

A Novel Strategy for the Asymmetric Synthesis of Chiral Cyclopropane Carboxaldehydes

Matt Cheeseman, Fred J. P. Feuillet and Steven D. Bull*

Department of Chemistry, University of Bath, Bath, UK, BA2 7AY.

Fax:(+44) 1225 386231; E-mail:s.d.bull@bath.ac.uk.

Representative procedure for the asymmetric aldol reaction

(4*S*,3'*R*,2'*S*,4'*E*)-4-Benzyl-3-[3'-hydroxy-2'-methyl-5'-(2''-nitro-phenyl)-pent-4'-enoyl]-5,5-dimethyl-oxazolidin-2-one **3d**:

To a stirred solution of (*S*)-4-benzyl-5,5-dimethyl-3-propionyl-oxazolidin-2-one **1** (500 mg, 1.91 mmol) in CH₂Cl₂ (20 ml) at 0°C was added 9BBN-OTf (4.21 ml, 2.10 mmol, 0.5M solution in hexane) dropwise. The reaction mixture was stirred for 30 minutes at 0°C before *N,N*'-diisopropylethylamine (0.40 ml, 2.30 mmol) was added dropwise. Stirring was continued for a further 30 minutes at 0°C before cooling the reaction to -78°C and 3-(2'-Nitro-phenyl)-propenal (373 mg, 2.10 mmol, 0.5M solution in CH₂Cl₂) was added dropwise. Stirring was maintained overnight as the reaction was allowed to warm to room temperature. The reaction was then quenched with pH7 phosphate buffer solution (10 ml) and stirred for 10 minutes, before a 2:1 mixture of 30% H₂O₂ and methanol (10 ml) was added and the reaction stirred for a further two hours. CH₂Cl₂ (10 ml) and sat. NaHCO₃ solution (10 ml) were added and the aqueous layer was separated and extracted with CH₂Cl₂ (3 × 10ml). The combined organic layers were washed with brine (10 ml), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude diastereoisomeric excess was determined as >95% by inspection of the 300 MHz ¹H NMR spectrum of the crude reaction product. Purification by column chromatography eluting with CH₂Cl₂ gave the title compound **3d** (730 mg, 87%) as a yellow oil. **3d**: $[\alpha]_D^{24} = -7.6$ (*c* 0.8, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) : δ H = 7.86 (1H, app. d, ³J(H,H) = 7.9 Hz, CHCNO₂, Ar), 7.52 – 7.11 (8H, m, 8 × CH, Ar), 7.05 (1H, dd, ³J(H,H) = 15.7 and 1.5 Hz, *o*-NO₂PhCH=CH), 6.10 (1H, dd, ³J(H,H) = 15.7 and 5.7 Hz, *o*-NO₂PhCH=CH), 4.60 (1H, m, CHOH), 4.53 (1H, dd, ³J(H,H) = 9.0 and 4.8 Hz, NCH), 3.99 (1H, dq, ³J(H,H) = 3.8 and 7.1, CH₃CH), 3.01 (1H, dd, ³J(H,H) = 14.2 and 4.5, PhCH_ACH_B), 2.90-2.80 (2H, m,

OH and PhCH_ACH_B), 1.33 (3H, s, CH₃(CH₃)C), 1.30 (3H, s, (CH₃(CH₃)C), 1.14 (3H, d, ³J (H,H) = 7.1, CHCH₃); ¹³C NMR (75 MHz, CDCl₃) : δC = 176.0 (CHCO), 158.0 (OCO), 148.2 (NO₂C, Ar), 136.9 (Ar), 134.3 (Ar), 133.5 (Ar), 133.0 (Ar), 129.5 (Ar), 129.3 (Ar), 129.1 (Ar), 128.5 (Ar), 127.4 (Ar), 127.3 (o-NO₂PhCH=CH), 125.9 (o-NO₂PhCH=CH), 82.9 ((CH₃)₂C), 72.9 (CHOH), 63.7 (NCH), 43.1 (CH₃CH), 35.7 (PhCH₂), 28.8 (CH₃(CH₃)C), 22.6 (CH₃(CH₃)C), 12.0 (CH₃CH); IR (film / cm⁻¹) ν = 3447 (OH), 1773 (OC=O), 1700 (NC=O), 1570 (C=C), 1552 (NO₂), 1351 (NO₂); HRMS : m/z (ES) 459.2123, C₂₄H₂₆N₂O₆ [M+NH₄]⁺ requires 456.2129.

Representative procedure for the stereoselective cyclopropanation reaction (4S,3'R,2'S,2''S,1''S)-4-Benzyl-3-{3'-hydroxy-2'-methyl-3'-(2''-(2'''-nitro-phenyl)-cyclopropyl)-propionyl}-5,5-dimethyl-oxazolidin-2-one **4d** :

To a stirred solution of (4S,3'R,2'S,4'E)-4-benzyl-3-[3'-hydroxy-2'-methyl-5'-(2''-nitro-phenyl)-pent-4'-enoyl]-5,5-dimethyl-oxazolidin-2-one **3d** (700 mg, 1.60 mmol) in CH₂Cl₂ (10 ml) at -10°C was added diethyl zinc (7.98 ml, 7.98 mmol, 1.0 M solution in hexane) in one portion, before the addition of diiodomethane (0.64 ml, 7.98 mmol) in one portion. The reaction was stirred for 2 hours and allowed to warm to 0 °C. The reaction was then quenched with sat. sodium sulfite solution (5 ml). CH₂Cl₂ (5 ml) and 2M HCl_(aq) solution (5 ml) were added and the aqueous layer was separated and extracted with CH₂Cl₂ (3 × 10 ml). The combined organic layers were washed with brine (10 ml), dried (MgSO₄), filtered and concentrated *in vacuo*. The diastereomeric excess was determined as >95% by inspection of the 300 MHz NMR spectrum of the crude reaction product. Purification by column chromatography eluting with CH₂Cl₂ gave the title compound **4d** (650mg, 90%) as a white solid. **4d**: m.p. 101-104°C; [α]_D²⁴ = +57.3 (c 0.9, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) : δH = 7.75 (1H, app. d, ³J (H,H) = 7.9 Hz, CHCNO₂, Ar), 7.47 – 7.06 (8H, m, 8 × CH, Ar), 4.47 (1H, dd, ³J (H,H) = 9.4 and 4.5, NCH), 3.97 (1H, dq, ³J (H,H) = 3.4 and 7.2, CH₃CH), 3.68 (1H, m, CHOH), 3.01 (1H, dd, ³J (H,H) = 14.3 and 4.5, PhCH_ACH_B), 2.83 (1H, dd, ³J (H,H) = 14.3 and 9.0, PhCH_ACH_B), 2.71 (1H, app. s, OH), 2.36 (1H, app. dt, ³J (H,H) = 8.7 and 5.3, o-NO₂PhCH), 1.32 (3H, s, CH₃(CH₃)C), 1.26 (3H, s, (CH₃(CH₃)C), 1.20 (3H, d, ³J (H,H) = 7.2, CHCH₃), 1.16 (2H, obscured m, cyclopropyl-CH and cyclopropyl-CH_ACH_B), 0.90

(1H, app. dt, 3J (H,H) = 8.7 and 5.3, cyclopropyl-CH_ACH_B); ^{13}C NMR (75 MHz, CDCl₃) : δ C = 177.2 (CHCO), 152.8 (OCO), 151.1 (NO₂C, Ar), 137.2 (Ar), 137.0 (Ar), 133.2 (Ar), 129.5 (Ar), 129.1 (Ar), 128.2 (Ar), 127.3 (Ar), 127.0 (Ar), 124.6 (Ar), 82.7 ((CH₃)₂C), 73.7 (CHOH), 63.7 (NCH), 43.4 (CH₃CH), 35.8 (PhCH₂), 28.8 (CH₃(CH₃)C), 25.5 (CH₃(CH₃)C), 22.6 (Cyclopropyl-CHPhNO₂), 17.3 (cyclopropyl-CH), 12.7 (CH₃CH), 12.3 (cyclopropyl-CH₂); IR (KBr / cm⁻¹) ν = 3431 (OH), 1769 (OC=O), 1694 (NC=O), 1528 (NO₂), 1367 (NO₂); HRMS : *m/z* (ES) 470.2287, C₂₅H₂₈N₂O₆ [M+NH₄] requires 470.2286.

Representative procedure for the base catalysed *retro-aldol* reaction

(1*S*, 2*S*)-2-(2'-Nitro-phenyl)-cyclopropane-carboxaldehyde **5d**

To a stirred solution of (4*S*,3'*R*,2'*S*,2''*S*,1''*S*)-4-benzyl-3-{3'-hydroxy-2'-methyl-3'-(2'''-nitro-phenyl)-cyclopropyl]-propionyl}-5,5-dimethyl-oxazolidin-2-one **4d** (500 mg, 1.10 mmol) in toluene (10 ml) at 5°C was added LHMDS (1.22 ml, 1.22 mmol, 1M solution in toluene) dropwise and stirred for 4 hours. The reaction was quenched with sat. NaHCO₃ solution (5 ml) and the aqueous layer was separated and extracted with CH₂Cl₂ (3 × 10ml). The combined organic layers were washed with brine (10 ml), dried (MgSO₄), filtered and concentrated *in vacuo*. The diastereomeric excess was determined as >95% d.e. by inspection of the 300 MHz NMR spectrum of the crude reaction product. Purification by passing the crude product through a plug of silica eluting with CH₂Cl₂:ether (95:5) and extraction *via* the bisulphite salt gave the title compound **5d** (116 mg, 55 %) as a clear oil. **5d**: $[\alpha]_D^{24}$ = +109.6 (*c* 0.7, CH₂Cl₂); 1H NMR (300 MHz, CDCl₃) : δ H = 9.32 (1H, d, 3J (H,H) = 4.5 Hz, CHO), 7.90 (1H, dd, 3J (H,H) = 8.2 and 1.3 Hz, NO₂CCH, Ar), 7.50 (1H, app. dt, 3J (H,H) = 1.5 and 7.5 Hz, *m*-CH, Ar), 7.36 (1H, app. dt, 3J (H,H) = 1.5 and 8.7 Hz, *p*-CH, Ar), 7.21 (1H, app. d, 3J (H,H) = 7.9 Hz, *o*-CH, Ar), 3.04 (1H, ddd, 3J (H,H) = 8.7, 7.4 and 4.5 Hz, *o*-NO₂PhCH), 2.04 (1H, m, CHOCH) 1.71 (1H, app. dt, 3J (H,H) = 9.0 and 5.3 Hz, cyclopropyl-CH_ACH_B), 1.44 (1H, ddd, 3J (H,H) = 8.7, 7.2 and 5.3 Hz, cyclopropyl-CH_ACH_B); ^{13}C NMR (75 MHz, CDCl₃) : δ C = 199.4 (CHO), 150.8 (NO₂CH) 134.2 (Ar), 133.6 (Ar), 129.5 (Ar), 128.5 (Ar), 125.3 (Ar) 32.0 (CHOCH), 24.0 (*o*-NO₂PhCH), 16.9 (cyclopropyl-CH₂); IR (film / cm⁻¹) ν = 1708 (CHO), 1519 (NO₂), 1344 (NO₂); HRMS : *m/z* (EI) 191.0572, C₁₀H₉NO₃ requires 191.0577.