Cyclic boronium and borenium cations derived from borabenzenepyridine

Ioan Ghesner,^a Warren E. Piers,*^a Masood Parvez,^a Robert McDonald^b

 ^a Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 4M5. Tel: ++1 403 2205746; E-mail: wpiers@ucalgary.ca
^b X-ray Structure Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.

General Procedures. All manipulations were performed under argon atmosphere using standard glovebox and Schlenk techniques. Toluene and *n*-hexane solvents were dried and purified by passing through activated alumina and Q5 columns.¹ Methylene dichloride was dried and distilled from CaH₂. Pyridine was purchased from Aldrich Chemical Co. and distilled prior to use. Pyridine hydrochloride was prepared by adding a solution of HCl in Et₂O to pyridine in Et₂O at room temperature. A white precipitate forms immediately, which was washed with Et₂O and dried under vacuum. 1-chloro-2-(trimethylsilyl)-4-(isopropyl)boracyclohexa-2,5-diene², borabenzene lutidine³, borabenzene pyridine³ **1a**, and TlB(C₆F₅)₄⁴ were prepared according to reported procedures. 1-chloro-2-(trimethylsilyl)-4-(methyl)boracyclohexa-2,5-diene was prepared according to the synthetic procedure reported for 1-chloro-2-(trimethylsilyl)-4-(isopropyl)boracyclohexa-2,5-diene.²

All NMR spectra were performed in dry, oxygen-free CD_2Cl_2 or $CDCl_3$. ¹H, ¹³C{¹H}, DEPT-135, ¹¹B, COSY and HMQC NMR experiments were recorded on a Bruker DRX-400 spectrometer. ¹H and ¹³C{¹H} NMR spectra were calibrated using signals from the solvent and are reported downfield from SiMe₄, whereas ¹¹B NMR spectra are referenced to external BF₃·OEt₂.

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

Mass spectra were recorded on Esquire 3000, Kratos MS80RFA or Micromass VG7070 spectrometers. The pattern of boron-containing ions was compared with theoretical values.

1. A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, *Organometallics*, **1996**, *15*, 1518.

2. D.J.H. Emslie, W.E. Piers, M. Parvez, Angew. Chem. Int. Ed., 2003, 42, 1252.

3. D.A. Hoic, J.R. Wolf, W.M. Davis, G.C. Fu, Organometallics, 1996, 15, 1315.

4. D. Alberti, K.-R. Pörschke, Organometallics, 2004, 23, 1459.

Synthesis of 1b. Pyridine (227 mg, 0.23 mL, 2.87 mmol) was added dropwise to a stirred solution of 1-chloro-2-(trimethylsilyl)-4-(isopropyl)boracyclohexa-2,5-diene (650 mg, 2.87 mmol) in 10 mL toluene at room temperature. The solution was stirred for 1 h at room temperature, and the volatiles were removed under vacuum. The resulting solid was slurried in *n*-hexane, sonicated, and filtered to collect an orange solid (422 mg, 75%). Suitable crystals for X-ray diffraction study were grown by cooling a solution of **1b** in CH₂Cl₂ at –35 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ 1.27 (d, 6H, CH₃-^{*i*}Pr, ³J_{HH} = 6.9 Hz), 2.87 (sept., 1H, CH-^{*i*}Pr, ³J_{HH} = 6.9 Hz), 6.63 (d, 2H, BCHCH, ³J_{HH} = 10.7 Hz), 7.34 (d, 2H, BCHCH, ³J_{HH} = 10.4 Hz), 7.68 (dd, 2H, C₆H₅-*meta*, ³J_{HH} = 6.9 Hz), 8.01 (t, 1H, C₆H₅-*para*, ³J_{HH} = 7.6 Hz), 9.00 (d, 2H, C₆H₅-*ortho*, ³J_{HH} = 5.4 Hz). ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): δ 25.60 (s, CH₃-^{*i*}Pr), 35.30 (s, CH-^{*i*}Pr), 118.99 (s, br, BCHCH), 126.86 (s, C₆H₅-*meta*), 133.66 (s, BCHCH), 136.18 (s, C-*ipso*), 140.46 (s, C₆H₅-*para*), 144.54 (s, C₆H₅-*ortho*). ¹¹B NMR (CD₂Cl₂, 128 MHz): δ 31.80 (s). EI-MS: m/z: 197 [M⁺], 182 [M⁺ - CH₃], 154 [M⁺ - CH(CH₃)₂]. EI-HRMS: 197.13644 (calcd 197.13758 amu, C₁₃H₁₆¹¹BN).

Synthesis of 1c. Pyridine (0.77 g, 0.79 mL, 9.74 mmol) was added dropwise to a stirred solution of 1-chloro-2-(trimethylsilyl)-4-(methyl)boracyclohexa-2,5-diene (1.95 g, 9.82 mmol) in 50 mL hexane at room temperature. The solution was stirred for 1 h at room temperature, and the volatiles were removed under vacuum. The resulting solid was slurried in *n*-hexane, sonicated, and filtered to collect an orange solid (1.53 g, 92%). ¹H NMR (CD₂Cl₂, 400 MHz): δ 2.36 (s, 3H, CH₃), 6.62 (d, 2H, BCHCHC(Me), ³*J*_{HH} = 10.6 Hz), 7.30 (d, br, 2H, BCHCHC(Me), ³*J*_{HH} = 10.1 Hz), 7.64 (m, 2H, C₆H₅-meta), 7.98 (dt,

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

1H, C_6H_5 -para, ${}^{3}J_{HH} = 7.8$ Hz, ${}^{4}J_{HH} = 1.4$ Hz), 8.97 (dd, 2H, C_6H_5 -ortho, ${}^{3}J_{HH} = 6.7$ Hz, ${}^{4}J_{HH} = 1.4$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 100 MHz): δ 22.28 (s, CH₃), 119.14 (d, br, BCHCHC(Me), ${}^{1}J_{BC} = 83.8$ Hz), 124.16 (s, *C*-ipso), 126.83 (s, *C*₆H₅-meta), 136.25 (s, BCHCHC(Me)), 140.38 (s, *C*₆H₅-para), 144.44 (s, *C*₆H₅-ortho). ${}^{11}B$ NMR (CD₂Cl₂, 128 MHz): δ 31.58 (s). EI-MS: m/z: 169 [M⁺], 90 [M⁺ - C₆H₅N]. EI-HRMS: 169.10475 (calcd 169.10628 amu, C₁₁H₁₂¹¹BN).

Synthesis of [2a]Cl and [3a]Cl. A suspension of pyridine hydrochloride (149 mg, 1.29 mmol) in 5 mL of CH₂Cl₂ was added dropwise to a solution of borabenzene pyridine (200 mg, 1.29 mmol) in 5 mL of CH₂Cl₂ at room temperature. The solution was stirred for 15 min at room temperature, and the volatiles were removed under vacuum to leave 348 mg (100 %) of a white solid. The compound was obtained as a 1:1 mixture of two regioisomers. Cooling a solution containing [2a]Cl and [3a]Cl in CH₂Cl₂ at -35 °C gave suitable crystals for X-ray diffraction study of the 2,5-isomer [3a]Cl. ¹H NMR (CD₂Cl₂, 400 MHz, -30 °C): δ 2a 1.93 (dd, br, 2H, BCH₂CHCH, ${}^{3}J_{HH} = 4.4$ Hz, ${}^{4}J_{HH} = 1.4$ Hz), 5.76 (m, 1H, BCH₂CHCH), 5.85 (m, 1H, BCH₂CHCH), 6.29 (d, 1H, BCHCHCH, ${}^{3}J_{HH} =$ 12.0 Hz), 6.50 (dd, 1H, BCHCHCH, ${}^{3}J_{HH} = 12.5$ Hz, ${}^{3}J_{HH} = 4.8$ Hz), 7.90 (m, 4H, C₅H₅N-meta), 8.30 (m, 2H, C₅H₅N-para), 8.74 or 8.89 (m, 4H, C₅H₅N-ortho). **3a** 2.77 (s, br, 2H, BCHCHCH₂), 6.27 (d, BCHCHCH₂, ${}^{3}J_{HH} = 12.5$ Hz), 6.55 (d, br, BCHCHCH₂, ${}^{3}J_{\text{HH}} = 12.5 \text{ Hz}$, 7.90 (m, 4H, C₅H₅N-*meta*), 8.30 (m, 2H, C₅H₅N-*para*), 8.74 or 8.89 (m, 4H, C₅H₅N-ortho). ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz, -30 °C): δ 2a 22.10 (s, br, BCH₂CHCH), 125.11 (s, BCH₂CHCH), 127.01 or 127.14 (s, C₅H₅N-meta), 129.27 (s, BCH₂CHCH), 136.48 (s, BCHCHCH), 143.05 or 143.17 (s, C₅H₅N-para), 144.95 (s, C₅H₅N-ortho). **3a** 32.08 (s, BCHCHCH₂), 127.01 or 127.14 (s, C₅H₅N-meta), 130.30 (s, br, BCHCHCH₂), 140.13 (s, BCHCHCH₂), 143.05 or 143.17 (s, C₅H₅N-para), 144.95 (s, C_5H_5 N-ortho). ¹¹B NMR (CD₂Cl₂, 128 MHz, -30 °C): δ 2a 4.82 (s), 3a 0.36 (s). ESI-MS_{pos}: m/z: 156 $[2a,3a - C_5H_5N]^+$, 77 $[2a,3a - 2C_5H_5N]^+$.

Synthesis of [2b]Cl. A suspension of pyridine hydrochloride (59 mg, 0.51 mmol) in 2 mL of CH_2Cl_2 was added dropwise to a solution of 1b (100 mg, 0.51 mmol) in 4 mL of CH_2Cl_2 at room temperature. The solution was stirred for 15 min at room temperature,

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

and the volatiles were removed under vacuum to leave 158 mg (100 %) of a white solid. ¹H NMR (CD₂Cl₂, 400 MHz, -50 °C): δ 0.89 (d, 6H, CH₃-^{*i*}Pr, ³J_{HH} = 6.8 Hz), 1.92 (d, 2H, BCH₂CHC(^{*i*}Pr), ³J_{HH} = 4.6 Hz), 2.21 (sept., 1H, CH-^{*i*}Pr, ³J_{HH} = 6.7 Hz), 5.60 (t, 1H, BCH₂CHC(^{*i*}Pr), ³J_{HH} = 4.8 Hz), 6.21 (d, 1H, BCHCHC(^{*i*}Pr), ³J_{HH} = 12.4 Hz), 6.57 (d, 1H, BCHCHC(^{*i*}Pr), ³J_{HH} = 12.4 Hz), 7.88 (dd, 4H, C₅H₅N-*meta*, ³J_{HH} = 6.8 Hz), 8.27 (t, 2H, C₅H₅N-*para*, ³J_{HH} = 7.7 Hz), 8.71 (d, 4H, C₅H₅N-*ortho*, ³J_{HH} = 5.4 Hz). ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz, -50 °C): δ 21.17 (s, CH₃-^{*i*}Pr), 22.11 (s, br, BCH₂CHC(^{*i*}Pr)), 33.41 (s, CH-^{*i*}Pr), 120.24 (s, BCH₂CHC(^{*i*}Pr)), 127.20 (s, C₅H₅N-*meta*), 130.63 (s, br, BCHCHC(^{*i*}Pr)), 139.63 (s, BCHCHC(^{*i*}Pr)), 142.41 (s, BCHCHC(^{*i*}Pr)), 143.35 (s, C₅H₅N *para*), 144.92 (s, C₅H₅N-*ortho*). ¹¹B NMR (CD₂Cl₂, 128 MHz, -50 °C): δ 5.10 (s, br). ESI-MS_{pos}: m/z: 198 [**2b** - C₅H₅N]⁺, 156 [C₅H₆B-C₅H₅N]⁺.

Synthesis of 4a and 5a. A solution of borabenzene pyridine (100 mg, 0.64 mmol) in 6 mL CH₂Cl₂ was treated with HCl gas (23 mg, 63 mmol) at -78 °C. The color of the solution changed immediately from orange to colorless. After 10 min the volatiles were removed in vacuum to leave 123 mg (100 %) of a colorless oil. The compound was obtained as a 1:1 mixture of two regioisomers. ¹H NMR (C_6D_6 , 400 MHz, 25 °C): δ 4a AB spin system: A 1.61 (d, br, 1H, BCH₂CHCH, ${}^{2}J_{HH} = 19.3$ Hz), B 2.34 (d, br, 1H, BCH₂CHCH, ${}^{2}J_{HH} = 19.3$ Hz), 6.03 (m, 1H, BCHCHCH), 6.28 (d, 1H, BCHCHCH, ${}^{3}J_{HH}$ = 12.0 Hz), 6.29(d, br, 1H, BCH₂CHCH, ${}^{3}J_{HH}$ = 12.2 Hz), 6.61 (m, 1H, BCH₂CHCH, overlapping with the ortho protons from pyridine), 6.63 (dd, 2H, C_5H_5N -meta, ${}^3J_{HH} = 7.0$ Hz), 7.99 (t, 1H, C₅H₅N-*para*, ${}^{3}J_{HH} = 7.6$ Hz), 8.58 (d, 2H, C₅H₅N-*ortho*, ${}^{3}J_{HH} = 5.2$ Hz). **5a** 2.83 (d, br, 2H, BCHCHCH₂, ${}^{3}J_{HH} = 10.6$ Hz), 6.03 (m, BCHCHCH₂), 6.30 (dt, BCHCHCH₂, ${}^{3}J_{HH} = 12.4$ Hz, ${}^{4}J_{HH} = 1.7$ Hz), 6.63 (dd, 2H, C₅H₅N-*meta*, ${}^{3}J_{HH} = 7.0$ Hz), 7.99 (t, 1H, C₅*H*₅N-*para*, ${}^{3}J_{\text{HH}}$ = 7.6 Hz), 8.63 (s, br, 2H, C₅*H*₅N-*ortho*). ${}^{13}C{}^{1}H{}$ NMR (C₆D₆, 100 MHz, 25 °C): δ 4a 28.61 (s, br, BCH₂CHCH), 125.37 (s, C₅H₅N-meta), 125.68 (s, BCHCHCH), 133.60 (s, BCHCHCH), 135.36 (s, BCH₂CHCH), 136.37 (s, br, BCHCHCH), 140.64 (s, C₅H₅N-para), 144.47 (s, C₅H₅N-ortho). **5a** 32.74 (s, BCHCHCH₂), 130.57 (s, br, BCHCHCH₂), 136.38 (s, br, BCHCHCH₂), 125.37 (s, C₅H₅N-meta), 140.64 (s, C₅H₅N-para), 144.85 (s, C₅H₅N-ortho). ¹¹B NMR (C₆D₆, 128 MHz, 25 °C): δ 4a 4.89 (s), 5a 1.13 (s). EI-MS: m/z: 112 [4a,5a - C₅H₅N]⁺, 79 [C₅H₅N]⁺.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Synthesis of 4b. A solution of **1b** (105 mg, 0.53 mmol) in 8 mL CH₂Cl₂ was treated with HCl gas (22 mg, 60 mmol) at -78 °C. The color of the solution changed immediately from orange to colorless. After 10 min the volatiles were removed in vacuum to leave 124 mg (100 %) of a colorless oil. ¹H NMR (C₆D₆, 400 MHz, 25 °C): δ 1.19 (d, 6H, CH₃-^{*i*}Pr, ³J_{HH} = 6.8 Hz), 1.71 (d, br, 2H, BCH₂CHC(^{*i*}Pr), ³J_{HH} = 15.1 Hz), 2.47 (sept., 1H, CH-^{*i*}Pr, ³J_{HH} = 6.8 Hz), 5.83 (s, br, 1H, BCH₂CHC(^{*i*}Pr)), 6.46 (d, 1H, BCHCHC(^{*i*}Pr), ³J_{HH} = 12.2 Hz), 6.64 (dd, 2H, C₅H₅N-*meta*, ³J_{HH} = 6.7 Hz), 6.70 (d, 1H, BCHCHC(^{*i*}Pr), ³J_{HH} = 11.9 Hz), 6.99 (t, 1H, C₅H₅N-*para*, ³J_{HH} = 7.5 Hz), 8.69 (d, br, 2H, C₅H₅N-*ortho*, ³J_{HH} = 4.5 Hz). ¹³C {¹</sup>H} NMR (C₆D₆, 100 MHz, 25 °C): δ 22.21 (s, br, CH₃-^{*i*}Pr), 22.31 (s, br, CH₃-^{*i*}Pr), 28.13 (s, br, BCH₂CHC(^{*i*}Pr)), 34.66 (s, CH-^{*i*}Pr), 122.05 (s, BCH₂CHC(^{*i*}Pr)), 125.19 (s, C₅H₅N-*meta*), 136.05 (s, BCHCHC(^{*i*}Pr)), 136.99 (s, br, BCHCHC(^{*i*}Pr)), 140.41 (s, C₅H₅N-*para*), 142.11 (s, BCHCHC(^{*i*}Pr)), 144.47 (s, br, C₅H₅N-*ortho*). ¹¹B NMR (C₆D₆, 128 MHz, 25 °C): δ 5.08 (s, br). EI-MS: m/z: 119 [**4b** - C₅H₅N, - Cl]⁺, 104 [**4b** - C₅H₅N, - Cl, -CH₃]⁺, 79 [C₅H₅N]⁺.

Synthesis of 4c. A solution of **1c** (150 mg, 0.88 mmol) in 10 mL CH₂Cl₂ was treated with HCl gas (32 mg, 0.88 mmol) at -78 °C. The color of the solution changed immediately from orange to colorless. After 10 min the volatiles were removed in vacuum to leave 182 mg (100 %) of a colorless oil. ¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): *δ* AB spin system: A 1.46 (d, br., 1H, BCH₂CHC(CH₃), ²J_{HH} = 18.8 Hz), B 1.88 (d, br., 1H, BCH₂CHC(CH₃), ²J_{HH} = 18.8 Hz), B 1.88 (d, br., 1H, BCH₂CHC(CH₃)), 6.00 (d, 1H, BCHCHC(CH₃), ³J_{HH} = 12.0 Hz), 6.31 (d, br., 1H, BCH₂CHC(CH₃)), 6.00 (d, 1H, BCHCHC(CH₃), ³J_{HH} = 7.08 Hz), 8.08 (t, 1H, C₅H₅N-*para*, ³J_{HH} = 7.6 Hz), 8.89 (d, br, 2H, C₅H₅N-*ortho*, ³J_{HH} = 5.2 Hz). ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz, 25 °C): *δ* 22.72 (s, br, BCH₂CHC(CH₃)), 27.49 (s, br, BCH₂CHC(CH₃)), 124.63 (s, BCH₂CHC(CH₃)), 126.27 (s, C₅H₅N-*meta*), 131.82 (s, BCHCHC(CH₃)), 136.22 (s, br, BCHCHC(CH₃)), 138.14 (s, BCHCHC(CH₃)), 141.83 (s, C₅H₅N-*para*), 145.26 (s, C₅H₅N-*ortho*). ¹¹B NMR (CD₂Cl₂, 128 MHz, 25 °C): *δ* 4.75 (s, br). EI-MS: m/z: 170 [**4c** - Cl]⁺, 126 [**4c** - C₅H₅N]⁺, 111 [**4c** - C₅H₅N, - CH₃]⁺, 79 [C₅H₅N]⁺.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Synthesis of 6a and 7a. A solution of $TlB(C_6F_5)_4$ (203 mg, 0.23 mmol) in 5 mL CH_2Cl_2 was added dropwise to a solution containing a mixture of 4a and 5a (44 mg, 0.23 mmol) in 4 mL CH₂Cl₂ and stirred for 10 min at room temperature. The white precipitate of TlCl was removed by filtration. The compound was obtained as a mixture of 2,5- and 2,4isomers in 9:1 ratio, after recrystalization from CH₂Cl₂/hexane: yield 123 mg (64 %). ¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): δ 7a 3.78 (m, 2H, BCHCHCH₂), 7.01 (dt, 2H, BCHCHCH₂, ${}^{3}J_{HH} = 12.0$ Hz, ${}^{4}J_{HH} = 1.2$ Hz), 8.21 (m, 4H, BCHCHCH₂ + C₅H₅N-meta), 8.73 (m, C₅H₅N-para), 9.1 (d, 2H, C₅H₅N-ortho, ${}^{3}J_{\text{HH}} = 5.3$ Hz). 6a 2.89 (d, br, 2H, BCH₂CHCH, ${}^{3}J_{HH} = 3.5$ Hz), 6.09 (dt, 1H, BCH₂CHCH, ${}^{3}J_{HH} = 1.7$ Hz, ${}^{3}J_{HH} = 12.7$ Hz), 6.73 (d, br, 1H, BCHCHCH, ${}^{3}J_{HH} = 12.2$ Hz), 6.93 (1H, BCHCHCH, ${}^{3}J_{HH} = 11.9$ Hz), 8.27 (m, 2H, C_5H_5N -meta, partially overlapping with the C_5H_5N -meta signal of 7a), 8.78 (m, 2H, C_5H_5N -para, partially overlapping with the C_5H_5N -para signal of 7a), 9.02 (d, 2H, C₅*H*₅N-*ortho*, ${}^{3}J_{\text{HH}} = 5.2 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, 100 MHz, 25 °C): **7a** δ 40.47 (s, BCHCHCH2), 124.81 (s, br, BCHCHCH2), 128.18 (s, C-ipso), 129.24 (s, C5H5N*meta*), 136.90 (d, br, C_6F_5 -*meta*, ${}^{1}J_{CF} = 244.9$ Hz), 138.82 (d, C_6F_5 -*para*, ${}^{1}J_{CF} = 244.0$ Hz), 146.09 (s, C_5H_5N -ortho), 148.10 (d, C_6F_5 -ortho, ${}^1J_{CF} = 239.0$ Hz), 150.15 (s, C_5H_5N -para), 168.77 (s, BCHCHCH₂) signals for the **6a** isomer were not detected. ¹¹B NMR (CD₂Cl₂, 128 MHz, 25 °C): 7a δ -17.43 (s, B(C₆F₅)₄) 45.52 (s, br, BC₅H₅) 6a δ -17.43 (s, $B(C_6F_5)_4$) 57.24 (s, br, BC_5H_5). ¹⁹F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ -167.20 (dd, C_6F_5 - meta, ${}^{3}J_{FF} = 28.2$ Hz), -163.3 (t, C_6F_5 - para, ${}^{3}J_{FF} = 28.2$ Hz), -133.00 (s, br, C_6F_5 - ortho). ESI-MS_{pos}: m/z: 156 [6a,7a - B(C_6F_5)_4]⁺, 80 [C_6N_5H]⁺. ESI-MS_{neg}: m/z: $679 [B(C_6F_5)_4]^{-}$.

Synthesis of 6b. A solution of TlB(C₆F₅)₄ (113 mg, 0.13 mmol) in 4 mL CH₂Cl₂ was added dropwise to a solution of **4b** (30 mg, 0.13 mmol) in 2 mL CH₂Cl₂ and the mixture stirred for 10 min at room temperature. The white precipitate of TlCl was removed by filtration. **6b** was obtained as a white crystalline solid by layering a CH₂Cl₂ solution with hexane and allowing the two solvents to diffuse: yield 88 mg (78 %). ¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): δ 1.21 (d, 6H, CH₃-^{*i*}Pr, ³J_{HH} = 6.9 Hz), 2.75 (sept., 1H, CH-^{*i*}Pr, ³J_{HH} = 6.8 Hz), 2.85 (d, 2H, BCH₂CHC(^{*i*}Pr), ³J_{HH} = 4.1 Hz), 6.74 (s, br, 1H, BCH₂CHC(^{*i*}Pr)),

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

6.92 (d, 1H, BCHCHC(ⁱPr), ${}^{3}J_{HH} = 12.2$ Hz), 8.21 (dd, 2H, C₅H₅N-*meta*, ${}^{3}J_{HH} = 6.8$ Hz), 8.30 (d, br, 1H, BCHCHC(ⁱPr), ${}^{3}J_{HH} = 11.8$ Hz), 8.71 (dt, 1H, C₅H₅N-*para*, ${}^{3}J_{HH} = 7.9$ Hz, ${}^{4}J_{HH} = 1.5$ Hz), 9.1 (d, br, 2H, C₅H₅N-*ortho*, ${}^{3}J_{HH} = 6.9$ Hz). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 100 MHz, 25 °C): δ 21.90 (s, CH₃-^{*i*}Pr), 27.52 (s, br, BCH₂CHC(^{*i*}Pr)), 33.97 (s, CH-^{*i*}Pr), 124.28 (s, br, BCHCHC(^{*i*}Pr)), 128.79 (s, C₅H₅N-*meta*), 134.80 (s, BCH₂CHC(^{*i*}Pr)), 136.27 (d, C₆F₅-*meta*, ${}^{1}J_{CF} = 245.6$ Hz), 138.22 (d, C₆F₅-*para*, ${}^{1}J_{CF} = 244.2$ Hz), 145.11 (s, C₅H₅N-*ortho*), 146.35 (s, C-*ipso*), 148.10 (d, C₆F₅-*ortho*, ${}^{1}J_{CF} = 242.3$ Hz), 149.79 (s, C₅H₅N-*para*), 167.55 (s, BCHCHC(^{*i*}Pr)), 172.48 (s, C-*ipso*). 11 B NMR (CD₂Cl₂, 128 MHz, 25 °C): δ -17.28 (s, B(C₆F₅)₄) 56.56 (s, br, BC₅H₅). 19 F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ -167.30 (dd, C₆F₅- *meta*, ${}^{3}J_{FF} = 28.2$ Hz), -163.4 (t, C₆F₅- *para*, ${}^{3}J_{FF} = 28.2$ Hz), -133.00 (s, br, C₆F₅- *ortho*). ESI-MS_{pos}: m/z: 198 [**6b** - B(C₆F₅)₄]⁺, 156 [**6b**- B(C₆F₅)₄, -CH(CH₃)₂]⁺. ESI-MS_{neg}: m/z: 679 [B(C₆F₅)₄]⁻.

Synthesis of 6c. A solution of $TlB(C_6F_5)_4$ (176 mg, 0.20 mmol) in 4 mL CH_2Cl_2 was added dropwise to a solution of 4c (41 mg, 0.20 mmol) in 2 mL CH₂Cl₂ and the mixture stirred for 10 min at room temperature. The white precipitate of TlCl was removed by filtration. 6c was obtained as colorless crystals by layering a CH₂Cl₂ solution with hexane and allowing the two solvents to diffuse: yield 122 mg (72 %). ¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): δ 2.18 (m, 3H, CH₃), 2.83 (d, br, 2H, BCH₂CHC(CH₃)), ${}^{3}J_{HH} = 2.2$ Hz), 6.73 (s, br, 1H, BCH₂CHC(CH₃)), 6.88 (d, 1H, BCHCHC(CH₃), ${}^{3}J_{HH} = 12.0$ Hz), 8.14 (d, br, 1H, BCHCHC(CH₃), ${}^{3}J_{HH} = 12.0$ Hz), 8.18 (m, 2H, C₅H₅N-meta), 8.70 (dt, 1H, C_5H_5 N-para, ${}^{3}J_{HH} = 7.8$ Hz, ${}^{4}J_{HH} = 1.5$ Hz), 9.01 (dd, br, 2H, C_5H_5 N-ortho, ${}^{3}J_{HH} = 6.7$ Hz, ${}^{4}J_{\text{HH}} = 1.4$ Hz). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 100 MHz, 25 °C): δ 21.85 (s, CH₃), 28.68 (s, br, BCH₂CHC(CH₃)), 124.86 (s, br, BCHCHC(CH₃)), 129.37 (s, C₅H₅N-meta), 139.91 (d, C_6F_5 -meta, ${}^{1}J_{CF} = 244.2$ Hz), 137.67 (s, BCH₂CHC(CH₃)), 138.86 (d, C_6F_5 -para, ${}^{1}J_{CF}$ = 237.7 Hz), 145.71 (s, C_5 H₅N-*ortho*), 148.73 (d, C_6 F₅-*ortho*, ${}^1J_{CF}$ = 240.3 Hz), 150.39 (s, C_5H_5N -para), 169.67 (s, BCHCHC(CH₃)), C-ipso was not detected. ¹¹B NMR (CD₂Cl₂, 128 MHz, 25 °C): δ -17.43 (s, $B(C_6F_5)_4$), 56.39 (s, br, BC_5H_5). ¹⁹F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ -167.20 (dd, C₆F₅- meta, ³J_{FF} = 28.2 Hz), -163.3 (t, C₆F₅- para, ³J_{FF} = 28.2 Hz), -133.00 (s, br, C₆F₅- ortho). ESI-MS_{pos}: m/z: 170 [**6c** - B(C₆F₅)₄]⁺, 155 [**6c**-

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

 $B(C_6F_5)_4$, - $CH_3]^+$, 91 [6c- $B(C_6F_5)_4$, - $NC_6H_5]^+$, 80 [HNC_6H_5]⁺. ESI-MS_{neg}: m/z: 679 [$B(C_6F_5)_4$]⁻.

Synthesis of [2a][B(C₆F₅)₄] and [3a][B(C₆F₅)₄]. TlB(C₆F₅)₄ (114 mg, 0.13 mmol) in 2 mL of CH₂Cl₂ was added dropwise to a solution containing a mixture of [2a]Cl and [3a]Cl (35 mg, 0.13 mmol) in 2 mL of CH₂Cl₂ at room temperature. The solution was stirred for 15 min at room temperature. The white precipitate of TlCl was removed by filtration and the volatiles were removed under vacuum to leave 118 mg (100 %) of a white solid. The compound was obtained as a mixture of 2,5- and 2,4-isomers in 2:1 ratio. ¹H NMR (CD₂Cl₂, 400 MHz 25 °C): δ[**2a**][B(C₆F₅)₄] 1.97 (d, br, 2H, BCH₂CHCH, ${}^{3}J_{\rm HH} = 2.2$ Hz), 6.04 (m, 2H, BCH₂CHCH + BCH₂CHCH), 6.67 (m, 1H, BCHCHCH overlapping with signals from $[3a][B(C_6F_5)_4]$, 6.86 (dd, 1H, BCHCHCH, ${}^{3}J_{HH} = 10.7$ Hz, ${}^{4}J_{HH} = 1.0$ Hz), 7.81 (m, 4H, C₅H₅N-*meta*), 8.28 (m, 2H, C₅H₅N-*para*), 8.45 (m, 4H, C_5H_5 N-ortho). [**3a**][B(C₆F₅)₄] 2.93 (m, 2H, BCHCHCH₂), 6.09 (dt, BCHCHCH₂, ${}^{3}J_{HH} =$ 12.7 Hz, ${}^{4}J_{HH} = 2.0$ Hz), 6.7 (d, br, BCHCHCH₂, ${}^{3}J_{HH} = 12.4$ Hz), 7.81 (m, 4H, C₅H₅N*meta*), 8.28 (m, 2H, C₅H₅N-*para*), 8.45 (m, 4H, C₅H₅N-*ortho*). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, 100 MHz, 25 °C): δ [2a][B(C₆F₅)₄] 24.60 (s, br, BCH₂CHCH), 126.69 (s, BCH₂CHCH), 128.23 (s, C_5H_5N -meta), 129.58 (s, BCH₂CHCH), 136.91 (d, br, C_6F_5 -meta, ${}^1J_{CF} = 244.3$ Hz), 138.85 (d, C_6F_5 -para, ${}^{1}J_{CF} = 243.9$ Hz), 139.00 (s, BCHCHCH), 144.45 (s, $C_5H_5N_5$) *para*), 145.06 (s, C_5H_5N -ortho), 148.75 (d, C_6F_5 -ortho, ${}^1J_{CF} = 238.4$ Hz). [**3a**][B(C_6F_5)₄] 33.32 (s, BCHCHCH₂), 124.27 (s, br, BCHCHCH₂), 127.65 (s, C₆F₅-ipso), 128.15 (s, C_5H_5 N-meta), 136.91 (d, br, C_6F_5 -meta, ${}^1J_{CF} = 244.3$ Hz), 138.85 (d, C_6F_5 -para, ${}^1J_{CF} =$ 243.9 Hz), 142.70 (s, BCHCHCH₂), 144.09 (s, C₅H₅N-para), 145.50 (s, C₅H₅N-ortho), 148.75 (d, C_6F_5 -ortho, ${}^1J_{CF}$ = 238.4 Hz). ${}^{11}B$ NMR (CD₂Cl₂, 128 MHz, 25 °C): δ $[2a][B(C_6F_5)_4] \delta - 17.43$ (s, $B(C_6F_5)_4$), 5.09 (s, br, BC_5H_5). $[3a][B(C_6F_5)_4] \delta - 17.43$ (s, B(C₆F₅)₄), 1.27 (s, br, BC₅H₅). ¹⁹F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ-167.20 (dd, C₆F₅meta, ${}^{3}J_{\text{FF}} = 28.2 \text{ Hz}$), -163.3 (t, C₆F₅- para, ${}^{3}J_{\text{FF}} = 28.2 \text{ Hz}$), -133.00 (s, br, C₆F₅- ortho). ESI-MS_{pos}: m/z: 156 $[2a,3a - C_6N_5]^+$, 80 $[C_6N_5H]^+$, 77 $[2a,3a - 2 C_6N_5]^+$. ESI-MS_{neg}: m/z: 679 $[B(C_6F_5)_4]^{-1}$.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Synthesis of $[2b][B(C_6F_5)_4]$. TIB(C₆F₅)₄ (99 mg, 0.11 mmol) in 2 mL of CH₂Cl₂ was added dropwise to a solution of 3 (35 mg, 0.11 mmol) in 2 mL of CH₂Cl₂ at room temperature. The solution was stirred for 15 min at room temperature. The white precipitate of TICI was removed by filtration and the volatiles were removed under vacuum to leave 107 mg (100 %) of a white solid. ¹H NMR (C₆D₅Br, 300 MHz, 25 °C): δ 0.97 (d, 6H, CH_3 -^{*i*}Pr, ³ $J_{HH} = 6.8$ Hz), 1.58 (d, br, 2H, $BCH_2CHC(^{i}Pr)$, ³ $J_{HH} = 4.5$ Hz), 2.23 (sept., 1H, CH-^{*i*}Pr, ${}^{3}J_{HH} = 6.8$ Hz), 5.58 (s, br, 1H, BCH₂CHC(^{*i*}Pr)), 5.77 (d, 1H, BCHCHC(^{*i*}Pr), ${}^{3}J_{HH} = 12.3$ Hz), 6.56 (d, 1H, BCHCHC(^{*i*}Pr), ${}^{3}J_{HH} = 12.3$ Hz), 7.06 (dd, 4H, C_5H_5 N-meta, ${}^{3}J_{HH} = 6.7$ Hz), 7.48 (t, 2H, C_5H_5 N-para, ${}^{3}J_{HH} = 7.5$ Hz), 7.92 (d, br, 4H, C₅*H*₅N-*ortho*, ${}^{3}J_{\text{HH}} = 5.5$ Hz). ${}^{13}C\{{}^{1}\text{H}\}$ NMR (C₆D₅Br, 75 MHz, 25 °C): δ 21.41 (s, CH₃-^{*i*}Pr), 22.60 (s, br, BCH₂CHC(^{*i*}Pr)), 33.64 (s, CH-^{*i*}Pr), 119.94 (s, BCH₂CHC(^{*i*}Pr)), 126.62 (s, C_5H_5N -meta), 129.63 (s, BCHCHC(ⁱPr), buried under the signal of C_6D_5Br), 136.30 (d, C_6F_5 -meta, ${}^{1}J_{CF} = 242.0$ Hz), 138.18 (d, C_6F_5 -para, ${}^{1}J_{CF} = 246.3$ Hz), 140.72 (s, BCHCHC(ⁱPr)), 142.67 (s, C₅H₅N-para), 143.18 (s, C-ipso), 143.59 (s, C₅H₅N-ortho), 143.97 (s, *C-ipso*), 148.35 (d, C_6F_5 -ortho, ${}^1J_{CF} = 241.9$ Hz). ${}^{11}B$ NMR (C_6D_5Br , 96 MHz, 25 °C): δ-16.99 (s, B(C₆F₅)₄), 5.13 (s, br, BC₅H₅). ¹⁹F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ -167.30 (dd, C₆F₅- meta, ³J_{FF} = 28.2 Hz), -163.4 (t, C₆F₅- para, ³J_{FF} = 28.2 Hz), -133.00 (s, br, C₆ F_5 - ortho). ESI-MS_{pos}: m/z: 198 [**2b** - Py]⁺, 156 [**2b** - Py, - C(CH₃)₂]⁺. ESI- MS_{neg} : m/z: 679 [B(C₆F₅)₄]⁻.