. b) Double-reciprocal evaluation according to equation 5.

Figure S8: a) Saturation behavior of the observed rate constants for the quenching of (*S*)-1 triplet excited state by (*R*)-2 in acetonitrile. b) Double-reciprocal evaluation according to equation 5.

Figure S9: a) Saturation behavior of the observed rate constants for the quenching of (*R*)-1 triplet excited state at 630 nm by (*R*)-3 in acetonitrile. b) Double-reciprocal evaluation according to equation 5.

Figure S10: a) Saturation behavior of the observed rate constants for the quenching of (*S*)-1 triplet excited state at 630 nm by (*R*)-3 in acetonitrile. b) Double-reciprocal evaluation according to equation 5. c) Comparison between the experimental values ($_{\bullet}$) and the calculated line ($_{\circ}$) for the non-linear quenching plot based on the $K_{\rm EC}$ and $k_{\rm d}$ values recovered from the double-reciprocal plot.

Figure S11: a) Saturation behavior of the observed rate constants for the quenching of (*R*)-1 triplet excited state at 630 nm by (*R*)-2 in dichloromethane. b) Double-reciprocal evaluation according to equation 5. c) Comparison between the experimental values (•) and the calculated line ($_{\odot}$) for the non-linear quenching plot based on the K_{EC} and k_{d} values recovered from the double-reciprocal plot.

Figure S12: a) Saturation behavior of the observed rate constants for the quenching of (*S*)-1 triplet excited state at 630 nm by (*R*)-2 in dichloromethane. b) Double-reciprocal evaluation according to equation 5.

Figure S13: a) Saturation behavior of the observed rate constants for the quenching of (R)-1 triplet excited state at 630 nm by (R)-3 in dichloromethane. b) Double-reciprocal evaluation according to equation 5.

c) Comparison between the experimental values (•) and the calculated line ($_{\circ}$) for the non-linear quenching plot based on the K_{EC} and k_{d} values recovered from the double-reciprocal plot.

Figure S14: a) Saturation behavior of the observed rate constants for the quenching of (*S*)-1 triplet excited state at 630 nm by (*R*)-3 in dichloromethane. b) Double-reciprocal evaluation according to equation 5.