Ruthenium-catalyzed Stereospecific Decarboxylative Allylation of Unstabilized Ketone Enolates.

Erin C. Burger and Jon A. Tunge*

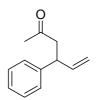
Department of Chemistry, University of Kansas, Lawrence, KS 66045

Supporting Information

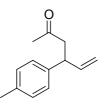
Experimental

Materials. Methylene chloride was dried over activated alumina. All other materials were used as received. β -keto esters **1a-1f** were prepared by the addition of diketene to the corresponding allylic alcohols,¹ which had previously been subjected to enzymatic resolution with Lipase AK "Amano" 20.² **1c** degraded slightly on SiO₂ and therefore was used without further purification. **1f** was prepared by alkylation of **1a** using methyl iodide and potassium *tert*-butoxide.³ β -keto esters **1g** and **1h** were prepared by the condensation of the corresponding acid chloride with Meldrum's acid⁴ followed by addition of the appropriate allylic alcohol.⁵ ¹H NMR spectra were referenced to residual protio solvent signals. Structural assignments are based on ¹H, ¹³C, DEPT-135, COSY, and HMQC spectroscopies. Enantioselectivities were determined on a Diacel Chiralpak AD or OD-H HPLC column.

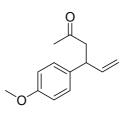
General procedure for catalytic Carroll rearrangements: In a Schlenk tube under argon, $[RuCp*Cl]_4$ (2.5 mol%) and bipyridine (10 mol%) were dissolved in 2 mL of methylene chloride. The resulting deep purple solution was allowed to stir briefly before addition of allyl- β -keto ester (0.5 mmole) in 3 mL of methylene chloride *via* cannula. The reaction was allowed to stir under Ar until the resulting dark burnt orange solution returned to purple. Following solvent evaporation the crude product was purified *via* flash chromatography (SiO₂, 5% Et₂O:Hex), providing products in > 95% purity as determined by ¹H NMR spectroscopy.

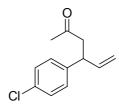

¹ S. Wilson and C. Augelli, Org. Synth., 1990, 68, 210.

² (a) K. Burgess and L. Jennings, *J. Am. Chem. Soc.*, 1990, **112**, 7434; (b) K. Burgess and L. Jennings, *J. Am. Chem. Soc.*, **113**, 6129.

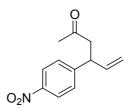

³ H. Lee, J. Park, B. Kim and S. Gellman, J. Org. Chem., 2003, 68, 1575.

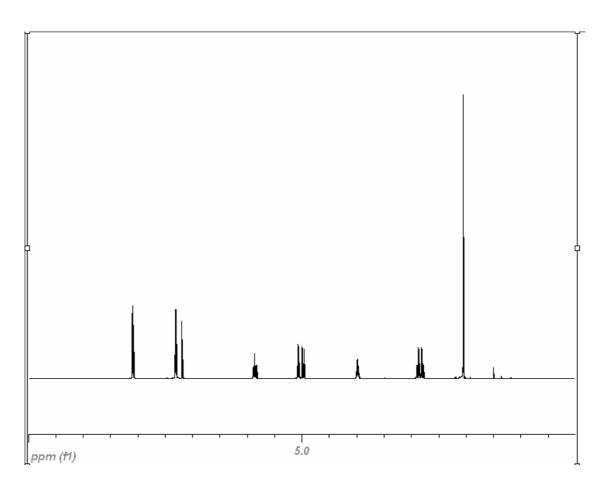
⁴ N. Svenstrup, K. Simonsen, N. Thorup, J. Brodersen, W. Dehaen and J. Becher, *J. Org. Chem.*, 1999, **64**, 2814.

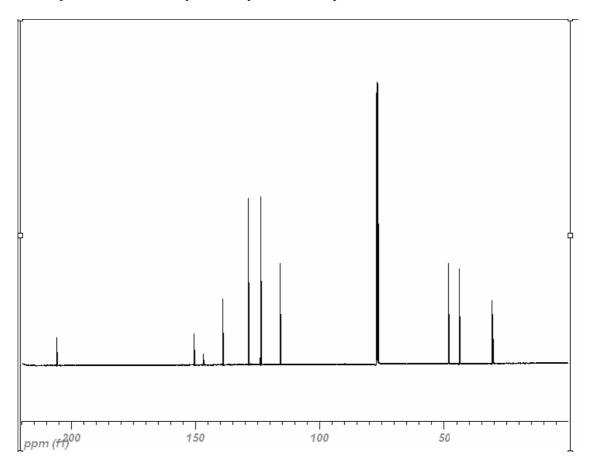

⁵ F. Yuste, F. Brena, H. Barrios, R. Sanchez-Obregon, B. Ortiz and F. Walls, *Synth. Commun.* 1988, **18**, 735.


1a:⁶ Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0% Hexane/IPA, 0.5 mL/min) $t_r = 13.3$, 14.7 min.

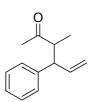
1b:⁶ Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0% Hexane/IPA, 0.5 mL/min) - $t_r = 12.9$, 14.4 min.

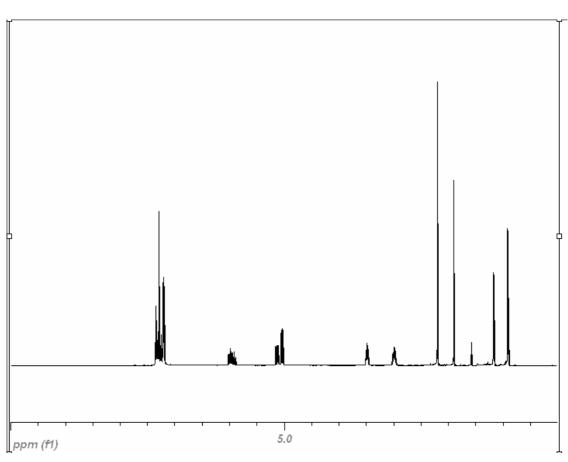


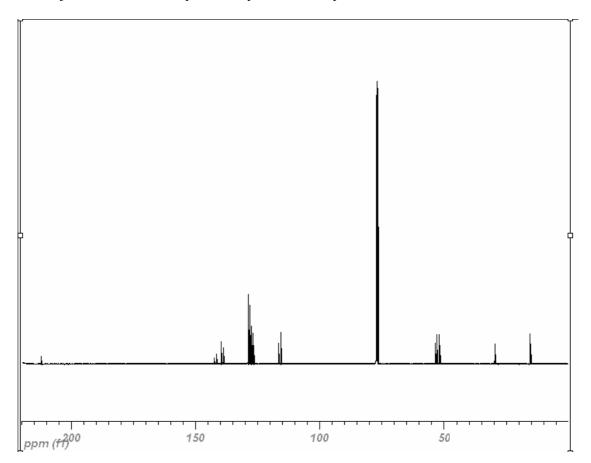

1c:⁶ Separated enantiomers on Diacel Chiralpak AD HPLC column (97.0% Hexane/IPA, 1.0 mL/min) - $t_r = 6.8$, 7.7 min.



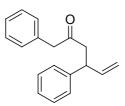
1d:⁶ Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0% Hexane/IPA, 1.0 mL/min) - $t_r = 7.7$, 8.9 min.

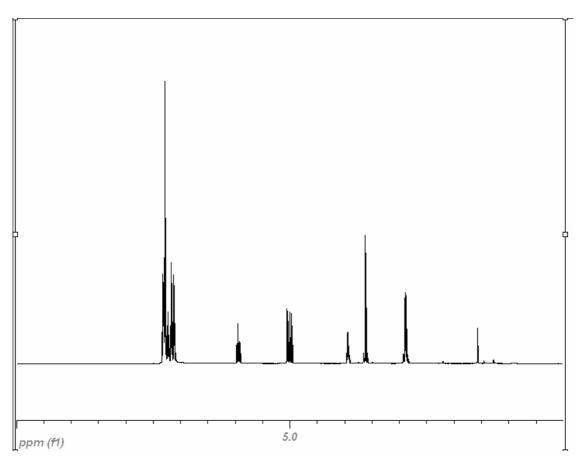

⁶ E. Burger and J. Tunge, *Org. Lett.*, 2004, **6**, 2603.

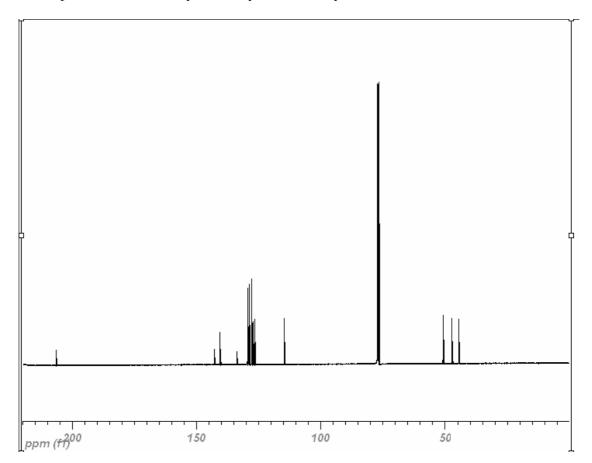




1e: ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 9 Hz, 2H: arom. H), 7.31 (d, J = 9 Hz, 2H: arom. H), 5.87 (ddd, J = 7 Hz, 10 Hz, 17 Hz, 1H: CH=CH₂), 5.07 (d, J = 10 Hz, 1H: CH=CH(H)_{cis}), 4.98 (d, J = 17 Hz, 1H: CH=CH(H)_{trans}), 3.98 (app. q, J = 7 Hz, 1H: CH), 2.88 (dd, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₂), 2.80 (dd, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₂), 2.80 (dd, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₂), 2.80 (dd, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₂), 2.05 (s, 3H: CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 205.76 (C=O), 150.57 (arom. C), 146.72 (arom. C), 139.06 (CH=CH₂), 128.66 (arom. CH), 124.08 (arom. CH), 116.02 (CH=CH₂), 48.52 (CH₂), 43.94 (CH), 30.63 (CH₃). IR (CDCl₃): v_{max} 1716, 1522, 1348. HRMS calcd for C₁₂H₁₄NO₃ [M+H] = 220.0974, found 220.0976. Separated enantiomers on Diacel Chiralpak AD HPLC column (94.0% Hexane/IPA, 1.0 mL/min) - t_r = 10.3, 11.5 min.

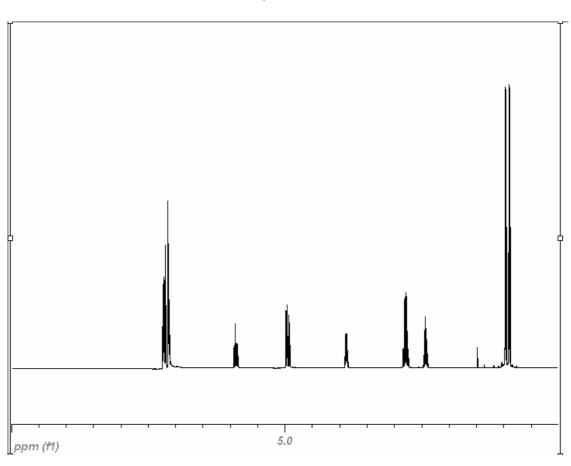


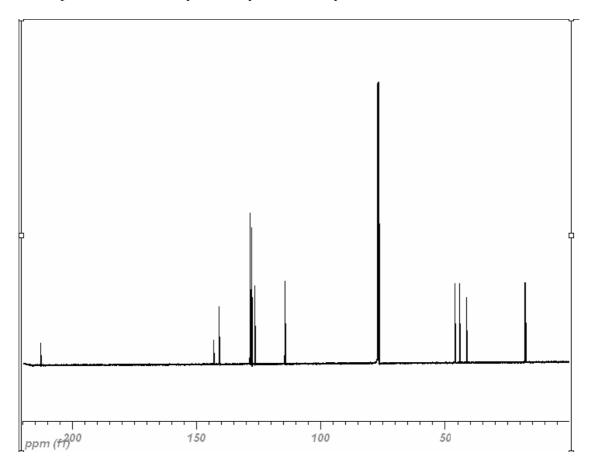



1f:^{7 1}H NMR (500 MHz, CDCl₃) Major diastereomer: δ 7.28 (broad overlapping m, 5H: arom. H), 5.96 (overlapping m, 1H: CH=CH₂), 5.09 (overlapping m, 1H: CH=CH(H)_{cis}), 5.09 (overlapping m, 1H: CH=CH(H)_{trans}), 3.49 (overlapping m, 1H: Ph-CH), 2.99 (overlapping dq, J = 7 Hz, 10 Hz, 1H: CH-CH₃), 2.20 (s, 3H: (CO)CH₃), 0.91 (d, J = 7 Hz. 3H: CH-CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 212.17 (C=O), 141.44 (arom. C), 139.69 (CH=CH₂), 128.71 (arom. CH), 128.10 (arom. CH), 126.73 (arom. CH), 115.68 (CH=CH₂), 53.07 (CH-Ph), 52.00 (CH-CH₃), 29.48 (CH₃-(CO)), 15.58 (CH-CH₃). Minor diastereomer: δ 7.28 (broad overlapping m, 5H: arom. H), 5.96 (overlapping m, 1H: CH=CH₂), 5.09 (overlapping m, 1H: CH=CH(H)_{cis}), 5.09 (overlapping m, 1H: CH=CH(H)_{trans}), 3.49 (overlapping m, 1H: Ph-CH), 2.99 (overlapping dq, J = 7 Hz, 10 Hz, 1H: CH-CH₃), 1.90 (s, 3H: (CO)CH₃), 1.74 (d, J = 7 Hz, 3H: CH-CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 212.00 (C=O), 142.52 (arom. C), 138.85 (CH=CH₂), 128.53 (arom. CH), 127.63 (arom. CH), 126.08 (arom. CH), 116.57 (CH=CH₂), 53.41 (CH-Ph), 51.60 (CH-CH₃), 29.68 (CH₃-(CO)), 15.33 (CH-CH₃). IR (CDCl₃): v_{max} 1711, 1454, 1356. HRMS calcd for $C_{13}H_{17}O$ [M+H] = 189.1279, found 189.1278. Separated

⁷ (a) W. Daub, J. Edwards, C. Okada, J. Allen, C. Maxey, M. Wells, A. Goldstein, M. Dibley, C. Wang, D. Ostercamp, S. Chung, P. Cunningham and M. Berliner, *J. Org. Chem.*, 1997, **62**, 1976; (b) W. Daub, M. McCoy, M. Sanchez, and J. Carter, *J. Org. Chem.*, 1983, **48**, 3876; (c) W. Daub, M. Sanchez, R. Cromer and L. Gibson, *J. Org. Chem*, 1982, **47**, 743; (d) D. McGreer and J. McKinley, *Can. J. Chem.*, 1971, **49**, 105.

enantiomers on Diacel Chiralpak OD-H HPLC column (99.8% Hexane/IPA, 0.5 mL/min) - t_r (major) = 21.7, 22.9 min, t_r (minor) = 25.4, 25.9 min.





1g: ¹H NMR (500 MHz, CDCl₃) δ 7.32 (m, 5H: arom. H), 7.24 (m, 1H: arom. CH), 7.17 (d, J = 7 Hz, 2H: arom. CH), 7.12 (d, J = 7 Hz, 2H: arom. CH), 5.95 (ddd, J = 7 Hz, 10 Hz, 17 Hz, 1H: CH=CH₂), 5.05 (d, J = 10 Hz, 1H: CH=CH(H)_{cis}), 4.98 (d, J = 17 Hz, 1H: CH=CH(H)_{trans}), 3.94 (app. q, J = 7 Hz, 1H: CH), 3.64 (d, J = 15 Hz, 1H: diastereotopic Ph-CH₂), 3.61 (d, J = 15 Hz, 1H: diastereotopic Ph-CH₂), 2.91 (dd, J = 7 Hz, 16 Hz, 1H: diastereotopic (CO)CH₂). ¹³C NMR (75 MHz, CDCl₃) δ 206.40 (C=O), 142.71 (arom. C), 140.45 (CH=CH₂), 133.82 (arom. CH), 129.47 (arom. CH), 128.72 (arom. CH), 128.60 (arom. CH), 127.65 (arom. CH), 127.04 (arom. CH), 126.60 (arom. CH), 114.65 (CH=CH₂), 50.89 (Ph-CH₂), 47.17 ((CO)CH₂), 44.49 (CH). IR (CDCl₃): v_{max} 1715, 1495, 1454. HRMS calcd for C₁₈H₁₉O [M+H] = 251.1436, found 251.1432. Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0% Hexane/IPA, 0.5 mL/min) - t_r = 18.4, 20.2 min.

1h:^{8,7b,7c 1}H NMR (500 MHz, CDCl₃) δ 7.21 (m, 2H: arom. H), 7.13 (m, 3H: arom. H), 5.91 (ddd, J = 7 Hz, 10 Hz, 17 Hz, 1H: CH=CH₂), 4.98 (d, J = 10 Hz, 1H: CH=CH(H)_{cis}), 4.94 (d, J = 17 Hz, 1H: CH=CH(H)_{trans}), 3.88 (app. q, J = 7 Hz, 1H: Ph-CH), 2.83 (dd, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₂), 2.77 (dd, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₂), 0.97 (d, J = 7 Hz, 17 Hz, 1H: diastereotopic CH₃), 0.90 (d, J = 7 Hz, 3H: diastereotopic CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 212.65 (C=O), 143.15 (arom. C), 140.77 (CH=CH₂), 128.56 (arom. CH), 127.69 (arom. CH), 126.52 (arom. CH), 114.53 (CH=CH₂), 45.94 (CH₂), 44.30 (CH-(CH₃)₂), 41.37 (PhCH), 17.94 (diastereotopic CH₃), 17.83 (diastereotopic CH₃). IR (CDCl₃): v_{max} 1709, 1452, 1385, 1364. HRMS calcd for C₁₄H₁₉O [M+H] = 203.1436, found 203.1433. Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0% Hexane/IPA, 0.5 mL/min) - t_r = 9.5, 10.5 min.

⁸ T. Hirao, T. Fujii and Y. Ohshiro, *Tetrahedron*, 1994, **50**, 10207.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Determination of the absolute configuration of 3a.

3a (0.4 mmol) was cleanly hydrogenated under *ca*. 1 atm. H₂ at 50 °C overnight using catalytic Pd on charcoal (20 mg) in ethanol. A clear oil was produced following filtration through Celite and concentration under reduced pressure. A specific rotation of $[\alpha]_D^{24} = -18.5$ was determined in ethanol, thus establishing the formation of (*R*)-(-)-4-phenyl hexanone which corresponds to an (*S*)-configuration for substrate **3a**. It should be noted that the specific rotation was calculated assuming 100% product isolation after hydrogenation, so the ee calculated using this number is not accurate.

Regioselectivities:

Substrate	R _t branched	R _t linear	Branched:linear
3a	7.7 min	9.9 min	75:1
3b	8.9 min	11.5 min	101:1
3c	11.0 min	15.4 min	19:1
3d	10.1 min	13.4 min	89:1
3f	8.1,8.3 min	10.5 min	59:1
3g	16.6 min	20.4 min	20:1
3h	12.2 min	9.4 min	38:1

Isomers separated on a Restek Rtx-5 GC column. Substrates **3a-f** and **3h**: injector temp = $200 \,^{\circ}$ C, detector temp = $250 \,^{\circ}$ C, ramp 50 $^{\circ}$ C to 150 C at 10 $^{\circ}$ /min. Substrate **3g**: injector temp = $200 \,^{\circ}$ C, detector temp = $250 \,^{\circ}$ C, ramp 100 $^{\circ}$ C to 200 $^{\circ}$ C at 5 $^{\circ}$ /min.