for

A Novel One-Pot Three-Component Synthesis of 3-Halo Furans and Sequential Suzuki Coupling

Alexei S. Karpov, Eugen Merkul, Thomas Oeser, and Thomas J. J. Müller*

SUPPORTING INFORMATION

Table of Contents:

I. Experimental section	S2
II. X-Ray structure data of 3i	S11

This journal is © The Royal Society of Chemistry 2005

I. Experimental section

General Considerations. All reactions involving water-sensitive compounds were carried out in oven-dried Schlenk glassware under a nitrogen atmosphere. The solvents were dried according to standard procedures¹ and were distilled prior to use. Column chromatography: silica gel 60 M (mesh 230-400) Macherey-Nagel or aluminum oxide 90 active neutral (mesh 70-230) Merck. Thin layer chromatography (TLC): silica gel layered aluminium foil (60 F_{254} Merck, Darmstadt). Melting points (uncorrected): Reichert-Jung Thermovar and Büchi Melting Point B-540. Acid chlorides **1** and boronic acids **4** were purchased from ACROS or Merck and used without further purification. THP-protected propargyl alcohols **2** were prepared from propargyl alcohols by literature protocols.² ¹H and ¹³C NMR spectra: Bruker ARX250, Bruker DRX 300 with Aceton-d₆, CDCl₃ or DMSO-d₆ as solvents. The assignments of quaternary C, CH, CH₂ and CH₃ were made on the basis of DEPT spectra. IR: Bruker Vector 22 FT-IR. UV/Vis: Hewlett Packard HP8452 A. MS: Jeol JMS-700 und Finnigan TSQ 700. Elemental analyses were carried out in the microanalitycal laboratory of the Department Chemie der Universität Heidelberg.

General procedure for the synthesis of chloro furans 3

In a screw cap pressure vessel 14 mg (0.02 mmol) of Pd(PPh₃)₂Cl₂ and 7 mg (0.04 mmol) of CuI were dissolved in 5 mL of degassed THF. Then 1 mmol of acid chloride 1, 1 mmol of THP protected propargyl alcohol 2, as well as 0.14 mL (1.00 mmol) of triethylamine were successively added to the solution. The reaction mixture was stirred for 1-2 h at room temperature until the conversion was complete (monitored by TLC). Then 117 mg (2.00 mmol) of sodium chloride, 209 mg (1.10 mmol) of *p*-toluenesulfonic acid monohydrate and 3 mL of methanol were added and the reaction mixture was heated at 70°C for 2 h. After complete conversion of the alkynone to the furan (TLC), the reaction mixture was diluted with a saturated solution of NaHCO₃ (20 mL) and extracted with dichloromethane (3×20 mL). The combined organic layers were dried with sodium sulfate, evaporated and applied to column chromatography on neutral aluminium oxide (hexane/ethyl acetate 9:1) to give the analytically pure chloro furans **3a-f** as oils or as solids (crystallization from pentane or methanol) (for experimental details see Table 1).

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Table 1. Experimental details for one-pot synthesis of chloro-furans 3a-f.

Acid chloride 1	Propargylic alcohol 2	3-Halo furan 3
141mg (1.00 mmol) of 1a	141 mg (1.00 mmol) of 2a	113 mg (63 %) of 3a
171 mg (1.00 mmol) of 1b	141 mg (1.00 mmol) of 2a	138 mg (71 %) of 3b
141 mg (1.00 mmol) of 1a	168 mg (1.00 mmol) of 2b	145 mg (70 %) of 3c
147 mg (1.00 mmol) of 1c	168 mg (1.00 mmol) of 2b	125 mg (59 %) of 3d
167 mg (1.00 mmol) of 1d	168 mg (1.00 mmol) of 2b	170 mg (73 %) of 3e
145 mg (1.00 mmol) of 1e	141 mg (1.00 mmol) of 2a	117 mg (64 %) of 3f

4-Chloro-2-phenyl-furan (3a)

According to standard procedure the reaction gave rise to 113 mg (63 %) of **3a** as a colorless solid, $R_f = 0.75$ (hexane/ethyl acetate 9:1). ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 6.68$ (d, J = 0.7 Hz, 1 H), 7.24–7.34 (m, 1 H), 7.37–7.44 (m, 2 H), 7.49 (d, J = 0.7 Hz, 1 H), 7.61–7.65 (m, 2 H). ¹³C NMR (CD₂Cl₂, 75 MHz): $\delta = 106.8$ (CH), 117.8 (C_{quat}), 124.2 (CH), 128.6 (CH), 129.2 (CH), 130.3 (C_{quat}), 138.5 (CH), 154.7 (C_{quat}). EI MS (m/z (%)): 180 (³⁷Cl-M⁺, 33), 178 (³⁵Cl-M⁺, 100), 149 (³⁵Cl-M⁺ – CHO, 29), 115 (M⁺ – CHO – Cl, 57). Anal. calcd. for C₁₀H₇ClO (178.6): C 67.24, H 3.95, Cl 19.85. Found: C 67.52, H 4.44.

4-Chloro-2-(4-methoxy-phenyl)-furan (3b)

According to standard procedure the reaction gave rise to 148 mg (71 %) of **3b** as a colorless solid, $R_f = 0.60$ (hexane/ethyl acetate 9:1). ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 3.81$ (s, 3 H), 6.52 (d, J = 1.1 Hz, 1 H), 6.92 (d, J = 8.8 Hz, 2 H), 7.43 (d, J = 1.1 Hz, 1 H), 7.55 (d, J = 8.8 Hz, 2 H). ¹³C NMR (CD₂Cl₂, 75 MHz): $\delta = 55.7$ (CH₃), 105.2 (CH), 114.6 (CH), 117.7 (C_{quat}), 123.2 (C_{quat}), 125.7 (CH), 137.8 (CH), 154.8 (C_{quat}), 160.2 (C_{quat}). EI MS (*m/z* (%)): 210 (³⁷Cl-M⁺, 33), 208 (³⁵Cl-M⁺, 100), 195 (³⁷Cl-M⁺ - CH₃, 17), 193 (³⁵Cl-M⁺ - CH₃, 51), 179 (³⁵Cl-M⁺ - CHO, 11), 145 (M⁺ - CHO - Cl, 49).

This journal is © The Royal Society of Chemistry 2005

3-Chloro-2-ethyl-5-phenyl-furan (3c)

According to standard procedure the reaction gave rise to 145 mg (70 %) of **3c** as a colorless oil, $R_f = 0.87$ (hexane/ethyl acetate 9:1). ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 1.29$ (t, J = 7.6 Hz, 3 H), 2.74 (q, J = 7.6 Hz, 2 H), 6.60 (s, 1 H), 7.24–7.32 (m, 2 H), 7.35–7.42 (m, 2 H), 7.58–7.64 (m, 2 H). ¹³C NMR (CD₂Cl₂, 75 MHz): $\delta = 12.4$ (CH₃), 19.5 (CH₂), 107.0 (CH), 112.2 (C_{quat}), 123.8 (CH), 128.0 (CH), 129.1 (CH), 130.7 (C_{quat}), 151.7 (C_{quat}), 152.5 (C_{quat}). EI MS (*m/z* (%)): 208 (³⁷Cl-M⁺, 16), 206 (³⁵Cl-M⁺, 44), 193 (³⁷Cl-M⁺ – CH₃, 33), 191 (³⁵Cl-M⁺ – CH₃, 100). HRMS calcd. for C₁₂H₁₁³⁷ClO: 208.0469. Found: 208.0462; HRMS calcd. for C₁₂H₁₁³⁵ClO: 208.0498. Found: 206.0479.

3-Chloro-2-ethyl-5-thiophen-2-yl-furan (3d)

According to standard procedure the reaction gave rise to 125 mg (59 %) of **3d** as a yellow oil, $R_f = 0.72$ (hexane/ethyl acetate 9:1). ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 1.25$ (t, J = 7.6 Hz, 3 H), 2.69 (q, J = 7.6 Hz, 2 H), 6.44 (s, 1 H), 7.03 (dd, J = 3.7, 5.1 Hz, 1 H), 7.22 (dd, J = 1.1, 3.7 Hz, 1 H), 7.25 (dd, J = 1.1, 5.1 Hz, 1 H). ¹³C NMR (CD₂Cl₂, 75 MHz): $\delta = 12.3$ (CH₃), 19.4 (CH₂), 106.7 (CH), 112.0 (C_{quat}), 123.1 (CH), 124.8 (CH), 128.1 (CH), 133.4 (C_{quat}), 147.4 (C_{quat}), 152.1 (C_{quat}). EI MS (m/z (%)): 214 (³⁷Cl-M⁺, 23), 212 (³⁵Cl-M⁺, 69), 199 (³⁷Cl-M⁺ - CH₃, 33), 197 (³⁵Cl-M⁺ - CH₃, 100). HRMS calcd. for C₁₀H₉³⁷ClOS: 214.0033. Found: 214.0005; HRMS calcd. for C₁₀H₉³⁵ClOS: 212.0063. Found: 212.0036.

3-Chloro-2-ethyl-5-styryl-furan (3e)

According to standard procedure the reaction gave rise to 170 mg (73 %) of **3e** as a yellow oil, $R_f = 0.70$ (hexane/ethyl acetate 9:1). ¹H NMR (CD₂Cl₂, 300 MHz): $\delta = 1.29$ (t, J = 7.6 Hz, 3 H), 2.69 (q, J = 7.6 Hz, 2 H), 6.29 (s, 1 H), 6.79 (d, J = 16.5 Hz, 1 H), 6.99 (d, J = 16.5 Hz, 1 H), 7.21–7.27 (m, 1 H), 7.30–7.38 (m, 2 H), 7.42–7.48 (m, 2 H). ¹³C NMR (CD₂Cl₂, 75 MHz): $\delta = 12.3$ (CH₃), 19.5 (CH₂), 110.2 (CH), 112.1 (C_{quat}), 116.2 (CH), 126.7 (CH), 127.4 (CH), 128.1

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005 (CH), 129.1 (CH), 137.1 (C_{quat}), 151.0 (C_{quat}), 152.6 (C_{quat}). EI MS (m/z (%)): 234 (³⁷Cl-M⁺, 28), 232 (³⁵Cl-M⁺, 83), 219 (³⁷Cl-M⁺ – CH₃, 35), 217 (³⁵Cl-M⁺ – CH₃, 100). HRMS calcd. for C₁₄H₁₃³⁷ClO: 234.0625. Found: 234.0617; HRMS calcd. for C₁₄H₁₃³⁵ClO: 232.0655. Found: 232.0664.

4-Chloro-2-cyclohex-1-enyl-furan (3f)

According to standard procedure the reaction gave rise to 117 mg (64 %) of **3h** as a yellow oil, $R_f = 0.77$ (hexane/ethyl acetate 9:1). ¹³C NMR (acetone-d₆, 75 MHz): $\delta = 22.7$ (CH₂), 22.9 (CH₂), 25.2 (CH₂), 25.7 (CH₂), 105.8 (CH), 117.3 (C_{quat}), 124.6 (CH), 127.6 (C_{quat}), 138.3 (CH), 156.7 (C_{quat}). EI MS (*m/z* (%)): 184 (³⁷Cl-M⁺, 32), 182 (³⁵Cl-M⁺, 100), 169 (³⁷Cl-M⁺ – CH₃, 10), 167 (³⁵Cl-M⁺ – CH₃, 23). HRMS calcd. for C₁₀H₁₁³⁷ClO: 184.0469. Found: 184.0463; HRMS calcd. for C₁₀H₁₁³⁵ClO: 182.0498. Found: 182.0501.

General procedure for the synthesis of Iodo furans 3g-j

In a screw cap pressure vessel 14 mg (0.02 mmol) of Pd(PPh₃)₂Cl₂ and 7 mg (0.04 mmol) of CuI were dissolved in 5 mL of degassed THF. Then 1 mmol of acid chloride **1**, 1 mmol of THP protected propargyl alcohol **2**, as well as 0.14 mL (1.00 mmol) of triethylamine were successively added to the solution (for experimental details see Table 10). The reaction mixture was stirred for 1-2 h at room temp until the conversion was complete (monitored by TLC). Afterwards 750 mg (5.00 mmol) of sodium iodide, 209 mg (1.10 mmol) of *p*-toluenesulfonic acid monohydrate and 3 mL of methanol were added and the reaction mixture was stirred at room temp for 2 h. After complete conversion of the alkynone to the furan (TLC), the reaction mixture was diluted with a saturated solution of NaHCO₃ (20 mL) and extracted with dichloromethane (3×20 mL). The combined organic layers were dried with sodium sulfate, evaporated and applied to column chromatography on neutral aluminium oxide (hexane/ethyl acetate 9:1) to give the analytically pure iodo furans **3g-j** as oils or as solids (crystallization from pentane or methanol) (for experimental details see Table 2).

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
Table 2. Experimental details for one-pot synthesis of iodo-furans 3g-j.

Acid chloride 1	Propargylic alcohol 2	3-Halo furan 3
141mg (1.00 mmol) of 1 a	141 mg (1.00 mmol) of 2a	170 mg (63%) of 3 g
171 mg (1.00 mmol) of 1 h	141 mg (1.00 mmol) of 2a	$100 \text{ mg} (63\%) \text{ of } 3\mathbf{h}$
	141 mg (1.00 mmol) of 2a	190 mg (03%) 01 31
186 mg (1.00 mmol) of If	141 mg (1.00 mmol) of 2a	128 mg (40%) of 3 i
141 mg (1.00 mmol) of 1a	168 mg (1.00 mmol) of 2b	215 mg (72%) of 3 j

4-Iodo-2-phenyl-furan (3g)

According to standard procedure the reaction gave rise to 170 mg (63 %) of **3g** as a colorless solid, $R_f = 0.75$ (hexane/ethyl acetate 9:1), Mp. 64 °C (64-65 °C³). ¹H NMR (acetone-d₆, 300 MHz): $\delta = 7.02$ (d, ⁴J = 0.7 Hz, 1 H), 7.33 (tt, ³J = 2.2, 7.4 Hz, 1 H), 7.40–7.48 (m, 2 H), 7.70–7.75 (m, 2 H), 7.75 (d, ⁴J = 0.7 Hz, 1 H). ¹³C NMR (acetone -d₆, 75 MHz): $\delta = 66.5$ (C_{quat}), 112.9 (CH), 124.5 (CH), 128.9 (CH), 129.6 (CH), 130.4 (C_{quat}), 146.4 (CH), 156.2 (C_{quat}).

4-Iodo-2-(4-methoxy-phenyl)-furan (3h)

According to standard procedure the reaction gave rise to 190 mg (63 %) of **3h** as a colorless solid, $R_f = 0.60$ (hexane/ethyl acetate 9:1), Mp. 84-85 °C. ¹H NMR (acetone-d₆, 300 MHz): $\delta = 3.83$ (s, 3 H), 6.84 (s, 1 H), 6.99 (dt, J = 2.0, 8.8 Hz, 2 H), 7.65 (dt, J = 2.2, 8.8 Hz, 2 H), 7.67 (br s, 1 H). ¹³C NMR (acetone-d₆, 75 MHz): $\delta = 55.7$ (CH₃), 66.5 (C_{quat}), 111.3 (CH), 115.2 (CH), 123.4 (C_{quat}), 126.2 (CH), 145.7 (CH), 156.6 (C_{quat}), 160.7 (C_{quat}). EI MS (*m/z* (%)): 300 (M⁺, 100), 285 (M⁺ – CH₃)⁺, 12), 173 (M⁺ – I, 20). IR (KBr): \tilde{v} 3107 cm⁻¹, 2958, 1612, 1513, 1485, 1291, 1255, 1181, 1103, 1036, 910, 833, 795, 588. UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 288 nm (27100), 306 (15700). Anal. calcd. for C₁₁H₉O₂I (300.1): C 44.03, H 3.02. Found: C 44.42, H 3.24.

This journal is © The Royal Society of Chemistry 2005

4-Iodo-2-(4-nitro-phenyl)-furan (3i)

According to standard procedure the reaction gave rise to 126 mg (40 %) of **3i** as yellow crystals, $R_f = 0.78$ (hexane/ethyl acetate 4:1), Mp. 160 °C. ¹H NMR (acetone-d₆, 300 MHz): $\delta = 7.35$ (br s, 1 H), 7.90 (d, ⁴*J* = 0.7 Hz, 1 H), 7.97 (dt, *J* = 2.2, 9.2 Hz, 2 H), 8.31 (dt, *J* = 2.2, 9.2 Hz, 2 H). ¹³C NMR (acetone-d₆, 75 MHz): $\delta = 67.1$ (C_{quat}), 116.8 (CH), 125.0 (CH), 125.2 (CH), 135.9 (C_{quat}), 147.8 (C_{quat}), 148.4 (CH), 154.0 (C_{quat}). EI MS (*m*/*z* (%)): 315 (M⁺, 100). IR (KBr): \tilde{v} 3135 cm⁻¹, 1600, 1569, 1514, 1336, 1279, 1143, 1111, 1098, 1023, 913, 854, 827, 816, 773, 752, 692, 587, 515. UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 244 nm (9200), 350 (18000). Anal. calcd. for C₁₀H₆NO₃I (315.1): C 38.12, H 1.92, N 4.45. Found: C 38.22, H 2.09, N 4.38.

2-Ethyl-3-iodo-5-phenyl-furan (3j)

According to standard procedure the reaction gave rise to 215 mg (72 %) of **3**j as a light yellow liquid, $R_f = 0.87$ (hexane/ethyl acetate 9:1). ¹H NMR (acetone-d₆, 300 MHz): $\delta = 1.26$ (t, ³J = 7.7 Hz, 3 H), 2.76 (q, ⁴J = 7.7 Hz, 2H), 6.89 (s, 1H), 7.29 (tt, J = 3.0, 7.4 Hz, 1 H), 7.38–7.45 (m, 2 H), 7.66–7.71 (m, 2 H). ¹³C NMR (acetone-d₆, 75 MHz): $\delta = 12.8$ (CH₃), 21.6 (CH₂), 63.9 (C_{quat}), 113.6 (CH), 124.2 (CH), 128.5 (CH), 129.7 (CH), 131.0 (C_{quat}), 154.4 (C_{quat}), 158.1 (C_{quat}). EI MS (*m*/*z* (%)): 298 (M⁺, 94), 283 (M⁺ – CH₃, 100), 105 (C₆H₅CO⁺, 22), 77 (C₆H₅⁺, 13). IR (KBr): \tilde{v} 2973 cm⁻¹, 1550, 1487, 1444, 1281, 1142, 1065, 1008, 754, 686. UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 294 nm (15300), 308 (10400). HRMS calcd. for C₁₂H₁₁IO: 297.9855. Found: 297.9861.

General procedure for the synthesis of 2,5-disubstituted 3-Aryl-furans 5 via Suzuki-Coupling

In a screw cap pressure vessel 35 mg (0.05 mmol) of $Pd(PPh_3)_2Cl_2$ and 7 mg (0.04 mmol) of CuI were dissolved in 5 mL of degassed THF. Then 1 mmol of acid chloride **1**, 1 mmol of THP protected propargyl alcohol **2**, as well as 0.14 mL (1.00 mmol) of triethylamine were added successively to the solution. The reaction mixture was stirred for 1-2 h at room temp until the conversion was complete (monitored by TLC). Afterwards 750 mg (5.00 mmol) of sodium iodide, 209 mg (1.10 mmol) of *p*-toluenesulfonic acid monohydrate and 3 mL of methanol were

This journal is © The Royal Society of Chemistry 2005

added and the reaction mixture was stirred at room temperature for 2 h. After complete conversion of alkynone to the furan (TLC), 4 mL of 2 *M* solution of sodium carbonate (8 mmol) and 1.05 mmol of boronic acid 4 were added to the reaction mixture and heated at 90°C for 16-46h. After complete consumption of iodo furan (TLC), the reaction mixture was diluted with water (20 mL) and extracted with dichloromethane (3×20 mL). The combined organic layers were dried with sodium sulfate and the solvents were evaporated in vacuo. The residue was chromatographed on silica gel (hexane/ethyl acetate 9:1–20:1) to give the analytically pure 2,5-disubstituted 3-aryl-furans **5** as oils or as solids (crystallization from pentane) (for experimental details, see Table 3).

Table 3. Experimental details for the Sonogashira-cyclocondensation-Suzuki sequence.

Acid chloride 1	THP Propargyl ether 2	Boronic acid 4	Furan 5
171 mg (1.00 mmol) of	141 mg (1.00 mmol) of	128 mg (1.05 mmol) of	115 mg (50%) of
1b	2a	4a	5a
147 mg (1.00 mmol) of	247 mg (1.00 mmol) of	128 mg (1.05 mmol) of	174 mg (52%) of
1 c	2c	4a	5b
167 mg (1.00 mmol) of	168 mg (1.00 mmol) of	137 mg (1.05 mmol) of	117 mg (42%) of
1 d	2b	4b	5c
107 mg (1.00 mmol) of	141 mg (1.00 mmol) of	188 mg (1.05 mmol) of	122 mg (52%) of
1h	2a	4 c	5d

2-(4-Methoxy-phenyl)-4-phenyl-furan (5a)

According to standard procedure the reaction gave rise to 115 mg (50 %) of **5a** as a colorless solid. $R_f = 0.42$ (hexane/ethyl acetate 9:1), Mp 129 °C. ¹H NMR (acetone-d₆, 300 MHz): $\delta = 3.84$ (s, 3 H), 7.02 (d, ³*J* = 8.8 Hz, 2 H), 7.16 (d, *J* = 0.7 Hz, 1 H), 7.28 (tt, *J* = 1.3, 7.4 Hz, 1 H), 7.36-7.44 (m, 2 H), 7.63-7.68 (m, 2 H), 7.72 (d, ³*J* = 8.8 Hz, 2 H), 8.02 (d, *J* = 0.7 Hz, 1 H). ¹³C NMR (acetone-d₆, 75 MHz): $\delta = 55.6$ (CH₃), 103.3 (CH), 115.1 (CH), 124.5 (C_{quat}), 126.1 (CH), 126.5 (CH), 127.8 (CH), 129.3 (C_{quat}), 129.6 (CH), 133.4 (C_{quat}), 138.6 (CH), 155.8 (C_{quat}), 160.4 (C_{quat}). EI MS (*m*/*z* (%)):250 (M⁺, 100), 235 (M⁺ – CH₃, 14), 221 (M⁺ – CHO, 15), 207 (16), 178 (21). IR (KBr): \tilde{v} 1611 cm⁻¹, 1500, 1251, 1179, 1037, 1023, 913, 838, 804, 749, 692. UV/Vis

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005 (CH₂Cl₂): λ_{max} (ϵ): 248 nm (15300), 280 (23600), 290 (20800). Anal calcd. for C₁₇H₁₄O₂ (250.30): C 81.58, H 5.64. Found: C 81.20, H 5.63.

2-(4-Methoxy-phenyl)-3-phenyl-5-thiophen-2-yl-furan (5b)

According to standard procedure the reaction gave rise to 174 mg (52 %) of **5b** as a colorless oil, $R_f = 0.62$ (hexane/ethyl acetate 9:1). ¹H NMR (CDCl₃, 300 MHz): $\delta = 3.82$ (s, 3 H), 6.68 (s, 1 H), 6.87 (d, ³*J* = 8.8 Hz, 2 H), 7.08 (dd, *J* = 3.7, 5.1 Hz, 1 H), 7.23–7.27 (m, 1 H), 7.31–7.42 (m, 4 H), 7.44–7.49 (m, 2 H), 7.54 (d, ³*J* = 9.2 Hz, 2 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 55.1$ (CH₃), 109.0 (CH), 113.7 (CH), 122.3 (CH), 122.8 (C_{quat}), 123.5 (C_{quat}), 123.9 (CH), 127.0 (CH), 127.51 (CH), 127.54 (CH), 128.43 (CH), 128.47 (CH), 133.5 (C_{quat}), 134.0 (C_{quat}), 147.5 (C_{quat}), 147.57 (C_{quat}), 159.0 (C_{quat}).

2-Ethyl-5-styryl-3-thiophen-2-yl)-furan (5c)

According to standard procedure the reaction gave rise to 117 mg (42%) of **5c** as a yellow oil, $R_f = 0.62$ (hexane/ethyl acetate 9:1). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.38$ (t, ³*J* = 7.5 Hz, 3 H), 2.94 (q, ³*J* = 7.4 Hz, 2 H), 6.50 (s, 1 H), 6.87 (d, ³*J* = 16.5 Hz, 1 H), 7.02-7.10 (m, 3 H), 7.23-7.30 (m, 2 H), 7.37 (t, *J* = 7.5 Hz, 2 H), 7.50 (d, *J* = 7.0 Hz, 2 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 12.5$ (CH₃), 20.7 (CH₂), 109.6 (CH), 116.0 (CH), 116.1 (C_{quat}), 123.5 (CH), 123.6 (CH), 126.1 (CH), 126.5 (CH), 127.2 (CH), 127.3 (CH), 128.5 (CH), 135.5 (C_{quat}), 136.9 (C_{quat}), 150.9 (C_{quat}), 152.8 (C_{quat}). EI MS (*m/z* (%)): 282 (³⁴S-M⁺, 6), 280 (³²S-M⁺, 100), 267 (³⁴S-M⁺ - CH₃, 10), 265 (³²S-M⁺ - CH₃, 69), 223 (M⁺ - C₃H₅CO⁺, 11).

This journal is © The Royal Society of Chemistry 2005

2-Isopropyl-4-naphthalen-1-yl-furan (5d)

According to standard procedure the reaction gave rise to 122 mg (52%) of **5d** as a colorless oil, $R_f = 0.62$ (hexane/ethyl acetate 20:1). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.36$ (d, ³J = 7.0 Hz, 6 H), 3.06 (sept, ³J = 7.0 Hz, 1 H), 6.32 (t, 1 H), 7.45–7.57 (m, 5 H), 7.79–7.85 (m, 1 H), 7.86– 7.93 (m, 1 H), 8.19–8.26 (m, 1 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 20.9$ (CH₃), 27.8 (CH), 105.5 (CH), 124.9 (C_{quat}), 125.2 (CH), 125.56 (CH), 125.58 (CH), 125.8 (CH), 126.4 (CH), 127.3 (CH), 128.2 (CH), 131.2 (C_{quat}), 131.6 (C_{quat}), 133.7 (C_{quat}), 138.2 (CH), 161.8 (C_{quat}). # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005 **II. X-Ray structure data of 3i**

Table 4: Crystal data and structure refinement for **3i**.

Table 5: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **3i**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	z	U _{eq}
111	0.7953(1)	0.3887(1)	0.1785(1)	0.0297(1)
C11	0.9512(3)	0.2439(2)	0.1594(1)	0.0258(4)
N11	1.5350(2)	-0.3171(2)	0.2257(1)	0.0296(4)
C21	1.0352(3)	0.1676(2)	0.2015(1)	0.0259(4)
C31	1.1141(3)	0.0811(2)	0.1695(1)	0.0243(4)
O41	1.0843(2)	0.0994(1)	0.1095(1)	0.0304(3)
C51	0.9850(3)	0.1998(2)	0.1051(1)	0.0307(5)
C61	1.2178(2)	-0.0226(2)	0.1852(1)	0.0242(4)
C71	1.2881(3)	-0.0326(2)	0.2401(1)	0.0269(5)
C81	1.3913(3)	-0.1288(2)	0.2538(1)	0.0272(5)
C91	1.4247(3)	-0.2153(2)	0.2124(1)	0.0240(4)
C101	1.3550(3)	-0.2091(2)	0.1583(1)	0.0286(5)
O111	1.6026(2)	-0.3209(2)	0.2722(1)	0.0400(4)
C111	1.2508(3)	-0.1128(2)	0.1455(1)	0.0275(5)
O121	1.5545(2)	-0.3953(2)	0.1896(1)	0.0464(5)
122	0.6609(1)	0.1085(1)	0.3166(1)	0.0303(1)
N12	1.3586(2)	-0.6215(2)	0.2774(1)	0.0314(4)
C12	0.8055(3)	-0.0424(2)	0.3373(1)	0.0271(4)
C22	0.8733(3)	-0.1274(2)	0.2965(1)	0.0268(4)

# Suppleme	entary Mater	ial (ESI) for	Chemical Co	mmunications			
# This journal is © The Royal Society of Chemistry 2005							
C32	0.9627(3)	-0 2085(2)	0 3294(1)	0 0250(4)			
042	0.9532(2)	-0.1777(1)	0.3884(1)	0.0200(1) 0.0329(4)			
C52	0.8564(3)	-0.0766(2)	0.3914(1)	0.0344(5)			
C62	1.0642(3)	-0.3133(2)	0.3150(1)	0.0239(4)			
C72	1.0540(3)	-0.3694(2)	0.2617(1)	0.0280(5)			
C82	1.1510(3)	-0.4693(2)	0.2489(1)	0.0287(5)			
C92	1.2580(3)	-0.5138(2)	0.2898(1)	0.0251(4)			
C102	1.2721(3)	-0.4598(2)	0.3429(1)	0.0285(5)			
0112	1.4535(3)	-0.6572(2)	0.3142(1)	0.0504(5)			
C112	1.1760(3)	-0.3594(2)	0.3548(1)	0.0275(5)			
0122	1.3436(2)	-0.6717(2)	0.2314(1)	0.0411(4)			
133	0.3350(1)	0.9223(1)	0.4484(1)	0.0310(1)			
N13	1.0629(2)	0.2131(2)	0.3981(1)	0.0318(4)			
C13	0.4866(3)	0.7752(2)	0.4673(1)	0.0265(4)			
C23	0.5641(3)	0.6965(2)	0.4251(1)	0.0272(5)			
C33	0.6481(3)	0.6118(2)	0.4572(1)	0.0250(4)			
O43	0.6273(2)	0.6333(1)	0.5177(1)	0.0346(4)			
C53	0.5280(3)	0.7340(2)	0.5221(1)	0.0345(5)			
C63	0.7517(3)	0.5087(2)	0.4416(1)	0.0239(4)			
C73	0.7778(3)	0.4773(2)	0.3816(1)	0.0278(5)			
C83	0.8794(3)	0.3804(2)	0.3672(1)	0.0284(5)			
C93	0.9534(3)	0.3148(2)	0.4129(1)	0.0244(4)			
C103	0.9282(3)	0.3422(2)	0.4730(1)	0.0297(5)			
C113	0.8281(3)	0.4400(2)	0.4865(1)	0.0290(5)			
O113	1.1050(2)	0.1990(2)	0.3447(1)	0.0470(5)			
O123	1.1071(3)	0.1454(2)	0.4402(1)	0.0538(5)			
144	0.1396(1)	0.5906(1)	0.0540(1)	0.0304(1)			
C14	0.2857(3)	0.4407(2)	0.0355(1)	0.0266(4)			
N14	0.8377(2)	-0.1376(2)	0.1010(1)	0.0307(4)			
C24	0.3600(3)	0.3595(2)	0.0779(1)	0.0279(5)			
C34	0.4431(3)	0.2751(2)	0.0451(1)	0.0259(4)			
O44	0.4234(2)	0.3002(2)	-0.0154(1)	0.0365(4)			
C54	0.3270(3)	0.4023(2)	-0.0195(1)	0.0354(5)			
C64	0.5439(3)	0.1702(2)	0.0604(1)	0.0254(4)			
C74	0.5599(3)	0.1295(2)	0.1206(1)	0.0251(4)			
C84	0.6559(3)	0.0282(2)	0.1343(1)	0.0262(4)			
C94	0.7360(3)	-0.0311(2)	0.0874(1)	0.0251(4)			
C104	0.7245(3)	0.0075(2)	0.0270(1)	0.0343(5)			
0114	0.8299(2)	-0.1837(2)	0.1533(1)	0.0461(5)			
C114	0.6275(3)	0.1073(2)	0.0141(1)	0.0337(5)			
0124	0.9287(2)	-0.1767(2)	0.0591(1)	0.0471(5)			

Table 6:	Hydrogen coordinates and isotropic displacement parameters
	$(Å^2)$ for 3 i.

	()			
Atom	x	У	Z	U_{eq}
H21	1.0357	0.1759	0.2436	0.031
H51	0.9453	0.2336	0.0686	0.037
H71	1.2645	0.0274	0.2680	0.032
H81	1.4387	-0.1358	0.2911	0.033
H101	1.3783	-0.2697	0.1307	0.034
H111	1.2008	-0.1080	0.1089	0.033
H22	0.8589	-0.1274	0.2547	0.032
H52	0.8288	-0.0358	0.4270	0.041
H72	0.9798	-0.3385	0.2342	0.034
H82	1.1445	-0.5071	0.2125	0.034
H102	1.3463	-0.4914	0.3703	0.034
H112	1.1855	-0.3206	0.3907	0.033
H23	0.5578	0.7024	0.3825	0.033

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

This journal is © The Royal Society of Chemistry 2005						
H53	0.4933	0.7695	0.5588	0.041		
H73	0.7256	0.5228	0.3507	0.033		
H83	0.8982	0.3591	0.3265	0.034		
H103	0.9785	0.2951	0.5038	0.036		
H113	0.8106	0.4611	0.5272	0.035		
H24	0.3531	0.3634	0.1206	0.033		
H54	0.2939	0.4405	-0.0562	0.042		
H74	0.5047	0.1715	0.1524	0.030		
H84	0.6664	0.0001	0.1753	0.031		
H104	0.7820	-0.0338	-0.0046	0.041		
H114	0.6168	0.1342	-0.0270	0.040		

Table 7:Anisotropic displacement parameters (Ų) for **3i**. The anisotropic displacement
factor exponent takes the form: -2 pi² (h² a*² U₁₁ + ... + 2 h k a* b* U₁₂)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
111	0.0291(1)	0.0239(1)	0.0356(1)	-0.0012(1)	-0.0041(1)	0.0075(1)
C11	0.0240(10)	0.0241(11)	0.0289(11)	-0.0006(9)	-0.0032(8)	0.0032(8)
N11	0.0281(10)	0.0263(10)	0.0332(10)	0.0013(8)	-0.0033(8)	0.0048(8)
C21	0.0269(11)	0.0267(11)	0.0242(11)	-0.0028(8)	-0.0043(8)	0.0061(8)
C31	0.0252(10)	0.0276(11)	0.0201(10)	-0.0009(8)	-0.0043(8)	0.0028(8)
O41	0.0349(9)	0.0346(9)	0.0219(7)	-0.0037(6)	-0.0053(6)	0.0117(7)
C51	0.0314(12)	0.0321(12)	0.0281(11)	0.0020(9)	-0.0073(9)	0.0094(9)
C61	0.0202(10)	0.0280(11)	0.0234(10)	-0.0006(8)	-0.0001(8)	0.0034(8)
C71	0.0316(11)	0.0268(11)	0.0225(11)	-0.0036(8)	-0.0042(9)	0.0041(9)
C81	0.0280(11)	0.0302(12)	0.0240(11)	-0.0032(9)	-0.0056(9)	0.0033(9)
C91	0.0242(10)	0.0204(10)	0.0269(11)	0.0007(8)	-0.0029(8)	0.0027(8)
C101	0.0310(12)	0.0279(12)	0.0277(11)	-0.0078(9)	-0.0047(9)	0.0054(9)
O111	0.0434(10)	0.0420(10)	0.0350(9)	0.0024(8)	-0.0142(8)	0.0128(8)
C111	0.0276(11)	0.0327(12)	0.0236(11)	-0.0066(9)	-0.0073(8)	0.0058(9)
O121	0.0545(12)	0.0354(10)	0.0523(11)	-0.0158(8)	-0.0151(9)	0.0225(9)
122	0.0308(1)	0.0229(1)	0.0364(1)	-0.0027(1)	-0.0015(1)	0.0064(1)
N12	0.0337(11)	0.0280(10)	0.0317(10)	-0.0030(8)	-0.0022(8)	0.0072(8)
C12	0.0274(11)	0.0216(11)	0.0316(12)	-0.0018(9)	-0.0019(9)	0.0027(8)
C22	0.0312(11)	0.0258(11)	0.0231(11)	-0.0014(8)	-0.0033(9)	0.0045(9)
C32	0.0264(11)	0.0252(11)	0.0234(10)	-0.0031(8)	-0.0020(8)	0.0006(8)
O42	0.0424(9)	0.0323(9)	0.0252(8)	-0.0068(7)	-0.0081(7)	0.0118(7)
C52	0.0421(14)	0.0295(12)	0.0322(12)	-0.0098(10)	-0.0045(10)	0.0106(10)
C62	0.0254(10)	0.0214(10)	0.0240(10)	0.0014(8)	-0.0011(8)	0.0018(8)
C72	0.0290(11)	0.0312(12)	0.0242(11)	-0.0022(9)	-0.0066(9)	0.0042(9)
C82	0.0317(12)	0.0305(12)	0.0248(11)	-0.0063(9)	-0.0044(9)	0.0040(9)
C92	0.0269(11)	0.0230(11)	0.0248(11)	-0.0024(8)	-0.0003(8)	0.0029(8)
C102	0.0334(12)	0.0281(12)	0.0244(11)	-0.0010(9)	-0.0083(9)	0.0054(9)
0112	0.0574(12)	0.0453(11)	0.0521(12)	-0.0145(9)	-0.0222(10)	0.0306(9)
C112	0.0350(12)	0.0257(11)	0.0224(10)	-0.0037(8)	-0.0059(9)	0.0059(9)
0122	0.0512(11)	0.0384(10)	0.0344(9)	-0.0126(8)	-0.0029(8)	0.0115(8)
133	0.0330(1)	0.0230(1)	0.0371(1)	-0.0042(1)	-0.0054(1)	0.0087(1)
N13	0.0326(10)	0.0278(10)	0.0352(11)	-0.0057(8)	-0.0045(8)	0.0069(8)
C13	0.0269(11)	0.0199(10)	0.0326(12)	-0.0038(9)	-0.0030(9)	0.0048(8)
C23	0.0321(12)	0.0228(11)	0.0271(11)	-0.0034(9)	-0.0050(9)	0.0047(9)
C33	0.0279(11)	0.0230(11)	0.0243(10)	-0.0032(8)	-0.0026(8)	0.0015(8)
043	0.0467(10)	0.0331(9)	0.0238(8)	-0.0040(7)	-0.0055(7)	0.0153(7)
C53	0.0431(14)	0.0297(12)	0.0304(12)	-0.0073(10)	-0.0033(10)	0.0147(10)
C63	0.0265(11)	0.0194(10)	0.0252(11)	-0.0003(8)	-0.0018(8)	0.0004(8)
073	0.0321(12)	0.0258(11)	0.0257(11)	-0.0003(9)	-0.0068(9)	0.0038(9)
683	0.0336(12)	0.0282(11)	0.0234(11)	-0.0035(9)	-0.0023(9)	0.0033(9)
C93	0.0268(11)	0.0183(10)	0.0279(11)	-U.UU25(8)	-U.UU24(8)	0.0041(8)
0103	0.0304(12)	0.0202(11)	0.0204(11)	0.0001(9)	-0.0000(9)	0.0079(9)
0113	0.0393(13)	0.0270(11)	0.0207(10)	-0.0034(9)	-0.0033(9)	0.0072(9)

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

F	I his journa	al is © The F	Koyal Societ	ty of Chemistry 2005		
	0113	0.0550(12)	0.0481(11)	0.0377(10) -0.0151(8)	0.0005(8)	0.0199(9)
	O123	0.0708(14)	0.0436(11)	0.0461(11) -0.0033(9)	-0.0116(10)	0.0352(10)
	144	0.0299(1)	0.0239(1)	0.0384(1) -0.0053(1)	-0.0087(1)	0.0097(1)
	C14	0.0229(10)	0.0224(10)	0.0341(12) -0.0013(9)	-0.0043(9)	0.0061(8)
	N14	0.0333(10)	0.0262(10)	0.0332(11) -0.0035(8)	-0.0084(8)	0.0103(8)
	C24	0.0303(11)	0.0254(11)	0.0273(11) -0.0014(9)	-0.0026(9)	0.0065(9)
	C34	0.0258(11)	0.0262(11)	0.0247(11) 0.0004(8)	-0.0014(8)	0.0047(8)
	O44	0.0451(10)	0.0387(10)	0.0245(8) -0.0014(7)	-0.0051(7)	0.0224(8)
	C54	0.0386(13)	0.0357(13)	0.0307(12) 0.0024(10)	-0.0074(10)	0.0171(10)
	C64	0.0233(10)	0.0246(11)	0.0272(11) 0.0002(8)	-0.0009(8)	0.0049(8)
	C74	0.0254(10)	0.0248(11)	0.0244(11) -0.0040(8)	0.0012(8)	0.0045(8)
	C84	0.0289(11)	0.0247(11)	0.0237(10) 0.0021(8)	-0.0014(8)	0.0018(8)
	C94	0.0265(11)	0.0195(10)	0.0288(11) -0.0002(8)	-0.0040(8)	0.0058(8)
	C104	0.0403(13)	0.0352(13)	0.0264(12) -0.0043(10)	-0.0017(10)	0.0159(10)
	O114	0.0594(12)	0.0406(10)	0.0356(10) 0.0080(8)	-0.0072(8)	0.0221(9)
	C114	0.0410(13)	0.0353(13)	0.0234(11) -0.0007(9)	-0.0026(10)	0.0171(10)
	O124	0.0579(12)	0.0422(11)	0.0403(10) -0.0094(8)	-0.0058(9)	0.0321(9)

Table 8: Bond lengths (Å) and angles (deg) for **3i**.

111-C11	2 072(2)	043-053	1 370(3)
C11-C51	1.344(3)	C63-C113	1.396(3)
C11-C21	1.428(3)	C63-C73	1.403(3)
N11-O111	1.225(2)	C73-C83	1.382(3)
N11-O121	1.227(2)	C83-C93	1.384(3)
N11-C91	1 460(3)	C93-C103	1 390(3)
C21-C31	1 354(3)	C103-C113	1.378(3)
C31-O41	1.379(2)	I44-C14	2.069(2)
C31-C61	1 454(3)	C14-C54	1.336(3)
O41-C51	1.366(3)	C14-C24	1.421(3)
C61-C111	1.393(3)	N14-O114	1.223(2)
C61-C71	1.403(3)	N14-O124	1.234(2)
C71-C81	1.380(3)	N14-C94	1.459(3)
C81-C91	1.390(3)	C24-C34	1.360(3)
C91-C101	1.384(3)	C34-O44	1.378(3)
C101-C111	1.381(3)	C34-C64	1.448(3)
I22-C12	2.074(2)	O44-C54	1.366(3)
N12-0122	1.226(2)	C64-C74	1.393(3)
N12-0112	1.227(3)	C64-C114	1.403(3)
N12-C92	1.463(3)	C74-C84	1.386(3)
C12-C52	1.337(3)	C84-C94	1.380(3)
C12-C22	1.426(3)	C94-C104	1.385(3)
C22-C32	1.361(3)	C104-C114	1.374(3)
C32-O42	1.378(2)	C51-C11-C21	106.79(Ì9́)
C32-C62	1.451(3)	C51-C11-I11	125.91(16)
O42-C52	1.359(3)	C21-C11-I11	127.20(16)
C62-C72	1.397(3)	O111-N11-O121	123.28(19)
C62-C112	1.404(3)	O111-N11-C91	118.78(18)
C72-C82	1.380(3)	O121-N11-C91	117.94(18)
C82-C92	1.388(3)	C31-C21-C11	106.46(19)
C92-C102	1.388(3)	C21-C31-O41	109.74(18)
C102-C112	1.376(3)	C21-C31-C61	133.9(2)
I33-C13	2.069(2)	O41-C31-C61	116.35(18)
N13-O113	1.224(2)	C51-O41-C31	106.52(16)
N13-O123	1.228(3)	C11-C51-O41	110.49(19)
N13-C93	1.462(3)	C111-C61-C71	118.97(19)
C13-C53	1.341(3)	C111-C61-C31	120.36(19)
C13-C23	1.426(3)	C71-C61-C31	120.66(19)
C23-C33	1.352(3)	C81-C71-C61	120.5(2)
C33-O43	1.379(3)	C71-C81-C91	118.9(2)
C33-C63	1.451(3)	C101-C91-C81	122.0(2)

- # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

# 1113 Journ		Royal Society	of Chemistry 20	105	
C101-C91	-N11	118.22(19)		C94-C84-C74	118.9(2)
C81-C91-	N11	119.78(19)		C84-C94-C104	122.26(19)
C111-C10	1-C91	118.38(19)		C84-C94-N14	119.58(19)
C101-C11	1-C61	121.3(2)		C104-C94-N14	118,16(19)
0122-N12	2-0112	12342(19)		C114-C104-C94	118 2(2)
0122 N12		110.70(10)			121 A(2)
0122-1112	2-092	110.79(10)		0104-0114-004	121.4(2)
0112-N12	2-092	117.78(18)			
C52-C12-	C22	106.87(19)			
C52-C12-	122	126.31(16)			
C22-C12-	122	126.80(16)			
C32-C22-	C12	106.29(19)			
C22-C32-	042	109 36(18)			
C22_C32_	C62	134 1(2)			
042 032	C62	116 55(10)			
042-032-	C02	106 72(17)			
652-042-	0.32	100.72(17)			
C12-C52-	042	110.77(19)			
C72-C62-	C112	118.93(19)			
C72-C62-	C32	121.24(19)			
C112-C62	2-C32	119.83(19)			
C82-C72-	C62	120.5(2)			
C72-C82-	C92	110.0(2)			
C82 C02	C102	122 0(2)			
		122.0(2)			
082-092-	N12	119.62(19)			
C102-C92	2-N12	118.40(19)			
C112-C10)2-C92	118.4(2)			
C102-C11	2-C62	121.18(19)			
O113-N13	3-0123	123.3(2)			
O113-N13	3-C93	118 76(19)			
O123-N13	3-093	117 94(19)			
C53 C13	C23	106 76(10)			
053-013-	020	100.70(19)			
653-613-	133	120.30(10)			
C23-C13-	133	126.92(16)			
C33-C23-	C13	106.83(19)			
C23-C33-	O43	109.46(19)			
C23-C33-	C63	134.2(2)			
O43-C33-	C63	116.31(18)			
C53-043-	C33	106 62(17)			
C13_C53_	043	110 33(10)			
C112 C62	0 - 72	110.00(10)			
	-073	119.1(2)			
0113-063	-633	120.05(19)			
C73-C63-	C33	120.82(19)			
C83-C73-	C63	120.2(2)			
C73-C83-	C93	119.0(2)			
C83-C93-	C103	122.3(2)			
C83-C93-	N13	119,49(19)			
C103-C93	-N13	118 18(19)			
C113 C10		118 0(2)			
	0-090	110.0(2)			
0103-011	3-003	121.4(2)			
C54-C14-	C24	107.22(19)			
C54-C14-	44	125.65(17)			
C24-C14-	44	127.13(16)			
O114-N14	I-0124	123.07(19)			
O114-N14	I-C94	118.83(18)			
O124-N14	L-C94	118 10(19)			
C34 C34	C14	106 3/2)			
004-024-		100.0(2)			
024-034-	044	109.50(18)			
C24-C34-	C64	134.1(2)			
O44-C34-	C64	116.37(18)			
C54-O44-	C34	106.53(17)			
C14-C54-	044	110.46(19)			
C74-C64-	C114	118.73(19)			
C74_C64	C.34	121 34(10)			
C114 CC4		110 0/2			
		113.3(2)			
U84-U74-	604	120.48(19)			

- 1 Various authors, *Organikum*, 14. edition, VEB Deutscher Verlag der Wissenschaften, Berlin, 1993.
- 2 H. Suzuki, M. Mori, M. Shibakami, Synlett, 2003, 2163.
- 3 D. Obrecht, Helv. Chim. Acta, 1989, 72, 447.