Electronic Supplementary Information

Thioctic acid amides: Convenient tethers for achieving low nonspecific protein binding to carbohydrates presented on gold surfaces \dagger

Rositsa Karamanska, Balaram Mukhopadhyay, David A. Russell* and Robert
A. Field*

Figure 1. Cyclic voltammograms (scan rate $=50 \mathrm{mV} \mathrm{s}^{-1}$) of gold, 1a, 1b, 2a and $\mathbf{2 b}$ monolayers in the presence of $1 \mathrm{mM} \mathrm{K} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$

Figure 2. Changes in UV-vis spectra of gold-mannoside particles after interaction with different concentrations of Con A ($0-50 \mu \mathrm{~g} / \mathrm{ml}$): (A) 1a; (B) 2a; (C) 1b and (D) 2b derivatised particles

Figure 3. Comparison of specific and non-specific binding of mannoside-gold particles with $50 \mu \mathrm{~g} / \mathrm{ml}$ lectins (Con A, RCA 120 and TPL) and Fibrinogen; (A) 1a; (B) 2a; (C) 1b and (D) 2b.

Figure 4. Interaction of 2b modified gold particles with $2.5 \mu \mathrm{~g} / \mathrm{ml}$ Con A plus $0-50 \mu \mathrm{~g} / \mathrm{ml}$ Fibrinogen. Particles only (dash); particles + Con A only (solid); particles + Con A $+2.5 \mu \mathrm{~g} / \mathrm{ml}$ Fib (dot); particles + Con A $+5 \mu \mathrm{~g} / \mathrm{ml}$ Fib (dash dot dot); particles + Con A $+10 \mu \mathrm{~g} / \mathrm{ml} \mathrm{Fib} \mathrm{(dash} \mathrm{dot);} \mathrm{particles}+$ Con A+25 $\mu \mathrm{g} / \mathrm{ml} \mathrm{Fib}$ (short dot); particles + Con $\mathrm{A}+50 \mu \mathrm{~g} / \mathrm{ml}$ Fib (short dash)

Scheme 1. Synthesis of 1a

Reagents and conditions: a. 2-bromo propanol, $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}, \mathrm{rt}, 65 \%$; b. KSAc, 2-butanone, reflux, $3 \mathrm{~h}, 97 \%$; c. NaOMe , $\mathrm{MeOH}, 93 \%$.

Scheme 2. Synthesis of thioctic amide derivative 1b

Reagents and conditions: a. $\mathrm{NaN}_{3}, \mathrm{Bu}_{4} \mathrm{NOTf}$, DMF, rt, $3 \mathrm{~h}, 91 \%$; b. H_{2} - Pd , $\mathrm{MeOH}-\mathrm{CHCl}_{3}, 74 \%$; c. thioctic acid, HOBt, EDCI, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$, rt, 12h, 67%; d. NaOMe, MeOH, 89%.

Scheme 3. Synthesis of 2a

Reagents and conditions: a. NaOMe, $\mathrm{MeOH}, ~ 93 \%$; b. trimethyl orthobenzoate, (S)-10camphorsulfonic acid, $\mathrm{CH}_{3} \mathrm{CN}$, rt, 2 h then $\mathrm{H}_{2} \mathrm{O}, 30 \mathrm{~min}, 78 \%, \mathbf{9 : 1 0}=1.5: 1$; c. TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 30$ $\min , 76 \%$; d. KSAc, 2-butanone, reflux, 3h, 87%; e. $\mathrm{NaOMe}, \mathrm{MeOH}, 93 \%$.

Scheme 4. Synthesis of 2b

2b
Reagents and conditions: a. $\mathrm{NaN}_{3}, \mathrm{Bu}_{4} \mathrm{NOTf}$, DMF, rt, $3 \mathrm{~h}, 87 \%$; b. $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}-\mathrm{CHCl}_{3}, 72 \%$; c. Thioctic acid, HOBt, EDCI, DMF, 12h, 76%, d. NaOMe, MeOH, 83%.

Experimental

Compounds $\mathbf{2},{ }^{\mathrm{i}} 3,{ }^{\mathrm{ii}} \mathbf{4},{ }^{\mathrm{iii}} \mathbf{5}^{\mathrm{iv}}$ and $\mathbf{6}^{\mathrm{V}}$ were made by following literature procedure and products were fully characterized and compared with reported data.
\boldsymbol{N}-(2-[2,3,4,6-tetra-O-acetyl- α-D-mannopyranosyloxy]ethyl) thioctamide (8). A solution of compound $7(1.0 \mathrm{~g}, 2.6 \mathrm{mmol})$, $\mathrm{HOBt}(350 \mathrm{mg}, 2.6 \mathrm{mmol}), \mathrm{EDCI}(500 \mathrm{mg}, 2.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L})$ in dry DMF (20 mL) was stirred at rt for 12 hours. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The crude product was purified by flash chromatography (n-hexane-EtOAc 1:2) to afford Compound 8 (990 $\mathrm{mg}, 67 \%)$ as foam. $[\alpha]_{\mathrm{D}}{ }^{25}+38^{\circ}\left(c \quad 1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 6.21(\mathrm{t}, 1 \mathrm{H}), 5.23-5.09(\mathrm{~m}, 3 \mathrm{H})$, $4.72(\mathrm{~d}, 1 \mathrm{H}), 4.15(\mathrm{dd}, 1 \mathrm{H}), 3.99(\mathrm{dd}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{t}, 2 \mathrm{H}), 2.04,1.98,1.93,1.88(4 \mathrm{~s}, 12 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 172.9,170.4,169.9$ (2), 169.5, 97.4, 69.0, 68.7, 68.3, 67.0, 65.8, 62.1, 56.0, $39.9,38.6,38.1,35.8,34.2,28.5,25.0,20.4,20.3,20.2$. HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{11} \mathrm{~N}_{2} \mathrm{~S}_{2}$ 597.2152, found 597.2149.
\boldsymbol{N}-(2-[α-D-mannopyranosyloxy]ethyl) thioctamide (1b). To a solution of compound $\mathbf{8}$ ($700 \mathrm{mg}, 1.2$ mmol) in dry $\mathrm{MeOH}(15 \mathrm{~mL})$, methanolic $\mathrm{NaOMe}(150 \mu \mathrm{~L}, 0.5 \mathrm{M})$ was added and the mixture was stirred at rt for 2 hours. After neutralization with DOWEX $50 \mathrm{~W} \mathrm{H}^{+}$resin, the mixture was filtered and evaporated in vacuo to give Compound 1b ($630 \mathrm{mg}, 89 \%$) as foam. $[\alpha]_{\mathrm{D}}{ }^{25}+17^{\circ}(c 1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$

NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.38(\mathrm{~m}, 6 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{t}$, $2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 178.1,99.9,73.8,70.3,70.2$, $68.1,67.7,61.1,57.3,40.4,39.7,39.3,37.9,35.6,28.4,26.7$. $\mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{NS}_{2}$ 412.1464, found 412.1462 .

Bromoethyl 2,4-di-O-benzoyl- α-D-mannopyranoside (9) and Bromoethyl 2,6-di-O-benzoyl- α-Dmannopyranoside (10). Compound $\mathbf{4}(2.5 \mathrm{~g}, 5.5 \mathrm{mmol})$ was de- O-acetylated as described for compound 1b. After drying in vacuo, the de- O-acetylated product was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, trimethyl orthobenzoate ($2.8 \mathrm{~mL}, 16.5 \mathrm{mmol}$) and CSA (100 mg) were added and stirred at rt until TLC ($2: 1 \mathrm{n}$ -hexane-EtOAc) showed complete conversion to a faster running compound. Then $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and stirring continued for another 30 min the mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. After evaporation in vacuo, the crude product was purified by flash chromatography (n-hexane-EtOAc 1:1) to afford Compound 9 (1.3g, 47\%) and Compound 10 ($850 \mathrm{mg}, 31 \%$).

Bromoethyl 2,4-di-O-benzoyl- α-D-mannopyranoside (9): $[\alpha]_{\mathrm{D}}{ }^{25}+107^{\circ}$ (c 1.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.05(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.39(\mathrm{~m}, 6 \mathrm{H}), 5.52(\mathrm{t}, 1 \mathrm{H}), 5.43(\mathrm{dd}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{dd}, 1 \mathrm{H}), 4.07$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{t}, 1 \mathrm{H}), 3.91(\mathrm{dd}, 1 \mathrm{H}), 3.80(\mathrm{dd}, 1 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}), 2,45(\mathrm{bs}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$): 166.9, 166.1, 133.3, 133.1, 129.7, 129.6, 129.3, 128.4, 128.3, 97.7, 72.1, 71.0, 69.7, 67.9 , 67.5, 63.4, 29.8. HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrO}_{8} \mathrm{~N} 512.0915$, found 512.0919.

Bromoethyl 2,6-di-O-benzoyl- α-D-mannopyranoside (10): $[\alpha]_{\mathrm{D}}{ }^{25}+106^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$) : 8.11-7.83 (2d, 4H), 7.61-7.19 (m, 6 H$), 5.34(\mathrm{dd}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{dd}, 1 \mathrm{H}), 4.51(\mathrm{~d}$, $1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{bs}, 2 \mathrm{H}), 3.42(\mathrm{t}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $166.9,166.1,133.3,133.1,129.7,129.6,129.3,128.4,128.3,97.7,72.1,71.0,69.7,67.9,67.5,63.4$, 29.8. HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrO}_{8} \mathrm{~N} 512.0915$, found 512.0919.

Bromoethyl 3,6-di-O-(2,3,4,6-tetra-O-acetyl- α-D-mannopyranosyl)-2,4-di-O-benzoyl- α-Dmannopyranoside (12). A mixture of compound 9 ($1 \mathrm{~g}, 2.0 \mathrm{mmol}$), 2,3,4,6-tetra- O-acetyl- α-Dmannopyranosyl trichloroacetimidate (11) ($3 \mathrm{~g}, 6.0 \mathrm{mmol}$) and MS $4 \AA(3 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred under N_{2} for 3 hours. TMSOTf ($7.0 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was added and stirring was continued for another 30 minutes. After neutralizing with $\mathrm{Et}_{3} \mathrm{~N}$, the mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate was evaporated in vacuo. Flash chromatography (n-hexane-EtOAc 1:1) afforded pure Compound $12(1.8 \mathrm{~g}, 76 \%)$ as foam. $[\alpha]_{\mathrm{D}}{ }^{25}+39^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 8: 8.10-7.98 (2d, $4 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.60-7.39(\mathrm{~m}, 6 \mathrm{H}), 5.58(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.49(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}), 5.29$ (dd, $1 \mathrm{H}, J=3.6 \mathrm{~Hz}, 10.4 \mathrm{~Hz}$), 5.18 (t, 1H, $J=10.0 \mathrm{~Hz}$), 5.06 (m, 2H), 5.04 (d, $1 \mathrm{H}, J=1.6 \mathrm{~Hz}$), 4.98 (d, 1H, $J=2.0 \mathrm{~Hz}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 4.43(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.16-$ $3.83(\mathrm{~m}, 9 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 3 \mathrm{H}), 2.08,2.02,2.00,1.94,1.88,1.87,1.82,1.78(8 \mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 170.5,170.4,169.8,169.6,169.5,169.4,169.0,168.9,165.8,165.2,133.6,133.5,129.9$, $129.8,128.9,128.7,128.5,128.4,99.4,97.3,96.8,75.5,71.6,69.6,69.2,69.1,69.0,68.7,68.5,68.4$, $68.1,68.0,66.3,65.8,62.2,62.0,30.2,20.7,20.6,20.5$ (2), 20.4 (2), 20.3, 20.2. HRMS $\left[\mathrm{M}^{2}+\mathrm{NH}_{4}\right]^{+}$ calcd. for $\mathrm{C}_{50} \mathrm{H}_{63} \mathrm{BrO}_{26} \mathrm{~N} 1172.2816$, found 1172.2830.

2-S-Acetylthioethyl 3,6-di- O-(2,3,4,6-tetra- \boldsymbol{O}-acetyl- α-D-mannopyranosyl)-2,4-di- O-benzoyl- α -D-mannopyranoside (13). A solution of compound $12(1 \mathrm{~g}, 0.9 \mathrm{mmol})$ and $\mathrm{KSAc}(\mathrm{g}, 22.7 \mathrm{mmol})$ in 2butanone (20 mL) was refluxed for 3 hours. After cooling at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude product was purified by flash chromatography (n-hexaneEtOAc 1:1) to afford pure Compound $13(900 \mathrm{mg}, 87 \%) \cdot[\alpha]_{\mathrm{D}}{ }^{25}+45^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 8.17-7.93(2 \mathrm{~d}, 4 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.61-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.60(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.45(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 3.6$ $\mathrm{Hz}), 5.29(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.06-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{bs}, 1 \mathrm{H})$,
$4.96(\mathrm{bs}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{dd}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 4.18-4.04(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.90$ $(\mathrm{m}, 3 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.15$, $2.12,2.01,1.98,1.96,1.95,1.91,1.89(8 \mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 195.0,170.6,170.5,169.9,169.8$, $169.7,169.5,169.2,169.1,166.0,165.3,133.6,133.5,129.9,129.8,129.1,128.8,128.5,99.4,97.3$, $97.1,75.5,71.6,69.6,69.3,69.2,68.8,68.5,68.2,66.8,66.5,65.8,62.2,62.1,30.4,28.5,20.7(2), 20.6$, 20.5, 20.4 (2), 20.3, 20.2. HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{O}_{27} \mathrm{SN} 1168.3537$, found 1168.3543.

Azidoethyl 3,6-di- \boldsymbol{O}-(2,3,4,6-tetra- \boldsymbol{O}-acetyl- α-D-mannopyranosyl)-2,4-di- O-benzoyl- α-Dmannopyranoside (14). To a solution of compound 12 ($1 \mathrm{~g}, 0.9 \mathrm{mmol}$) in dry DMF (20 mL), NaN_{3} ($585 \mathrm{mg}, 9 \mathrm{mmol}$) and tetrabutylammonium triflate ($350 \mathrm{mg}, 0.9 \mathrm{mmol}$) were added and the mixture was stirred at room temperature for 3 hours. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, the organic layer was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude product was purified by flash chromatography (n-hexane-EtOAc 1:1) to afford pure Compound 14 (875 $\mathrm{mg}, 87 \%)$ as syrup. $[\alpha]_{\mathrm{D}}{ }^{25}+63^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.17-7.92(2 \mathrm{~d}, 4 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.63-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 5.62(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.47(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 5.32(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz})$, $5.26(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{bs}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, 9.2 \mathrm{~Hz}$), 4.19-4.03 (m, 3H), 3.99-3.89 (m, 3H), $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{dd}, 1 \mathrm{H}$, $J=1.2 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 2.11,2.09,2.08,2.01,1.98,1.96,1.91,1.85(8 \mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 170.5,170.4,169.8,169.6,169.5,169.0,168.9,165.8,165.2,133.6,133.5,129.9,129.8$, $128.9,128.7,128.5,128.4,99.5,97.2,96.8,75.3,71.5,69.5,69.3,69.1,69.0,68.7,68.5,68.4,68.2$, $66.9,66.2,65.8,65.7,62.2,61.9,50.3,20.7,20.6(2), 20.5,20.4(2), 20.3,20.2 . \mathrm{HRMS}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{50} \mathrm{H}_{63} \mathrm{O}_{26} \mathrm{~N}_{4} 1135.3725$, found 1135.3720.
N-(2-[3,6-di- O-(2,3,4,6-tetra- O-acetyl- α-D-mannopyranosyl)-2,4-di- O-benzoyl- α-Dmannopyranosyloxylethyl) thioctamide (16). To a solution of compound $\mathbf{1 4}$ (850 mg) in CHCl_{3} $\mathrm{MeOH}(20 \mathrm{~mL}, 1: 1)$, $\mathrm{Pd}-\mathrm{C}(200 \mathrm{mg})$ was added and the mixture was stirred under H_{2} for 12 hours. After filtration through Celite pad and evaporation of the solvents, the corresponding aminoethyl 3,6-di-O-(2,3,4,6-tetra- O-acetyl- α-D-mannopyranosyl)-2,4-di- O-benzoyl- α-D-mannopyranoside (15) was formed as foam ($600 \mathrm{mg}, 72 \%$) which was used for the next step without any further purification.

A solution of compound $15(600 \mathrm{mg}, 0.55 \mathrm{mmol})$, thioctic acid ($210 \mathrm{mg}, 0.55 \mathrm{mmol}$), HOBt (75 mg , $0.55 \mathrm{mmol})$, EDCI ($105 \mathrm{mg}, 0.55 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(50 \mu \mathrm{~L})$ in dry DMF $(10 \mathrm{~mL})$ was stirred at room temperature for 12 hours. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20$ $\mathrm{mL})$. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude material was purified by flash chromatography (n-hexane-EtOAc 1:1) to afford pure Compound 16 ($535 \mathrm{mg}, 76 \%$) as foam. $[\alpha]_{\mathrm{D}}{ }^{25}+18^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.87-7.07(\mathrm{~m}, 10 \mathrm{H}), 6.24(\mathrm{t}, 1 \mathrm{H}), 5.27-5.01$ $(\mathrm{m}, 6 \mathrm{H}), 4.76(\mathrm{~d}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.42$ $(\mathrm{m}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{t}, 2 \mathrm{H}), 2.04,2.02,2.01,2.00,1.99,1.98$, $1.93,1.88(8 \mathrm{~s}, 24 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 173.2,172.7$, $170.6,170.0$ (2), 169.9 (2), 169.7, 169.6, 169.5, 169.3, 98.0, 97.8, 97.4, 69.0, 68.9, 68.8, 68.7, 68.3 , $67.6,67.3,67.0,65.8,63.2,62.1,56.0,39.9,38.6,38.1,35.8,34.2,28.5,25.0,20.4(2), 20.3(2), 20.2$, 20.1(2), 20.0. HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{58} \mathrm{H}_{77} \mathrm{O}_{27} \mathrm{~N}_{2} \mathrm{~S}_{2}$ 1297.4155, found 1297.4149.
\boldsymbol{N}-(2-[3,6-di- \boldsymbol{O}-(α-D-mannopyranosyl)- α-D-mannopyranosyloxy]ethyl) thioctamide (2b). To a solution of compound $\mathbf{1 6}(500 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry $\mathrm{MeOH}(20 \mathrm{~mL})$, $\mathrm{NaOMe}(0.5 \mathrm{M}, 1 \mathrm{~mL})$ was added and the solution was stirred at room temperature for 3 hours. The solution was neutralized with DOWEX $50 \mathrm{~W} \mathrm{H}^{+}$resin and filtered through cotton. After evaporation the crude product was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove MeOBz . The aqueous layer was separated and freeze dried to afford pure Compound 2b as white foam ($240 \mathrm{mg}, 83 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}+21^{\circ}(c 1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta: 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.38(\mathrm{~m}, 12 \mathrm{H}), 3.35-3.27(\mathrm{~m}, 8 \mathrm{H}), 3.11-2.90(\mathrm{~m}, 2 \mathrm{H})$, $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{t}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 178.1$,
$99.9,99.5,98.6,73.8,73.5,73.1,70.3,70.2,70.0,68.5,68.3,68.1,67.9,67.7,61.3,61.1,60.9,57.3$, $40.4,39.7,39.3,37.9,35.6,28.4,26.7$. HRMS $[M+H]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{O}_{17} \mathrm{~N}_{2} \mathrm{~S}_{2} 753.2786$, found 753.2781.
i. Davis, B. G.; Maughan, M. A. T.; Green, M. P.; Ullman, A.; Jones, J. B. Tetrahedron: Asymmetry, 2000, 11, 245-262.
ii. Grandjean, C.; Rommens, C.; Gras-Masse, H.; Melnyk, O. Tetrahedron Lett., 1999, 40, 7235 7238.
iii. Grandjean, C.; Gras-Masse, H.; Melnyk, O. Chem. Europ. J., 2001, 7, 230-240.
iv. Chernyak, A. Y.; Sharma, G. V. M.; Kononov, L. O.; Krishna, P. R.; Levinsky, A. B. Carbohydr. Res., 1992, 223, 303-310.
v. Hayes, W.; Osborn, H. M. I.; Osborne, S. D.; Rastall, R. A.; Romagnoli, B. Tetrahedron, 2003, 59, 7983-7996.

