Ruthenium-catalyzed Stereospecific Decarboxylative Allylation of Unstabilized Ketone Enolates.

Erin C. Burger and Jon A. Tunge*
Department of Chemistry, University of Kansas, Lawrence, KS 66045

Supporting Information

Experimental

Materials. Methylene chloride was dried over activated alumina. All other materials were used as received. β-keto esters $\mathbf{1 a} \mathbf{- 1 f}$ were prepared by the addition of diketene to the corresponding allylic alcohols, ${ }^{1}$ which had previously been subjected to enzymatic resolution with Lipase AK "Amano" 20. ${ }^{2}$ 1c degraded slightly on SiO_{2} and therefore was used without further purification. 1f was prepared by alkylation of 1a using methyl iodide and potassium tert-butoxide. ${ }^{3} \beta$-keto esters $\mathbf{1 g}$ and $\mathbf{1 h}$ were prepared by the condensation of the corresponding acid chloride with Meldrum's acid ${ }^{4}$ followed by addition of the appropriate allylic alcohol. ${ }^{5}{ }^{1} \mathrm{H}$ NMR spectra were referenced to residual protio solvent signals. Structural assignments are based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, ~$ DEPT-135, COSY, and HMQC spectroscopies. Enantioselectivities were determined on a Diacel Chiralpak AD or OD-H HPLC column.

General procedure for catalytic Carroll rearrangements: In a Schlenk tube under argon, $\left[\mathrm{RuCp}{ }^{*} \mathrm{Cl}\right]_{4}(2.5 \mathrm{~mol} \%)$ and bipyridine ($10 \mathrm{~mol} \%$) were dissolved in 2 mL of methylene chloride. The resulting deep purple solution was allowed to stir briefly before addition of allyl- β-keto ester (0.5 mmole) in 3 mL of methylene chloride via cannula. The reaction was allowed to stir under Ar until the resulting dark burnt orange solution returned to purple. Following solvent evaporation the crude product was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{Et}_{2} \mathrm{O}: \mathrm{Hex}\right)$, providing products in $>95 \%$ purity as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

[^0]
\# Supplementary Material (ESI) for Chemical Communications

\# This journal is © The Royal Society of Chemistry 2005

1a: ${ }^{6}$ Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0\% Hexane/IPA, $0.5 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{r}}=13.3,14.7 \mathrm{~min}$.

1b: ${ }^{6}$ Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0\% Hexane/IPA, $0.5 \mathrm{~mL} / \mathrm{min})-\mathrm{t}_{\mathrm{r}}=12.9,14.4 \mathrm{~min}$.

1c: ${ }^{6}$ Separated enantiomers on Diacel Chiralpak AD HPLC column (97.0% Hexane/IPA, $1.0 \mathrm{~mL} / \mathrm{min})-\mathrm{t}_{\mathrm{r}}=6.8,7.7 \mathrm{~min}$.

1d: ${ }^{6}$ Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0\% Hexane/IPA, $1.0 \mathrm{~mL} / \mathrm{min})-\mathrm{t}_{\mathrm{r}}=7.7,8.9 \mathrm{~min}$.

[^1]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

1e: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$: arom. H), $7.31(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$: arom. H), 5.87 (ddd, $J=7 \mathrm{~Hz}, 10 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}_{2}$), $5.07(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}$: $\left.\mathrm{CH}=\mathrm{CH}(H)_{\text {cis }}\right), 4.98\left(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\text {trans }}\right), 3.98$ (app. q, $\left.J=7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}\right)$, 2.88 (dd, $J=7 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic CH_{2}), $2.80(\mathrm{dd}, J=7 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic CH_{2}), $2.05\left(\mathrm{~s}, 3 \mathrm{H}: \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.76(\mathrm{C}=\mathrm{O})$, 150.57 (arom. C), 146.72 (arom. C), $139.06\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 128.66$ (arom. CH$), 124.08$ (arom. CH), $116.02\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 48.52\left(\mathrm{CH}_{2}\right), 43.94(\mathrm{CH}), 30.63\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{CDCl}_{3}\right)$: $v_{\text {max }}$ 1716, 1522, 1348. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]=220.0974$, found 220.0976. Separated enantiomers on Diacel Chiralpak AD HPLC column (94.0\% Hexane/IPA, 1.0 $\mathrm{mL} / \mathrm{min})-\mathrm{t}_{\mathrm{r}}=10.3,11.5 \mathrm{~min}$.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

1f: ${ }^{71} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major diastereomer: $\delta 7.28$ (broad overlapping $\mathrm{m}, 5 \mathrm{H}$: arom. H), 5.96 (overlapping m, $1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}_{2}$), 5.09 (overlapping m, $1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\mathrm{cis}}$), 5.09 (overlapping $\mathrm{m}, 1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\text {trans }}$, 3.49 (overlapping m, $1 \mathrm{H}: \mathrm{Ph}-\mathrm{CH}$), 2.99 (overlapping dq, $J=7 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}-\mathrm{CH}_{3}$), 2.20 (s, $3 \mathrm{H}:(\mathrm{CO}) \mathrm{CH}_{3}$), 0.91 (d, $J=$ $\left.7 \mathrm{~Hz}, 3 \mathrm{H}: \mathrm{CH}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.17(\mathrm{C}=\mathrm{O}$), 141.44 (arom. C), $139.69\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 128.71$ (arom. CH), 128.10 (arom. CH), 126.73 (arom. CH), 115.68 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 53.07(\mathrm{CH}-\mathrm{Ph}), 52.00\left(\mathrm{CH}-\mathrm{CH}_{3}\right), 29.48\left(\mathrm{CH}_{3}-(\mathrm{CO})\right), 15.58\left(\mathrm{CH}-\mathrm{CH}_{3}\right)$.
Minor diastereomer: $\delta 7.28$ (broad overlapping m, 5 H : arom. H), 5.96 (overlapping m, $1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}_{2}$), 5.09 (overlapping m, $1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\text {cis }}$), 5.09 (overlapping $\mathrm{m}, 1 \mathrm{H}$: $\mathrm{CH}=\mathrm{CH}(H)_{\text {trans }}$), 3.49 (overlapping $\mathrm{m}, 1 \mathrm{H}: \mathrm{Ph}-\mathrm{CH}$), 2.99 (overlapping dq, $J=7 \mathrm{~Hz}$, $10 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{C} H-\mathrm{CH}_{3}$), $1.90\left(\mathrm{~s}, 3 \mathrm{H}:(\mathrm{CO}) \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}: \mathrm{CH}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.00(\mathrm{C}=\mathrm{O}), 142.52$ (arom. C), $138.85\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 128.53$ (arom. CH), 127.63 (arom. CH), 126.08 (arom. CH), $116.57\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 53.41(\mathrm{CH}-\mathrm{Ph})$, $51.60\left(\mathrm{CH}-\mathrm{CH}_{3}\right), 29.68\left(\mathrm{CH}_{3}-(\mathrm{CO})\right), 15.33\left(\mathrm{CH}-\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{CDCl}_{3}\right): v_{\max } 1711,1454$, 1356. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]=189.1279$, found 189.1278. Separated

[^2]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
enantiomers on Diacel Chiralpak OD-H HPLC column (99.8\% Hexane/IPA, 0.5 $\mathrm{mL} / \mathrm{min})-\mathrm{t}_{\mathrm{r}}($ major $)=21.7,22.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=25.4,25.9 \mathrm{~min}$.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

$\mathbf{1 g}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~m}, 5 \mathrm{H}:$ arom. H$), 7.24(\mathrm{~m}, 1 \mathrm{H}$: arom. CH$), 7.17$ (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}: \operatorname{arom} . \mathrm{CH}$), 7.12 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}: \operatorname{arom} . \mathrm{CH}), 5.95$ (ddd, $J=7 \mathrm{~Hz}$, $\left.10 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{C} H=\mathrm{CH}_{2}\right), 5.05\left(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\mathrm{cis}}\right), 4.98(\mathrm{~d}, J=17 \mathrm{~Hz}$, $1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\text {trans }}$), 3.94 (app. q, $J=7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}$), 3.64 (d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}:$ diastereotopic $\mathrm{Ph}-\mathrm{CH}_{2}$), 3.61 (d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic $\mathrm{Ph}^{2}-\mathrm{CH}_{2}$), 2.91 (dd, $J=$ $7 \mathrm{~Hz}, 16 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic (CO)CH2), $2.86(\mathrm{dd}, J=7 \mathrm{~Hz}, 16 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic $\left.(\mathrm{CO}) \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.40(\mathrm{C}=\mathrm{O}), 142.71$ (arom. C), 140.45 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$), 133.82 (arom. CH), 129.47 (arom. CH), 128.72 (arom. CH), 128.60 (arom. CH), 127.65 (arom. CH), 127.04 (arom. CH), 126.60 (arom. CH), $114.65\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, $50.89\left(\mathrm{Ph}^{2} \mathrm{CH}_{2}\right), 47.17\left((\mathrm{CO}) \mathrm{CH}_{2}\right), 44.49(\mathrm{CH})$. $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right): v_{\max } 1715,1495,1454$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]=251.1436$, found 251.1432. Separated enantiomers on Diacel Chiralpak AD HPLC column (99.0% Hexane $/$ IPA, $0.5 \mathrm{~mL} / \mathrm{min}$) $-\mathrm{t}_{\mathrm{r}}=18.4$, 20.2 min .
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

 5.91 (ddd, $J=7 \mathrm{~Hz}, 10 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}: \quad \mathrm{CH}=\mathrm{CH}_{2}$), $4.98(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}$: $\left.\mathrm{CH}=\mathrm{CH}(H)_{\text {cis }}\right), 4.94\left(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}=\mathrm{CH}(H)_{\text {trans }}\right), 3.88(\operatorname{app} . \mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{Ph}-$ CH), 2.83 (dd, $J=7 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic CH_{2}), 2.77 (dd, $J=7 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{H}$: diastereotopic CH_{2}), 2.43 (sep., $\left.J=7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{CH}-\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97$ (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$: diastereotopic CH_{3}), $0.90\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}\right.$: diastereotopic $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 212.65(\mathrm{C}=\mathrm{O}), 143.15$ (arom. C), $140.77\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 128.56$ (arom. CH), 127.69 (arom. CH), 126.52 (arom. CH), $114.53\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 45.94\left(\mathrm{CH}_{2}\right), 44.30(\mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 41.37(\mathrm{PhCH}), 17.94$ (diastereotopic CH_{3}), 17.83 (diastereotopic CH_{3}). IR $\left(\mathrm{CDCl}_{3}\right): v_{\max } 1709,1452,1385,1364$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]=203.1436$, found 203.1433. Separated enantiomers on Diacel Chiralpak AD HPLC column $(99.0 \%$ Hexane/IPA, $0.5 \mathrm{~mL} / \mathrm{min})-\mathrm{t}_{\mathrm{r}}=9.5,10.5 \mathrm{~min}$.

[^3]\# Supplementary Material (ESI) for Chemical Communications

\# This journal is © The Royal Society of Chemistry 2005
Determination of the absolute configuration of 3a.
3a (0.4 mmol) was cleanly hydrogenated under $c a .1 \mathrm{~atm} . \mathrm{H}_{2}$ at $50{ }^{\circ} \mathrm{C}$ overnight using catalytic Pd on charcoal (20 mg) in ethanol. A clear oil was produced following filtration through Celite and concentration under reduced pressure. A specific rotation of $[\alpha]_{\mathrm{D}}{ }^{24}=$ -18.5 was determined in ethanol, thus establishing the formation of $(R)-(-)-4$-phenyl hexanone which corresponds to an (S)-configuration for substrate 3a. It should be noted that the specific rotation was calculated assuming 100% product isolation after hydrogenation, so the ee calculated using this number is not accurate.

Regioselectivities:

Substrate	$\mathbf{R}_{\mathbf{t}}$ branched	$\mathbf{R}_{\mathbf{t}}$ linear	Branched:linear
3a	7.7 min	9.9 min	$75: 1$
3b	8.9 min	11.5 min	$101: 1$
3c	11.0 min	15.4 min	$19: 1$
3d	10.1 min	13.4 min	$89: 1$
3f	$8.1,8.3 \mathrm{~min}$	10.5 min	$59: 1$
3g	16.6 min	20.4 min	$20: 1$
3h	12.2 min	9.4 min	$38: 1$

Isomers separated on a Restek Rtx-5 GC column. Substrates 3a-f and 3h: injector temp $=200^{\circ} \mathrm{C}$, detector temp $=250^{\circ} \mathrm{C}$, ramp $50^{\circ} \mathrm{C}$ to 150 C at $10^{\circ} / \mathrm{min}$. Substrate $\mathbf{3 g}$: injector temp $=200^{\circ} \mathrm{C}$, detector temp $=250^{\circ} \mathrm{C}$, ramp $100^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ at $5{ }^{\circ} / \mathrm{min}$.

[^0]: ${ }^{1}$ S. Wilson and C. Augelli, Org. Synth., 1990, 68, 210.
 ${ }^{2}$ (a) K. Burgess and L. Jennings, J. Am. Chem. Soc., 1990, 112, 7434; (b) K. Burgess and L. Jennings, J. Am. Chem. Soc., 113, 6129.
 ${ }^{3}$ H. Lee, J. Park, B. Kim and S. Gellman, J. Org. Chem., 2003, 68, 1575.
 ${ }^{4}$ N. Svenstrup, K. Simonsen, N. Thorup, J. Brodersen, W. Dehaen and J. Becher, J. Org. Chem., 1999, 64, 2814.
 ${ }^{5}$ F. Yuste, F. Brena, H. Barrios, R. Sanchez-Obregon, B. Ortiz and F. Walls, Synth. Commun. 1988, 18, 735.

[^1]: ${ }^{6}$ E. Burger and J. Tunge, Org. Lett., 2004, 6, 2603.

[^2]: ${ }^{7}$ (a) W. Daub, J. Edwards, C. Okada, J. Allen, C. Maxey, M. Wells, A. Goldstein, M. Dibley, C. Wang, D. Ostercamp, S. Chung, P. Cunningham and M. Berliner, J. Org. Chem., 1997, 62, 1976; (b) W. Daub, M. McCoy, M. Sanchez, and J. Carter, J. Org. Chem., 1983, 48, 3876; (c) W. Daub, M. Sanchez, R. Cromer and L. Gibson, J. Org. Chem, 1982, 47, 743; (d) D. McGreer and J. McKinley, Can. J. Chem., 1971, 49, 105.

[^3]: ${ }^{8}$ T. Hirao, T. Fujii and Y. Ohshiro, Tetrahedron, 1994, 50, 10207.

