Mechanochemical and Solution Reactions Between $\mathbf{A g C H}_{3} \mathbf{C O O}$ and $\left[\mathrm{H}_{\mathbf{2}} \mathrm{NC}_{6} \mathrm{H}_{\mathbf{1 0}} \mathbf{N H}_{2}\right]$ Yield Three Isomers of the Coordination Network $\left\{\mathbf{A g}\left[\mathbf{H}_{\mathbf{2}} \mathbf{N C}_{6} \mathbf{H}_{\mathbf{1 0}} \mathbf{N H}_{\mathbf{2}}\right]^{+}\right\}_{\infty}$

Dario Braga, Marco Curzi, Fabrizia Grepioni and Marco Polito
Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy; E-mail: dario.braga@unibo.it

Figure 1. Observed X-ray powder pattern for $\mathbf{1} \cdot \mathbf{n H}_{\mathbf{2}} \mathbf{O}$

Figure 2. Observed X-ray powder pattern for $\mathbf{1} \cdot \mathbf{M e O H} \cdot \mathbf{0 . 5} \mathbf{H}_{\mathbf{2}} \mathbf{O}$ after grinding. Note how the pattern coincides with that observed for $\mathbf{1} \cdot \mathbf{n H}_{\mathbf{2}} \mathbf{O}$

Figure 3. Calculated X-ray powder pattern for $\mathbf{1} \cdot \mathbf{M e O H} \cdot \mathbf{0} \cdot \mathbf{5} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

Figure 4. Observed X-ray powder pattern for $\mathbf{1 \cdot 3} \mathbf{H}_{\mathbf{2}} \mathbf{O}$ after grinding. Note how the pattern coincides with that observed for $\mathbf{1} \cdot \mathbf{n H}_{\mathbf{2}} \mathbf{O}$

Figure 5. Calculated X-ray powder pattern for $\mathbf{1} \cdot \mathbf{n H}_{\mathbf{2}} \mathbf{O}$
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Figure 6. Observed X-ray powder pattern for $\mathbf{1} \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

Figure 7. Calculated X-ray powder pattern for $\mathbf{1} \cdot \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

Figure 8. TGA analysis for $\mathbf{1} \cdot \mathbf{n H}_{\mathbf{2}} \mathbf{O}$, showing that the weight loss corresponds to approximately 2.5 water molecules. At $170^{\circ} \mathrm{C}$ the sample starts to decompose.

(a)
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

(b)

Figure 9. Crystalline $\mathbf{1} \cdot \mathbf{M e O H} \cdot \mathbf{0} \cdot \mathbf{5} \mathbf{H}_{\mathbf{2}} \mathbf{O}$. (a) The nitrogen atoms belonging to the organic base interact via hydrogen bonding with the acetate anion and the water molecule $\left[\mathrm{N}(1) \cdots \mathrm{O}(1)_{\text {acetate }}^{\mathrm{I}}\right.$ $2.972(5), \mathrm{N}(2) \cdots \mathrm{O}(2)_{\text {acetate }} 3.019(4), \mathrm{N}(2) \cdots \mathrm{O}(2)^{\mathrm{II}}$ acetate $\left.2.993(5), \mathrm{N}(1) \cdots \mathrm{O}(4)_{\text {water }} 3.036(3) \AA\right]$, and, in turn, the acetate anion interacts both with the water molecule and the methanol ligand $\left[\mathrm{O}(3)_{\mathrm{MeOH}} \cdots \mathrm{O}(1)^{\mathrm{II}}{ }_{\text {acetate }} 2.682(5) ; \mathrm{O}(2)_{\text {acetate }} \cdots \mathrm{O}(4)^{\mathrm{III}}\right.$ water $\left.2.740(4) \AA\right]$. (b) The methanol molecule asimmetrically bridges two silver ions belonging to adjacent chains $\left[\mathrm{Ag}(1) \cdots \mathrm{O}(3)_{\mathrm{MeOH}} 2.693(5)\right.$, $\operatorname{Ag}(1) \cdots \mathrm{O}(3)_{\text {меон }} 3.139(4)^{\text {II }} \AA$] [I: x, $1-y,-1 / 2+z$; II: $1-x, y, 1 / 2-z ;$ III: $\left.x,-1+y, z\right]$.

Observations:

1) The $\mathrm{O}_{\mathrm{MeOH}} \cdots \mathrm{Ag}$ distance is comparable to or slightly longer than the ones observed for similar interactions in the CSD [2.394 (QEHCAH); 2.446 (QEHCIP); $2.636 \AA$ (TIDJOF)]
2) A search has been run in the CSD for intermolecular interactions (in the range 2.5-3.5 \AA) between silver atoms bound to two N atoms each. A total of 63 compounds has been found, with a mean $\mathrm{Ag} \cdots \mathrm{Ag}$ distance of 3.266 (19) \AA. Therefore the $\mathrm{Ag} \cdots \mathrm{Ag}$ distance of $3.323(1) \AA$ observed in crystalline $\mathbf{1} \cdot \mathbf{M e O H} \cdot \mathbf{0} \mathbf{. 5} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ is comparable to this mean value.

Figure 10. Crystalline $\mathbf{1 \cdot 3} \mathbf{H}_{\mathbf{2}} \mathbf{O}$. The hydrogen bonded network established between the N -H donor groups on the $\left[\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{10} \mathrm{NH}_{2}\right]$ ligand, the acetate anions [$\mathrm{O}(1)$ and $\left.\mathrm{O}(2)\right]$ and the water molecules $[\mathrm{O}(3), \mathrm{O}(4)$ and $\mathrm{O}(5)]$. Relevant hydrogen bonding interactions (e.s.d.s. $0.005 \AA): \mathrm{N}(1) \cdots \mathrm{O}(2)$ $3.136, \mathrm{~N}(2) \cdots \mathrm{O}(1) 3.099, \mathrm{~N}(1) \cdots \mathrm{O}(5) 3.014, \mathrm{O}(5) \cdots \mathrm{O}(3) 2.799, \mathrm{~N}(2) \cdots \mathrm{O}(4) 3.040, \mathrm{O}(5) \cdots \mathrm{O}(1)$ $2.904, \mathrm{O}(4) \cdots \mathrm{O}(2) 2.886, \mathrm{O}(3) \cdots \mathrm{O}(1) 2.817, \mathrm{O}(3) \cdots \mathrm{O}(2) 2.753 \AA$.

(a)

(b)

Figure 11. Crystalline $\mathbf{1} \cdot \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}$. (a) A view of the packing down the c-axis, as shown in Figure 3 (main article), together with the acetate anion and water molecules. (b) The same packing portion rotated by 90 deg around the y (vertical) axis, showing how the acetate anions and water molecules form a layer that is "sandwiched" in between layers constituted of parallel $\left\{\mathrm{Ag}\left[\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{10} \mathrm{NH}_{2}\right]^{+}\right\}_{\infty}$
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
chains. There are two such (crystallographically independent) acetate-water layers in the structure; one of the two layers is shown in details in figure 11c. Relevant hydrogen bonding parameters are $[\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(3)$ and $\mathrm{O}(4)$ are the acetate oxygens]: $\mathrm{N}(1) \cdots \mathrm{O}(3 \mathrm{~A}) 3.185(4), \mathrm{N}(1) \cdots \mathrm{O}(8 \mathrm{~A}) 3.144(4)$, $\mathrm{N}(2) \cdots \mathrm{O}(1) 3.209(4) 151, \mathrm{~N}(2) \cdots \mathrm{O}(3) 3.284(4), \mathrm{N}(3) \cdots \mathrm{O}(4 \mathrm{~A}) 3.113(4), \mathrm{N}(3) \cdots \mathrm{O}(5 \mathrm{~A}) 3.267(4)$, $\mathrm{N}(4) \cdots \mathrm{O}(1) 3.111(4), \mathrm{N}(4) \cdots \mathrm{O}(3) 3.021(4), \mathrm{O}(1 \mathrm{~A}) \cdots \mathrm{O}(1) 2.884(4), \mathrm{O}(1 \mathrm{~A}) \cdots \mathrm{O}(1) 2.757(4)$, $\mathrm{O}(2 \mathrm{~A}) \cdots \mathrm{O}(1 \mathrm{~A}) 2.702(4), \mathrm{O}(2 \mathrm{~A}) \cdots \mathrm{O}(4 \mathrm{~A}) 2.779(4), \mathrm{O}(3 \mathrm{~A}) \cdots \mathrm{O}(2) 2.849(4), \mathrm{O}(3 \mathrm{~A}) \cdots \mathrm{O}(2 \mathrm{~A}) 2.761(4)$, $\mathrm{O}(4 \mathrm{~A}) \cdots \mathrm{O}(2) 2.757(4), \mathrm{O}(4 \mathrm{~A}) \cdots \mathrm{O}(3 \mathrm{~A}) 2.781(3), \mathrm{O}(5 \mathrm{~A}) \cdots \mathrm{O}(4) 2.761(4), \mathrm{O}(5 \mathrm{~A}) \cdots \mathrm{O}(6 \mathrm{~A}) 2.742(4)$, $\mathrm{O}(6 \mathrm{~A}) \cdots \mathrm{O}(7 \mathrm{~A}) 2.748(4), \mathrm{O}(6 \mathrm{~A}) \cdots \mathrm{O}(8 \mathrm{~A}) 2.761(4), \mathrm{O}(7 \mathrm{~A}) \cdots \mathrm{O}(3) 2.891(4), \mathrm{O}(7 \mathrm{~A}) \cdots \mathrm{O}(3) 2.772(4)$, $\mathrm{O}(8 \mathrm{~A}) \cdots \mathrm{O}(4) 2.797(4), \mathrm{O}(8 \mathrm{~A}) \cdots \mathrm{O}(5 \mathrm{~A}) 2.789(4) \AA$.

