Cotransport of H⁺/Cl⁻ by a synthetic prodigiosin mimic

Philip A. Gale,*^a Mark E. Light,^a Beth McNally,^b Korakot Navakhun,^a Kate E. Sliwinski,^a and Bradley D. Smith *^b

^a School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. Fax: 44 2380596805; Tel: 44 23 80593332; E-mail: philip.gale@soton.ac.uk

^b Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA. Fax: 1 574 631 6652; Tel: 1 574 631 8632; E-mail: smith.115@nd.edu

Electronic Supplementary Information

Synthesis and Characterisation

Compound 2 5-Methyl-3,4-diphenyl-1H-pyrrole-2-carboxylic acid (1-methyl-1Himidazol-2-ylmethyl)-amide

1-Methyl-2-aminomethylimidazole (260 mg, 2.4 mmol) was stirred with 2.0 M trimethylaluminium solution in hexane (3 ml, 6 mmol) in dichloromethane (40 ml) for 30 min. 5-Methyl-3,4-diphenyl-*1H*-pyrrole-2-carboxylic acid ethyl ester (365 mg, 1.2 mmol) was added to the solution and the reaction heated at reflux for 7 days. The reaction was quenched by the dropwise addition of dilute HCl solution and the reaction mixture extracted with dichloromethane solution (2 x 50 ml). The organic phase was reduced in *vacuo* and the residue purified by column chromatography eluting with dichloromethane/methanol (10:1 v/v) on silica gel affording compound **2** as a white solid (123 mg, 0.33 mmol, 27%).

¹H NMR 300 MHz in CDCl₃ δ (ppm): 2.36 (s, 3H, *CH*₃pyrrole), 3.61 (s, 3H, *CH*₃imidazole), 4.50 (d, 2H, *J* = 5.4, *CH*₂), 6.04 (t, 1H, *J* = 5.4, CON*H*) 6.79 (s, 1H, imidazole*H*), 6.85 (s, 1H, imidazole*H*), 6.99-7.28 (m, 10H, Ar*H*), 9.33 (s, br, 1H, N*H*-Pyrrole). ¹³C NMR 75 MHz in CDCl₃ δ (ppm): 1.1, 12.3, 35.5, 121.5, 125.9, 127.6, 127.8, 128.0, 138.5, 129.0, 130.1, 130.5, 134.4, 134.6, 161.0. ES⁺ HRMS: m/z: Calc. for C₂₃H₂₂N₄O [M]⁺: 371.1866; found 371.1869.

Compound 3 5-Methyl-3,4-diphenyl-1H-pyrrole-2-carboxylic acid pyridin-2ylamide

2-Aminopyridine (3.08 g, 32.7 mmol) was stirred with 2.0 M trimethylaluminium solution in hexane (12 ml, 24 mmol) in dichloromethane (50 ml) for 30 min. 5-Methyl-

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

3,4-diphenyl-*1H*-pyrrole-2-carboxylic acid ethyl ester (1 g, 3.3 mmol) was added to the solution and the mixture was heated at reflux for 5 days. The reaction was quenched by the dropwise addition of dilute HCl solution and the reaction mixture extracted with dichloromethane solution (2 x 50 ml). The organic solution was reduced in *vacuo* and the residue was purified by column chromatography on silica gel eluting with dichloromethane/methanol (100:2 v/v). The solvent was removed and the residue was recrystallized from acetonitrile to yield compound **3** as a white solid (157 mg, 0.44 mmol, 13%).

¹H NMR 300 MHz in CDCl₃ δ (ppm): 2.40 (s, 3H, CH₃), 6.70-8.11 (m, 16H, Ar*H* and Pyr*H*), 7.98 (s, 1H, CON*H*Ar), 9.42 (s, br, 1H, N*H*-Pyrrole). ¹³C NMR 75 MHz in DMSO-*d*₆ δ (ppm): 12.5, 114.2, 119.3, 126.1, 128.1, 128.3, 129.3, 130.2, 130.9, 134.1, 134.5, 137.9, 148.3, 151.7, 154.4. ES⁺ mass spectrum: *m/z* (%): 354 (100) [M+H]⁺, 707 (10) [2M+H]⁺. ES⁺ HRMS: m/z: Calc. for C₂₃H₂₀N₃O [M+H]⁺: 354.1601; found: 354.1599.

Supplementary Material (ESI) for Chemical Communications

This journal is $\mathbb C$ The Royal Society of Chemistry 2005

Figure S1 1 H NMR of compound 2 in CDCl₃

Figure S2 ¹³C NMR of compound **2** in CDCl₃

Figure S3 Positive ES MS of Compound 2.

Figure S4¹H NMR of Compound **3** in CDCl₃

Figure S5 ¹³C NMR of Compound **3** in CDCl₃

Figure S6 Positive ES MS of Compound 3

Preparation of Unilamellar Vesicles

A chloroform solution of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids) and cholesterol were combined in a 10 mL round bottom flask. The chloroform was removed using a rotary evaporator and the lipid film was dried under a high vacuum system for over an hour. Upon addition of 1.0 mL solution (500 mM NaCl and 5 mM citric acid, pH 4.0 or 7.2) and a Pyrex glass bead, the solution was vortexed to rehydrate the lipid film. The lipid solution was subject to nine freeze-thaw cycles and twenty-nine extrusions through a 200 nm polycarbonate Nucleopore membrane using a LiposoFast Basic extruder (Avestin, inc.) to obtain unilamellar vesicles. The vesicles were dialyzed for 10 hours to remove unencapsulated salts and/or fluorophores. Dialysis used an outside solution of 500 mM NaNO₃ and 5 mM citric acid at the same pH.

Chloride Transport Assay

Unilamellar vesicles (200 nm mean diameter) composed of POPC/cholesterol (7:3 molar ratio), and containing an inside solution of 500 mM NaCl and 5 mM citric acid, pH 4.0 or 7.2, and an outside solution of 500 mM NaNO₃ and 5 mM citric acid, at the same pH, were added to a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 4.0 or 5 mM sodium phosphate, pH 7.2 for a final lipid concentration of 1 mM. When the The chloride release from vesicles upon addition of a compound (10 μ M) was monitored using an Accumet chloride selective electrode for 20 minutes. The vesicles were lysed with detergent (polyoxyethylene (8) lauryl ether) to release all chloride ions.

Chloride Transport Assay

Three different conditions were generated using unilamellar vesicles (200 nm mean diameter) composed of POPC/cholesterol (7:3 molar ratio). (a) inside vesicles, pH 4.0, outside vesicles, pH 4.0. Vesicles with inside solution of 500 mM NaCl and 5 mM citric acid, pH 4.0, and an outside solution of 500 mM NaNO₃ and 5 mM citric acid, pH 4.0, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 4.0 for a final lipid concentration of 1 mM. (b) inside vesicles, pH 4.0, outside vesicles, pH 6.7. Vesicles with inside solution of 500 mM NaCl and 5 mM citric acid, pH 4.0, and an outside solution of 500 mM NaCl and 5 mM citric acid, pH 4.0, and an outside solution of 500 mM NaNO₃ and 5 mM citric acid, pH 4.0, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 4.0, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 4.0, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2 for a final lipid concentration of 1 mM, and a final external pH of 6.7. (c) inside vesicles, pH 7.2, outside vesicles, pH 7.2. Vesicles with inside solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2, were diluted in a solution of 500 mM NaNO₃ and 5 mM citric acid, pH 7.2 for a final lipid concentration of 1 mM.

pH Detection Assay

Oregon Green[®] 514 (10 μ M), a pH sensitive fluorophore (purchased from Molecular Probes Inc) was encapsulated inside 200 nm mean diameter POPC/cholesterol (7:3 molar ratio) vesicles along with 500 mM NaCl and 5 mM citric acid, pH 4.0. Vesicles were dispersed in 500 mM NaNO₃ and 5 mM sodium phosphate, pH 7.2 for a final lipid concentration of 550 μ M. The fluorescence of Oregon Green[®] 514 was monitored using 555 nm emission upon excitation at 510 nm with a Perkin Elmer luminescence

spectrometer. The fluorescence baseline was monitored for 200 seconds, upon which compounds **2** and **3** (8.8 μ M) were added to the vesicle solution. The vesicles were lysed at 1000 seconds with detergent (polyoxyethylene (8) lauryl ether) to dissipate the gradient.