Supporting Information

Rhodium Catalyzed Three-Component Reaction of Diazoacetates, Titanium(IV) Alkoxides and Aldehydes

Chong-Dao Lu, Hui Liu, Zhi-Yong Chen, Wen-Hao Hu*, Ai-Qiao Mi

[*] Prof. Wenhao Hu, Mr. Chong-Dao Lu, Ms. Hui Liu, Mr. Zhi-Yong Chen, Prof. Ai-Qiao Mi Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of sciences, Chengdu 610041, China

huwh@cioc.ac.cn, chongdaolu@yahoo.com

Table of contents:

General procedure for three-component reaction of diazoacetates, titanium (IV) alkoxides and aldehydes (p2)

The diagnostic ¹³C NMR assignments (δ_{COOMe}) of compounds **4a-m** and **5a-m** (p3)

Analytical data for compounds 4-5 (p4-p8)

Experimental procedure for the reaction of methyl phenyldiazoacetate with $Rh_2(OAc)_4$ under Ar or O_2 (p9)

X-ray structure of dimethyl 2,3-diphenyl maleate and (2S*,3S*) Methyl 2,2-(*iso*-propoxyl, phenyl)-3-hydroxyl-2-nitrophenylpropionate (**4d**) (p10)

In addition, ¹H and ¹³C NMR spectra for all compounds listed above to support it's purity, this material is available free of charge from authors (E-mail:chongdaolu@yahoo.com).

General methods. HRMS (ESI) Mass spectra were recorded on BRUCKER FT-MS. NMR spectra were recorded on a Brucker-300MHz spectrometer. Dichloromethane was distilled over calcium hydride. All reactions were handled under Ar unless otherwise indicated.

General procedure for the three-component reaction of aryl diazoacetates, titanium(IV) alkoxides and aldehydes: To a 8 mL CH₂Cl₂ solution of Rh(II) catalyst (0.01 mmol), titanium alkoxide (1.1 mmol) and aldehyde (1.1 mmol) was added diazoacetate (1.0 mmol) in 4 mL of CH₂Cl₂ via a syringe pump over 10 min under refluxing. After completed addition, the reaction mixture was cooled to room temperature and the solvent was removed, then 30 mL ethyl acetate was added, the reaction mixture was washed with 20 mL saturated aqueous NH₄Cl and the aqueous phase was extracted with 20 mL of EtOAc (2×). The combined organic phase was washed with 20 mL water, then washed with saturated brine and dried over anhydrous MgSO₄. After filtration, the solvent was removed, and a portion of crude product was subjected to ¹H NMR analysis for determination of the product ratio. The crude product was purified by flash chromatography on silica gel by using petroleum ether:EtOAc=10:1 as eluent to give three-component products 4+5.

	4 (δ_{COOMe} ppm) erythro-	5 (δ_{COOMe} ppm) threo-
a	171.5	172.9
b	172.4	172.8
c	172.1	172.6
d	172.3 (X-ray structure available)	173.2
e	172.0	172.9
f	172.6	173.5
g	173.5	No detection ^[a]
h	173.5	174.0
i	173.1	174.0
j	171.7	172.4
k	171.7	172.4
1	172.2	172.6
m	171.9	172.4

Table 1. The diagnostic ¹³C NMR assignments (δ_{COOMe}) of compounds 4a-m and 5a-m: $\delta_{\text{COOMe}}(5) > \delta_{\text{COOMe}}(4)$

[a] **4g**:**5g** ≥ 20:1.

(2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-3-(4-methoxy-phenyl)-2-phenyl-propionate (4a+5a) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.14 (m, 5 H; erythro-, 4a), (7.39-7.14 (m, 5 H); threo-, 5a), (7.04-7.01 (m, 2 H)), 6.98-6.94 (m, 2 H), (6.71-6.68 (m, 2 H)), 6.70-6.66 (m, 2 H), (5.33 (d, J = 6.0 Hz, 1 H)), 5.23 (d, J = 6.6 Hz, 1 H), 3.98-3.94 (m, 1 H), (3.98-3.94 (m, 1 H)), (3.74 (s, 3 H)), 3.73 (s, 3 H), (3.72 (s, 3 H)), 3.62 (s, 3H), 3.54 (d, J = 6.6 Hz, 1 H), (3.36 (d, J =6.0 Hz, 1 H)), 1.23 (d, J = 6.0 Hz, 3 H), (1.20 (d, J = 6.0 Hz, 3 H)), (0.97 (d, J = 6.0 Hz, 3 H)), 0.86 (d, J = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (172.9), 171.5, (159.1), 159.0, 137.0, (136.5), 131.6, (130.8), (129.3), 129.2, 129.0, (128.6), 128.2, (128.1), 127.5, (127.5), 112.7, (112.7), (88.1), 87.3, 77.8, (77.6), (69.8), 69.1, (55.14), 55.13, (52.0), 51.8, (24.0), 23.8, (23.7), 23.6. HRMS: calcd for C₂₀H₂₄O₅: 344.1624; found: 344.1612 [M+ NH₄]⁺. (2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-2,3- diphenyl-propionate (4b+5b) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.01 (m, 10 H; erythro-, 4b), (7.35-7.01 (m, 10 H); threo-, 5b), (5.36 (d, *J* = 4.5 Hz, 1 H)), 5.28 (d, *J* = 5.7 Hz, 1 H), 3.98-3.90 (m, 1 H), (3.98-3.90 (m, 1 H)), (3.67 (s, 3 H)), 3.61 (d, *J* = 5.7 Hz, 1 H), 3.60 (s, 3 H), 3.46 (d, *J* = 4.5 Hz, 1 H), 1.22 (d, *J* = 6.0 Hz, 3 H), (1.19 (d, *J* = 6.0 Hz, 3 H)), (0.94 (d, *J* = 6.0 Hz, 3 H)), 0.87 (d, *J* = 6.0 Hz, 3 H),; ¹³C NMR (75 MHz, CDCl₃) δ (172.8), 172.4, 139.3, (138.7), 136.8, (136.5), 128.9, (128.5), 128.2, (128.2), (128.1), 128.0, 127.62, (127.56), (127.50), 127.4, (127.23), 127.20, (88.0), 87.2, 78.1, (77.6), (69.8), 69.1, (52.0), 51.8, (24.0), 23.9, (23.7), 23.6. HRMS: calcd for C₁₉H₂₂O₄: 314.1518; found: 314.1520 [M+ Na]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-3-(4-nitro-phenyl)-2-phenyl-propionate (4c+5c) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ (7.99 (d, J = 8.7 Hz, 2 H); threo-, 5c), 7.94 (d, J = 8.7 Hz, 2 H; erythro-, 4c), 7.33-7.11 (m, 7 H), (7.33-7.11 (m, 7 H)), 5.42 (s, 1H), (5.42 (s, 1H)), 4.01-3.91 (m, 1 H), (4.01-3.91 (m, 1 H)), 3.75 (s, 3 H), (3.72 (s, 3 H)), 1.19 (d, J = 6.0 Hz, 3 H), (1.19 (d, J = 6.0 Hz, 3 H)), 0.99 (d, J = 6.0 Hz, 3 H), (0.97 (d, J = 6.0 Hz, 3 H)); ¹³C NMR (75 MHz, CDCl₃) δ (172.6), 172.1, (147.2), 147.1, 146.4, (146.3), (136.1), 135.3, (129.0), 128.8, 128.5, 128.3, (128.3), (127.9), (127.8), 127.2, (122.1), 121.9, (87.5), 87.1, (77.0), 76.9, (70.2), 69.3, 52.2, (52.2), 23.9, (23.8), (23.6), 23.3. HRMS: calcd for C₁₉H₂₁NO₆: 359.1369; found: 359.1363 [M+ NH₄]⁺.

(2S*,3S*) Methyl 3-hydroxy-2-isopropoxy-3-(2-nitro-phenyl) -2-phenyl-propionate (erythro-, 4d) ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.1 Hz, 1 H), 7.31-7.12 (m, 5 H), 6.93 (d, J = 8.1 Hz, 2 H), 6.73 (d, J = 8.1 Hz, 1 H), 6.46 (s, 1 H), 3.90-3.81 (m. 1 H), 3.81 (s, 3 H), 3.24 (br, 1 H), 1.04 (d, J = 6.0 Hz, 3 H), 0.98 (d, J = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 150.2, 134.8, 132.6, 130.7, 129.5, 128.6, 128.0, 127.8, 126.7, 123.1, 87.2, 70.4, 69.2, 52.5, 23.6, 22.7; HRMS: calcd for C₁₉H₂₀NO₆: 359.1369; found: 359.1359 [M+ Na]⁺.

(2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-3-(2-nitro-phenyl) -2-phenyl-propionate (threo-, 5d) ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.75 (m, 1 H), 7.57-7.36 (m, 8 H), 6.48 (d, J = 7.8 Hz, 1 H), 3.87 (d, J = 7.8 Hz, 1 H), 3.66 (s, 3 H), 3.66-3.59 (m, 1 H), 1.02 (d, J = 6.0 Hz, 3 H), 0.68 (d, J = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 173.2, 150.8, 136.2, 133.8, 131.4, 128.9, 128.6, 128.3 (overlap), 128.2, 123.9, 87.9, 71.7, 70.4, 52.0, 23.3, 23.0; HRMS: calcd for C₁₉H₂₀NO₆: 359.1369; found: 359.1367 [M+ Na]⁺.

(2S*,3S*)Methyl3-(2,4-dinitro-phenyl)-3-hydroxy-2-isopropoxy-2-phenyl-propionate (erythro-, 4e)¹H NMR (300 MHz, CDCl₃) δ 8.58 (d, J= 2.4 Hz, 1 H), 7.94 (dd, J = 8.7, 2.4 Hz, 1 H), 7.28-7.14 (m, 3 H), 6.87-6.83 (m. 3 H),6.57 (s, 1 H), 3.93-3.85 (m. 1 H), 3.89 (s, 3 H), 3.36 (br, 1 H), 1.04 (d, J = 6.0 Hz, 3 H),1.02 (d, J = 6.0 Hz, 3 H);¹³C NMR (75 MHz, CDCl₃) δ 172.0, 150.0, 146.7, 139.6, 134.0,131.3, 128.4, 128.3, 126.9, 124.5, 118.5, 87.3, 70.4, 69.7, 52.9, 23.6, 22.6; HRMS: calcdfor C₁₉H₂₀N₂O₈: 404.12197; found: 404.1212 [M+ NH₄]⁺.

(2S*,3R*)Methyl3-(2,4-dinitro-phenyl)-3-hydroxy-2-isopropoxy-2-phenyl-propionate (threo-, 5e)¹H NMR (300 MHz, CDCl₃) δ 8.62 (d, J =2.4 Hz, 1 H), 8.35 (dd, J = 8.7, 2.4 Hz, 1 H), 7.84 (d, J = 8.7 Hz, 1 H), 7.43-7.36 (m, 5 H),6.50 (d, J = 7.5 Hz, 1 H), 4.03 (d, J = 7.5 Hz, 1 H), 3.72-3.61 (m. 1 H), 3.70 (s, 3 H), 1.01(d, J = 6.0 Hz, 3 H), 0.72 (d, J = 6.0 Hz, 3 H);¹³C NMR (75 MHz, CDCl₃) δ 172.9, 150.6,147.0, 141.1, 135.6, 130.2, 129.4 (overlap), 128.5, 125.5, 119.2, 87.6, 72.0, 70.9, 52.3,23.2, 23.0; HRMS: calcd for C₁₉H₂₀N₂O₈: 404.12197; found: 404.1209 [M+ NH₄]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-2,5-diphenyl-pent-4-enoate (4f+5f) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.13 (m, 10 H; erythro-, 4f), (7.50-7.13 (m, 10 H); threo-, 5f), (6.59 (d, *J* = 16.2 Hz, 1 H)), 6.50 (d, *J* = 15.9 Hz, 1 H), (6.25 (dd, *J* = 16.2, 5.1 Hz, 1 H)), 6.11 (dd, *J* = 15.9, 5.7 Hz, 1 H), 5.00-4.98 (m, 1 H), (5.00-4.98 (m, 1 H)), 3.74 (s, 3 H), (3.73 (s, 3 H)), 3.29 (d, *J* = 8.1 Hz, 1 H), (3.27 (d, *J* = 9.6 Hz, 1 H)), (1.26 (d, *J* = 6.0 Hz, 3 H)), 1.25 (d, *J* = 6.0 Hz, 3 H), (1.00 (d, *J* = 6.0 Hz, 3 H)), 0.93 (d, *J* = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (173.5), 172.6, 137.4, (137.08), 137.05, 137.00, 132.2, (132.1), (128.50), 128.45, 128.34, (128.31), 128.2, (128.0), 127.8, (127.54), (127.50), 127.50, (127.0), 126.7, 126.5, (126.5), 87.1, (87.0), (76.1), 76.0, (69.9), 69.4, (52.2), 52.1, 24.1, (23.8). HRMS: calcd for C₂₁H₂₄O₄: 340.1675; found: 340.1671 [M+ Na]⁺.

(2S*,3S*) Methyl 3-hydroxy-2-isopropoxy-2-phenyl-caproate (erythro-, 4g) ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.43 (m, 2 H), 7.34-7.31 (m, 3 H), 4.26 (d, *J* = 10.5 Hz, 1 H), 3.88-3.81 (m, 1 H), 3.78 (s, 3 H), 3.07 (br, 1 H), 1.56-1.23 (m, 3 H), 1.22 (d, J = 6.0 Hz, 3 H), 0.99-0.94 (m 1 H), 0.95 (d, J = 6.0 Hz, 3 H), 0.85 (t, J = 7.2 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5, 137.2, 127.9, 127.6, 127.5, 86.6, 74.8, 68.9, 51.9, 32.5, 24.0, 23.6, 19.6, 13.9; HRMS: calcd for C₁₆H₂₄O₄: 280.1675; found: 280.1669 [M+ Na]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-4methyl-2-phenyl-valerate (4h+5h) ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.56 (m, 2 H; erythro-, 4h), (7.42-7.41 (m, 2 H); threo-, 5h), 7.36-7.29 (m, 3 H), (7.36-7.29 (m, 3 H)), 4.10 (d, *J* = 6.6 Hz, 1 H), (4.09 (d, *J* = 7.5 Hz, 1 H)), 3.92-3.82 (m, 1 H), (3.92-3.82 (m, 1 H)), (3.81 (s, 3 H)), 3.77 (s, 3 H), 3.12 (d, *J* = 6.6 Hz, 1 H), (2.82 (d, *J* = 7.5 Hz, 1 H)), 1.82-1.70 (m, 1 H), (1.82-1.70 (m, 1 H)), 1.24 (d, *J* = 6.0 Hz, 3 H), (1.18 (d, *J* = 6.0 Hz, 3 H)), (0.92 (d, *J* = 6.0 Hz, 6 H)), 0.90 (d, *J* = 6.0 Hz, 3 H), (0.82 (d, *J* = 6.0 Hz, 3 H)), 0.80 (d, *J* = 6.0 Hz, 3 H),0.62 (d, *J* = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (174.0), 173.5, 138.3, (138.1), (128.1), 127.99, 127.96, (127.96), 127.8, (127.7), (86.5), 86.3, (79.5), 78.6, (69.4), 68.8, (52.0), 51.8, 29.5, (29.4), 23.9, (23.9), (23.8), 23.6, 22.2, (22.0). HRMS: calcd for C₁₆H₂₄O₄: 280.1675; found: 280.1677 [M+ Na]⁺.

(2S*,3S*) Methyl 3-hydroxy-2-isopropoxy-4,4-dimethyl-2-phenyl- valerate (4i) ¹H NMR (300 MHz, CDCl₃) δ 7.69-7.66 (m, 2 H), 7.35-7.29 (m, 3 H), 4.08 (d, *J* = 5.4 Hz, 1 H), 3.91-3.83 (m, 1 H), 3.76 (s, 3 H), 3.19 (d, *J* = 5.4 Hz, 1 H), 1.18 (d, *J* = 6.0 Hz, 3 H), 0.91 (d, *J* = 6.0 Hz, 3 H), 0.76 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 138.2, 128.6, 127.8, 127.5, 86.3, 81.7, 68.8, 51.7, 35.8, 27.3, 23.8, 23.5; HRMS: calcd for C₁₇H₂₆O₄: 294.1831; found: 294.1831 [M+ Na]⁺.

(2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-4,4-dimethyl-2-phenyl- valerate (5i) ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.42 (m, 2 H), 7.38-7.32 (m, 3 H), 4.07 (d, *J* = 9.0 Hz, 1 H), 3.85 (s, 3 H), 3.77-3.69 (m, 1 H), 2.89 (d, *J* = 9.0 Hz, 1 H), 1.20 (d, *J* = 6.0 Hz, 3 H), 0.95 (s, 9 H), 0.58 (d, *J* = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 138.3, 128.6, 128.2, 127.8, 86.5, 81.8, 69.2, 51.7, 36.1, 27.7, 23.8, 23.7; HRMS: calcd for C₁₇H₂₆O₄: 294.1831; found: 294.1830 [M+ Na]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 2-ethoxy-3-hydroxy-2,3-diphenyl- propionate (4j+5j) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.23-6.90 (m, 10 H; erythro-, 4j), (7.23-6.90 (m, 10 H); threo-, 5j), 5.24 (s, 1 H), (5.24 (s, 1 H)), (3.85-3.82 (m, 1 H)), (3.74 (s, 3 H)), 3.70 (s, 3 H), (3.60-3.52 (m, 1 H)), 3.54 (br, 1 H), (3.54 (br, 1 H)), 3.44-3.35 (m, 2 H), 1.21 (t, J = 6.9 Hz, 3 H), (1.20 (t, J = 6.9 Hz, 3 H)); ¹³C NMR (75 MHz, CDCl₃) δ (172.4), 171.7, 138.2, (138.1), (135.7), 135.0, 128.1, (127.9), (127.8), 127.7, 127.6, (127.5), (127.4), 127.32, (127.28), 127.1, (127.0), 126.8, (87.9), 87.4, (79.3), 77.9, (62.2), 61.4, (52.0), 51.8, (15.4), 15.3. HRMS: calcd for C₁₈H₂₀O₄: 300.1362; found: 300.1359 [M+ NH₄]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2,3-diphenyl-2- propoxy-pionate (4k+5k) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.22-6.88 (m, 10 H; erythro-, 4k), (7.22-6.88 (m, 10 H); threo-, 5k), 5.26 (s, 1 H), (5.26 (s, 1 H)), (3.72 (s, 3 H)), 3.69 (s, 3 H), 3.48 (br, 1 H), (3.48 (br, 1 H)), (3.46-3.41 (m, 2 H)), 3.33-3.27 (m, 2 H), 1.65-1.59 (m, 2 H), (1.65-1.59 (m, 2 H)), 0.94-0.88 (m, 3 H), (0.94-0.88 (m, 3 H)); ¹³C NMR (75 MHz, CDCl₃) δ (172.4), 171.7, 138.2, (138.2), (135.8), 134.9, 128.2, (127.9), (127.8), 127.71, 127.65, (127.5), 127.4, (127.4), (127.3), 127.1, (127.0), 126.8, (87.7), 87.2, (79.3), 77.8, (68.1), 67.2, (51.9), 51.8, (23.3), 23.1, (10.4), 10.4. HRMS: calcd for C₁₉H₂₂O₄: 314.1518; found: 314.1512 [M+ Na]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 3-hydroxy-2-isopropoxy-2-(4-methoxy-phenyl)-3-phenyl-propionate (4l+5l) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.29 (d, J = 9.0 Hz, 2 H; erythro-, 4l), 7.20-7.04 (m, 5 H), (7.20-7.04 (m, 7 H); threo-, 5l), 6.77 (d, J = 9.0 Hz, 2 H), (6.77 (d, J = 9.0 Hz, 2 H)), (5.31 (s, 1 H)), 5.24 (s, 1 H), 3.94-3.86 (m, 1 H), (3.94-3.86 (m, 1 H)), 3.73 (s, 3 H), (3.73 (s, 3 H)), (3.66 (s, 3 H)), 3.66 (br, 1 H), 3.56 (s, 3 H), (3.46 (br, 1 H)), 1.21 (d, J = 6.0 Hz, 3 H), (1.17 (d, J = 6.0 Hz, 3 H)), (0.92 (d, J = 6.0 Hz, 3 H)), 0.85 (d, J = 6.0 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (172.6), 172.2, 159.1, (159.1), 139.3, (138.7), 130.1, (129.7), 128.7, (128.1), (127.9), 127.8, 127.33, (127.28), 127.0, (127.0), (112.6), 112.5, (87.6), 86.6, 78.0, (77.4), (69.2), 68.6, 54.9, (54.9), (51.6), 51.4, (23.7), 23.6, (23.4), 23.3. HRMS: calcd for C₂₀H₂₄O₅: 344.1624; found: 344.1625 [M+ NH₄]⁺.

(2S*,3S*) and (2S*,3R*) Methyl 2-(hydroxy-phenyl-methyl)-2isopropoxy-4-phenyl-but-3-enoate (4m+5m) (mixture of diastereomers) ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.22 (m, 10 H; erythro-, 4m), (7.39-7.22 (m, 10 H); threo-, 5m), (6.62 (d, J = 16.5 Hz, 1 H)), 6.58 (d, J = 16.5 Hz, 1 H), 6.48 (d, J = 16.5 Hz, 1 H), (5.91 (d, $J = 16.5 \text{ Hz}, 1 \text{ H}), (5.06 \text{ (d}, J = 6.3 \text{ Hz}, 1 \text{ H})), 4.93 \text{ (d}, J = 4.8 \text{ Hz}, 1 \text{ H}), 4.01-3.92 \text{ (m}, 1 \text{ H}), (4.01-3.92 \text{ (m}, 1 \text{ H})), (3.81 \text{ (s}, 3 \text{ H})), 3.65 \text{ (s}, 3 \text{ H}), 3.55 \text{ (d}, J = 4.8 \text{ Hz}, 1 \text{ H}), (3.39 \text{ (d}, J = 6.3 \text{ Hz}, 1 \text{ H})), (1.26 \text{ (d}, J = 6.0 \text{ Hz}, 3 \text{ H})), 1.24 \text{ (d}, J = 6.0 \text{ Hz}, 3 \text{ H}), 1.12 \text{ (d}, J = 6.0 \text{ Hz}, 3 \text{ H}), (1.05 \text{ (d}, J = 6.0 \text{ Hz}, 3 \text{ H})); {}^{13}\text{C}$ NMR (75 MHz, CDCl₃) δ (172.4), 171.9, 138.61, (138.58), 136.25, (136.22), 134.4, (134.1), (128.7), (128.2), 128.1, 128.0, (127.7), 127.6, 126.70, (126.65), 125.7, (124.7), (86.4), 85.9, 79.6, (79.0), 69.4, (69.2), (52.2), 51.8, (24.74), 24.66, 23.4, (23.4). HRMS: calcd for C₂₁H₂₄O₄: 340.1675; found: 340.1678 [M+Na]⁺.

The reaction of methyl phenyldiazoacetate with Rh₂(OAc)₄ under Ar

Under Ar, to a 8 mL CH₂Cl₂ solution of Rh₂(OAc)₄ 4.4 mg (0.01 mmol) was added methyl phenyldiazoacetate (1.0 mmol) in 4 mL of CH₂Cl₂ in one portion at room temperature. After 5 minute, the solvent was removed, and a portion of crude product was subjected to ¹H NMR analysis for determination of the product ratio. The crude NMR shown that the ratio of *trans*-dimer:*cis*-dimer is 58:42. The crude product was purified by flash chromatography on silica gel by using petroleum ether:EtOAc=20:1 as eluent to give *trans*-dimer dimethyl 2,3-diphenyl fumarate and *cis*-dimer dimethyl 2,3-diphenyl maleate in 70% total yield.

Dimethyl 2,3-diphenyl fumarate (*trans*-dimer) ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.36 (m, 5 H), 3.54 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 137.7, 135.5, 129.0, 128.6, 128.1, 52.4.

Dimethyl 2,3-diphenyl maleate (*cis*-dimer) ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.15 (m, 3 H), 7.10-7.07 (m, 2 H), 3.82 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 138.9, 134.5, 129.8, 128.5, 128.3, 52.8.

The reaction of methyl phenyldiazoacetate with Rh₂(OAc)₄ under O₂

Under 1 atm O₂, to a 8 mL CH₂Cl₂ solution of Rh₂(OAc)₄ 4.4 mg (0.01 mmol) was added methyl phenyldiazoacetate (1.0 mmol) in 4 mL of CH₂Cl₂ via a syringe pump over 1.0 h at room temperature. After completed addition, the solvent was removed, and a portion of crude product was subjected to ¹H NMR analysis for determination of the product ratio. From the crude NMR spectra, no trace amount of dimmers was detected. The crude product was purified by flash chromatography on silica gel by using petroleum ether:EtOAc=30:1 as eluent to give methyl benzoylformate in 26% yield. The structure of the other byproducts is now unclear.

methyl benzoylformate ¹H NMR (300 MHz, CDCl₃) δ 8.04-8.01 (m, 2 H), 7.70-7.64 (m, 1 H), 7.55-7.50 (m, 2 H), 3.99 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 186.2, 164.2, 135.1, 132.6, 130.2, 129.0, 52.9.

Figure 1. ORTEP representation of the crystal structure of Dimethyl 2,3-diphenyl maleate

Figure 2. ORTEP representation of the crystal structure of 4d