Supplementary Information

Cyclic dimer of a fused porphyrin zinc complex as a novel host with two π-electronically coupled binding sites

Hiroshi Sato, ${ }^{a}$ Kentaro Tashiro, ${ }^{a}$ Hideyuki Shinmori, ${ }^{b}$
Atsuhiro Osuka ${ }^{b}$ and Takuzo Aida ${ }^{a}$ *
${ }^{a}$ Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: aida@macro.t.u-tokyo.ac.jp
${ }^{b}$ Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

1. Measurements

Electronic absorption spectra were recorded on a JASCO model U-best V-560 or V-570 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 293 K in CDCl_{3} or toluene- d_{8} on a JEOL Type GSX-270 spectrometer, operating at 270.05 MHz , using a residual non-deuterated solvent as an internal reference. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was performed on an Applied Biosystems BioSpectrometry Workstation ${ }^{\mathrm{TM}}$ model Voyager-DE ${ }^{\text {TM }}$ STR spectrometer using dithranol as a matrix.

2. Synthesis

2-1. Synthesis of boronic acid 8

Scheme 1. Reagents and conditions: (i) TBDPSCl, imidazole, DMF, r.t.; (ii) n - $\mathrm{BuLi}, \mathrm{B}(\mathrm{OMe})_{3}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$.
8: To a DMF solution (350 mL) of a mixture of 3-bromophenol ($25 \mathrm{~g}, 0.14 \mathrm{~mol}$) and imidazole ($10 \mathrm{~g}, 0.15 \mathrm{~mol}$) was dropwise added tert-butyldiphenylsilyl chloride (TBDPSCl; $40 \mathrm{~mL}, 0.15 \mathrm{~mol}$), and the mixture was stirred for 2 h under Ar at room temperature. Then, the reaction mixture was poured into toluene, and the solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was chromatographed on silica gel with CHCl_{3} as an eluent, where the first fraction was collected and evaporated to leave 7 as colorless transparent oil ($58 \mathrm{~g}, 98 \%$). To a THF solution (80 mL) of $7(10 \mathrm{~g}, 24 \mathrm{mmol})$ was dropwise added a hexane solution of $n-\mathrm{BuLi}$ ($1.5 \mathrm{M}, 19 \mathrm{~mL}$), and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ under Ar. To the reaction mixture was dropwise added $\mathrm{B}(\mathrm{OMe})_{3}(8.1 \mathrm{~mL}, 72 \mathrm{mmol})$, and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ under Ar. Then, the reaction mixture was allowed to warm to room temperature and evaporated to dryness. The residue was chromatographed on silica gel with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(98 / 2)$ as an eluent, where the second fraction was collected and evaporated to leave boronic acid $\mathbf{8}$ as colorless transparent oil ($4.8 \mathrm{~g}, 53 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.80-7.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.45-7.36$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.21\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.96\left(\mathrm{~d} \times 2,1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 1.16(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$.

2-2. Synthesis of triaryl substituted porphyrin zinc complex 2

Scheme 2. Reagents and conditions: (i) $\mathrm{I}_{2}, \mathrm{AgPF}_{6}, \mathrm{CHCl}_{3} /$ pyridine, r.t.; (ii) 8, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}$.
2: To a $\mathrm{CHCl}_{3} /$ pyridine ($60 / 1$) solution (66 mL) of $9(499 \mathrm{mg}, 0.67 \mathrm{mmol})$ (M. J. Plater, S. Aiken and G. Bourhill, Tetrahedron, 2002, 58, 2405.) were added $\mathrm{I}_{2}(168 \mathrm{mg}, 0.66$ mmol) and $\mathrm{AgPF}_{6}(170 \mathrm{mg}, 0.67 \mathrm{mmol}$), and the mixture was stirred for 30 min at room temperature. Then, the reaction mixture was washed with saturated aqueous KI and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. To a CHCl_{3} solution $(60 \mathrm{~mL})$ of the residue was added 12 N aqueous $\mathrm{HCl} / \mathrm{MeOH}(1 / 1,5 \mathrm{~mL})$, and the mixture, stirred for 10 min at room temperature, was treated with aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. To a CHCl_{3} solution $(60 \mathrm{~mL})$ of the residue was added a MeOH suspension of $\mathrm{Zn}(\mathrm{OAc})_{2}(3 \mathrm{~mL})$, and the mixture was stirred for 12 h at room temperature. Then, the reaction mixture was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was chromatographed on silica gel with $\mathrm{CHCl}_{3} /$ hexane $(1 / 2)$ as an eluent, where the first fraction containing 10 was collected and evaporated to dryness. To the residue (330 mg) dissolved in DMF (30 mL) were successively added boronic acid $8(1.38 \mathrm{~g}, 3.6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(495 \mathrm{mg}, 3.6 \mathrm{mmol})$, and the mixture was subjected to freeze-pump-thaw cycles. To the resulting suspension was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(87 \mathrm{mg}$, 0.33 mmol) under Ar , and the mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$ and evaporated to dryness under reduced pressure. Then, the residue was dissolved in AcOEt, and the solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to give a crude product, which was subjected to recycling preparative size exclusion chromatography (SEC) with CHCl_{3} as an eluent. The second fraction was collected and evaporated to leave 2 as purple solid ($302 \mathrm{mg}, 42 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.23(\mathrm{~s}, 1 \mathrm{H}$, meso-H), 9.38 (d, 2H, pyrrole- $\beta-H$), 9.12 (d, 2 H , pyrrole- $\beta-\mathrm{H}), 8.94(\mathrm{~d}, 2 \mathrm{H}$, pyrrole- $\beta-\mathrm{H})$, $8.73(\mathrm{~d}, 2 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}$), $8.09(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ar}), 7.83-7.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.40-7.34(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.56(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 1.54(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu})$, $1.14\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$-Bu); MALDI-TOF-MS m / z calcd. for $\mathrm{C}_{70} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{OSiZn}\left(\mathrm{M}^{+}\right) 1080.8$, found
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
1080.5.

2-3. Synthesis of fused porphyrin zinc complexes 3-5

Scheme 3. Reagents and conditions: (i) $\mathrm{DDQ}, \mathrm{Sc}(\mathrm{OTf})_{3}$, toluene, r.t.; (ii) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{Br}, \mathrm{KF}, 18-\mathrm{crown}-6$, acetone, $50^{\circ} \mathrm{C}$; (iii) TBAF, THF, r.t..

3: To a toluene solution (75 mL) of triarylporphyrin 2 ($302 \mathrm{mg}, 0.28 \mathrm{mmol}$), after freeze-pump-thaw cycles, was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) ($190 \mathrm{mg}, 0.84 \mathrm{mmol}$), and the mixture was stirred for 10 min at room temperature. Then, $\mathrm{Sc}(\mathrm{OTf})_{3}(412 \mathrm{mg}, 0.84 \mathrm{mmol})$ was added, and the mixture was stirred for 15 h at room temperature. After the addition of THF (30 mL), followed by stirring for 1 h , the reaction mixture was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was subjected to recycling preparative SEC with CHCl_{3} as an eluent, where the first fraction was collected and evaporated to leave 3 as dark purple solid (205 mg , $63 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ar}), 7.72(\mathrm{~d}, 4 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}), 7.63(\mathrm{~d}, 4 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}$), 7.61 (t, $8 \mathrm{H}, \mathrm{Ar}$), 7.58 (d, 4H, Ar), 7.43 (d, 4H, Ar), 7.36-7.31 (m, 12H, Ar), $7.28(\mathrm{~s}, 4 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}), 7.22-7.20(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.46(\mathrm{~s}, 36 \mathrm{H}$, t-Bu), $1.43(\mathrm{~s}, 36 \mathrm{H}, t$-Bu), $1.10(\mathrm{~s}, 18 \mathrm{H}, t$-Bu); MALDI-TOF-MS m / z calcd. for $\mathrm{C}_{140} \mathrm{H}_{142} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Zn}_{2}\left(\mathrm{M}^{+}\right) 2155.6$, found 2155.4; UV-vis (toluene): $\lambda_{\text {max }}(\log \varepsilon) 420$ (5.13), 461 (4.68), 585 (5.08), 927 (4.24), 1058 (4.50) nm.
4: An acetone suspension (8 mL) of a mixture of porphyrin $3(82 \mathrm{mg}, 0.04 \mathrm{mmol})$, 1,6-dibromohexane ($2 \mathrm{~mL}, 13 \mathrm{mmol}$), KF ($26 \mathrm{mg}, 0.53 \mathrm{mmol}$) and 18-crown-6 (23 mg , 0.09 mmol) was stirred for 4 h at $50^{\circ} \mathrm{C}$ under Ar and evaporated to dryness. The residue was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent, where the first fraction was collected and evaporated to dryness. A CHCl_{3} solution (10 mL) of the residue was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was subjected to recycling preparative SEC with CHCl_{3} as an eluent, where the first fraction was collected and evaporated to leave 4 as dark purple solid ($77 \mathrm{mg}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{t}, 4 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}), 7.66(\mathrm{~d}, 4 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}), 7.63(\mathrm{br}, 8 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{br}$, $4 \mathrm{H}, \mathrm{Ar}), 7.45-7.36$ (m, 6H, Ar), 7.32 (s, 4H, pyrrole- $\beta-\mathrm{H}$), 7.10-7.07 (m, 2H, Ar), 4.02 (t, $4 \mathrm{H}, \mathrm{OCH}_{2}$), $3.38\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 1.89-1.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}\right), 1.60-1.45(\mathrm{~m}$,
$\left.12 \mathrm{H}, \mathrm{OC}_{2} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{Br}\right)$, 1.43 (s, $72 \mathrm{H}, t$-Bu); MALDI-TOF-MS m / z calcd. for $\mathrm{C}_{148} \mathrm{H}_{176} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{Zn}_{2}\left(\mathrm{M}^{+}\right)$2003.7, found 2004.1.

5: To a THF solution (10 mL) of $\mathbf{3}(115 \mathrm{mg}, 0.053 \mathrm{mmol})$ was added a THF solution of $n-\mathrm{Bu}_{4} \mathrm{NF}$ (TBAF; $1.0 \mathrm{M}, 0.5 \mathrm{~mL}$), and the mixture was stirred for 1 h at room temperature and evaporated to dryness. ACHCl_{3} solution $(10 \mathrm{~mL})$ of the residue was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was subjected to preparative SEC with toluene as an eluent, where the first fraction was collected and evaporated to dryness. The residue was recrystallized from $\mathrm{CHCl}_{3} /$ cyclohexane to leave 5 as black solid ($85 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, 4 \mathrm{H}$, pyrrole- $\beta-\mathrm{H}), 7.67$ (d, 4 H , pyrrole- $\beta-\mathrm{H}$), 7.63 (t, $8 \mathrm{H}, \mathrm{Ar}$), 7.60 (t, 4H, Ar), 7.41-7.34 (m, 6H, Ar), 7.34 (s, 4H, pyrrole- $\beta-\mathrm{H}$), $7.06-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 4.76(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 1.43(\mathrm{~s}, 72 \mathrm{H}, t-\mathrm{Bu})$; MALDI-TOF-MS m / z calcd. for $\mathrm{C}_{108} \mathrm{H}_{106} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn}_{2}\left(\mathrm{M}^{+}\right) 1678.8$, found 1678.5.

2-4. Synthesis of phenylene-bridged diporphyrin zinc complex 6

11

Scheme 4. Reagents and conditions: (i) pinacol, $\mathrm{Et}_{2} \mathrm{O}$, r.t., 1 d.; (ii) $11, \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}, 2 \mathrm{~d} .$.

6: An ether solution (10 mL) of a mixture of 1,4-phenylenediboronic acid ($500 \mathrm{mg}, 3.0$ mmol) and pinacol ($785 \mathrm{mg}, 6.6 \mathrm{mmol}$) was stirred for 12 h at room temperature and evaporated to dryness. The residue dissolved in CHCl_{3} was chromatographed on silica gel with CHCl_{3} as an eluent, where the first fraction was collected and evaporated to leave 11 as white solid ($940 \mathrm{mg}, 95 \%$). To a DMF solution (10 mL) of $\mathbf{1 1}(27 \mathrm{mg}, 0.08 \mathrm{mmol})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(184 \mathrm{mg}, 3.6 \mathrm{mmol})$ and the solid substance containing $10(70 \mathrm{mg}$; see preparation of compound $\mathbf{2}$), and the mixture was subjected to freeze-pump-thaw cycles. Then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(192 \mathrm{mg}, 0.33 \mathrm{mmol})$ was added to the resulting suspension under Ar , and the mixture was stirred for 2 days at $60^{\circ} \mathrm{C}$ and evaporated to dryness under reduced pressure. The residue was dissolved in AcOEt , and the solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was subjected to preparative SEC with toluene as an eluent, where the third fraction was collected and evaporated to leave 6 as purple solid ($59 \mathrm{mg}, 32 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.31(\mathrm{~s}, 2 \mathrm{H}$, meso-H), $9.45(\mathrm{~d}$ x 2, 8 H , pyrrole- $\beta-\mathrm{H}$), 9.21 (t, 8 H , pyrrole- $\beta-\mathrm{H}$), 8.61 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar}$), 8.19 (d, $8 \mathrm{H}, \mathrm{Ar)}$,7.85 (t, $4 \mathrm{H}, \mathrm{Ar}$), 1.58 ($\mathrm{s}, 72 \mathrm{H}, t$-Bu); MALDI-TOF-MS m / z calcd. for $\mathrm{C}_{70} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{OSiZn}\left(\mathrm{M}^{+}\right)$ 1080.8, found 1080.5; UV-vis (toluene): $\lambda_{\max }(\log \varepsilon) 419$ (5.66), 426 (5.68), 546 (4.55) nm .
3. Spectroscopic titration of cyclic host 1 with $4,4^{\prime}$-bipyridine (bpy) in toluene at $20{ }^{\circ} \mathrm{C}$. $[1]_{0}=1.6 \times 10^{-6} \mathrm{M} ;[\mathrm{bpy}] /[1]=0-2.0$

4. Job's plots (4 Abs ; monitored at (a) $\mathbf{1 1 0 7}$ and (b) $\mathbf{1 1 2 2} \mathbf{n m}$) upon mixing of cyclic host 1 with 4,4'-bipyridine (bpy) in toluene at $20{ }^{\circ} \mathrm{C}$. [1] $+[$ bpy $]=5.9 \times 10^{-6} \mathbf{M}$

The formation of $\mathbf{1} \supset$ bpy (a) and $\mathbf{1} \supset \mathrm{bpy}_{2}$ (b) was confirmed by appropriate selection of the monitoring wavelengths sensitive to the 1:1 and 1:2 complexations, respectively.
5. ${ }^{1} \mathrm{H}$ NMR spectra (pyrrole- β, Ar and OCH_{2} proton regions) of cyclic host 1
(A) and $1 \supset$ bpy $_{2}(\mathbf{1 : 2 . 5})(\mathrm{B})$ in toluene- d_{8} at $20{ }^{\circ} \mathrm{C}$

A

6. Absorption spectra of the zinc complexes of fused porphyrin 3 and phenylene-bridged diporphyrin 6 in toluene at $20{ }^{\circ} \mathrm{C}$. [3] and [6] $=8.6 \times 10^{-6} \mathrm{M}$

7. Spectroscopic titration of the zinc complexes of fused porphyrin 3 and phenylene-bridged diporphyrin 6 with pyridine (py) in toluene at $20{ }^{\circ} \mathrm{C}$

7-1. $[3]_{0}=2.5 \times 10^{-5} \mathrm{M}$; (a) $[\mathrm{py}] /[3]=0-5$ and (b) $50-90$
(a)

(b)

7-2. $[6]_{0}=1.5 \times 10^{-6} \mathrm{M}$; (a) $[\mathrm{py}] /[6]=0-24$ and (b) 27-78

