Electronic Supplementary Information for B501926E

First Transamination Reactions for the One-Pot Synthesis of Substituted Zwitterionic Quinones

Qing-Zheng Yang, Olivier Siri and Pierre Braunstein*

Laboratoire de Chimie de Coordination, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cédex, France. E-mail: <u>braunst@chimie.u-strasbg.fr</u>; Tel: +33-390-241-308; Fax: +33-390-241-322.

General.

All solvents were dried and distilled using common techniques unless otherwise stated. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker AC–300 instrument. MALDI-TOF mass spectra were recorded on a Biflex III Bruker mass spectrometer and the EI mass spectrum was recorded on a Finnigan TSQ 700. Elemental analyses were performed by the « Service de Microanalyse, Université Louis Pasteur (Strasbourg, France) ».

Synthesis.

Typically, diaminoresorcinol dihydrochloride (0.500 g, 2.35 mmol) was dissolved in water (*ca.* 10 ml) and then excess of amine was added to the solution according to Scheme 1.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Scheme 1. One-pot synthesis of the zwitterions. 5 R = CH₂CH₂OH; 6 R = CH₃; 7 R = CH(CH₃)CH₂CH₃; 8 R = (CH₂)₃CH₃; 9 R = CH₂CH₂N(CH₃)₂.

For the compounds **6-8** which are not or poorly soluble in water, purple crystals appear quickly. 30-120 minutes later, the crystals were isolated by filtration and washed with cold water, dried in air to afford purple crystals. In the case of **5** and **9**, details are given below.

4: Mass spectrum (EI): m/z: 138.1 $[M+1]^+$; ¹H NMR (300 MHz, dmso- d_6): $\delta = 4.91$ (s, N^{...}C^{...}C-H), 5.62 (s, O^{...}C^{...}C-H), 8.41 (s, NH), 9.18 (s, NH). Anal. Calcd. for C₆H₆N₂O₂·0.5H₂O: C, 49.98; H, 4.80; N, 19.04. Found: C, 49.77; H, 4.73; N, 19.17.

5: At the end of the reaction, ethanol was added to precipitate the product. After filtration and washing with ethanol, a purple crystalline solid was obtained. Yield: 75%. Mass spectrum (MALDI-TOF⁺): m/z: 227.1 $[M+1]^+$; ¹H NMR (300 MHz, D₂O): AA'BB' spin system δ = 3.57 (t, ³*J* = 5.2 Hz, 4 H, NCH₂) and 3.78 (t, ³*J* = 5.2 Hz, 4H, OCH₂), 5.28 (s, 1 H, N⁻⁻C⁻⁻CH), 5.55 (s, 1 H, O⁻⁻C⁻⁻CH), in dmso-*d*₆, the OH and NH resonances appear at δ = 4.98 (t) and 8.88 (br s), respectively; ¹³C NMR (75 MHz, dmso-*d*₆) δ = 45.74 (s, CH₂N), 59.19 (s, CH₂O), 82.45 (s, N⁻⁻C⁻⁻C), 97.79 (s, O⁻⁻C⁻⁻C), 156.99 (s, C⁻⁻N), 172.51 (s, C⁻⁻O); Anal. Calcd. for C₁₀H₁₄N₂O₄: C, 53.09; H, 6.24; N, 12.38. Found: C, 52.95; H, 6.32; N, 12.43.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

6: Yield: 72%. Mass spectrum (MALDI-TOF⁺): m/z: 167.1 $[M+1]^+$; ¹H NMR (300 MHz, dmso- d_6): $\delta = 3.01$ (s, 6H, CH₃), 4.95 (s, 1H, N^{III}C^{III}CH), 5.34 (s, 1H, O^{III}C^{III}CH), 9.10 (br s, 2H, NH); ¹³C NMR (75 MHz, dmso- d_6) $\delta = 30.18$ (s, CH₃), 81.80 (s, N^{III}C^{III}C), 97.97 (s, O^{III}C^{III}C), 157.37 (s, C^{III}N), 172.67 (s, C^{III}O). Anal. Calcd. for C₈H₁₀N₂O₂·H₂O: C, 52.17; H, 6.57; N, 15.21. Found: C, 52.11; H, 6.26; N, 15.11.

7: Yield: 85%. Mass spectrum (MALDI-TOF⁺): m/z: 251.2 $[M+1]^+$; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.98$ (t, ³J = 7.5 Hz, 6H, CH₂CH₃), 1.31 (d, ³J = 6.5 Hz, 6H, CHCH₃), 1.69 (pent, ³J = 7.2 Hz, 4H, CH₂), 3.62 (m, 2H, N-CH), 5.14 (s, 1H, N⁻⁻C⁻⁻CH), 5.47 (s, 1H, O⁻⁻C⁻⁻CH), 8.11 (br s, 2H, NH); ¹³C NMR (75 MHz, CDCl₃) $\delta = 10.43$ (s, CH₂CH₃), 19.58 (s, CHCH₃), 29.20 (s, CH₂), 50.91 (s, NCH), 80.56 (s, N⁻⁻C⁻⁻C), 98.85 (s, O⁻⁻C⁻⁻C), 155.82 (s, N⁻⁻C), 172.21 (s, O⁻⁻C). Anal. Calcd. for C₁₄H₂₂N₂O₂: C, 67.17; H, 8.86; N, 11.19. Found: C, 66.83; H, 8.87; N, 11.32.

8: Yield: 93%. Mass spectrum (MALDI-TOF⁺): m/z: 251.2 $[M+1]^+$; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.98$ (t, ³J = 7.3 Hz, 6H, CH₃), 1.46 (sext, ³J = 7.4 Hz, 4H, CH₂CH₃), 1.73 (pent, ³J = 7.4 Hz, 4H, NCH₂CH₂), 3.37 (q owing to overlap dt, ³J = 6.9 Hz, 4H, NCH₂), 5.14 (s, 1H, N^{III}C^{III}CH), 5.47 (s, 1H, O^{III}C^{III}CH), 8.22 (br s, 2H, NH); ¹³C NMR (75 MHz, CDCl₃) $\delta = 13.62$ (s, CH₃), 20.13 (s, CH₂CH₃), 30.28 (s, NCH₂CH₂), 43.03 (s, NCH₂), 80.53 (s, N^{III}C^{III}C), 98.81 (s, O^{III}C^{III}C), 156.70 (s, N^{III}C), 172.34 (s, O^{III}C); Anal. Calcd. for C₁₄H₂₂N₂O₂: C, 67.17; H, 8.86; N, 11.19. Found: C, 66.87; H, 8.83; N, 10.96.

9: After the reaction mixture was stirred for 2 h in MeOH, 2 equiv NaOH was added to the solution and stirred for 0.5 h. After concentration, diethylether was added to the solution and the precipitate was filtered. The product was dissolved in dichloromethane and filtered through Celite. After evaporation of the solvent and precipitation from a mixture of dichloromethane and pentane, the pale orange brown product was obtained. Yield: 61%. Mass spectrum (MALDI-TOF⁺): m/z: 281.2 $[M+1]^+$; ¹H NMR (300 MHz, CDCl₃): δ = 2.28 (s, 12H, CH₃), 2.26 (t, ³J = 6.3 Hz, 4H, NCH₂), 3.38 (t, 4H, ³J = 6.3 Hz, NHCH₂), 5.11 (s, 1H, N^{III}C^{III}CH), 5.45 (s, 1H, O^{III}C^{III}CH), 8.55 (br s, 2H, NH); ¹³C NMR (75 MHz, CDCl₃) δ

= 40.57 (s, CH₃), 45.14 (s, NCH₂), 56.21 (s, NHCH₂), 81.29 (s, N^{III}C^{III}C), 99.04 (s, O^{III}C^{III}C), 156.69 (s, N^{III}C), 172.39 (s, O^{III}C); Anal. Calcd. for C₁₄H₂₄N₄O₂·0.5H₂O: C, 58.11; H, 8.71; N,19.36. Found: C, 58.62; H, 8.57; N,19.92.

10: Ligand **9** was dissolved in anhydrous dichloromethane and 0.5 equiv Zn(acac)₂ was added to the solution. After the solution was stirred at room temperature for 3 h, the solvent was evaporated and complex was obtained as red crystalline by precipitation from a mixture of dichloromethane and pentane. The single crystal for X-ray analysis was obtained by slow diffusion of pentane into the THF solution. Yield: 93%. Mass spectrum (MALDI-TOF⁺): *m/z*: 623.3 [*M*+1]⁺, 281.2 [ligand **9**+1]⁺; ¹H NMR (300 MHz, CDCl₃) δ = 2.14 (s, 12H, uncoordinated NMe₂), 2.24 (s, 12H, coordinated NMe₂), 2.56 (t, 4H, ³*J* = 6.3 Hz uncoordinated NCH₂), 2.64 (br s, 4H, coordinated NCH₂), 3.20 (q owing to overlap dt further confirming by the H-COSY experiment, ³*J* = 6.1 Hz, 4H, NHCH₂), 3.43 (t, 4H, ³*J* = 5.7 Hz, C=NCH₂), 5.04 (s, 2H, N=CCH), 5.50 (s, 2H, O=CCH), 7.03 (t, ³*J* = 4.8 Hz, 2H, NH); ¹³C NMR (75 MHz, CDCl₃) δ = 40.11 (s, uncoordinated NMe₂), 45.29 (s, uncoordinated NCH₂), 45.93 (s, coordinated NCH₂), 56.71 (s, uncoordinated NHCH₂), 58.50 (s, NHCH₂), 83.07 (s, NHC=*C*H), 100.72 (s, O=CCH), 149.84 (s, NHC), 160.96 (s, COZn), 173.81 (s, C=NZn), 178.84 (s, C=O); Anal. Calcd. for C₂₈H₄₆N₈O₄Zn: C, 53.89; H, 7.43; N, 17.95. Found: C, 53.15; H, 7.32; N, 17.45.

[#] Supplementary Material (ESI) for Chemical Communications

[#] This journal is © The Royal Society of Chemistry 2005