

Supplementary data

A readily prepared neutral heterobimetallic titanium(IV)-rhodium(I) catalyst for intramolecular hydroacylation

John P. Morgan, * Kousik Kundu and Michael P. Doyle

Department of Chemistry and Biochemistry, College of Life Sciences, The University of
Maryland, College Park, MD 20742

Supporting Information

Experimental Section

General. All manipulations were performed using standard Schlenk techniques. Deuterated dichloromethane was dried over activated 3A molecular sieves prior to use. All other chemicals were used as obtained from Strem or Aldrich Chemicals. The ligand $\text{HOCMe}_2\text{CH}_2\text{PPh}_2$, compound **10**, was synthesized according to literature procedures.¹ Compounds **1** and **8** were prepared and their hydroacylation behavior was monitored as previously described.² ^1H , ^{13}C , and $^{31}\text{P}\{^1\text{H}\}$ NMR spectra were obtained on a Bruker

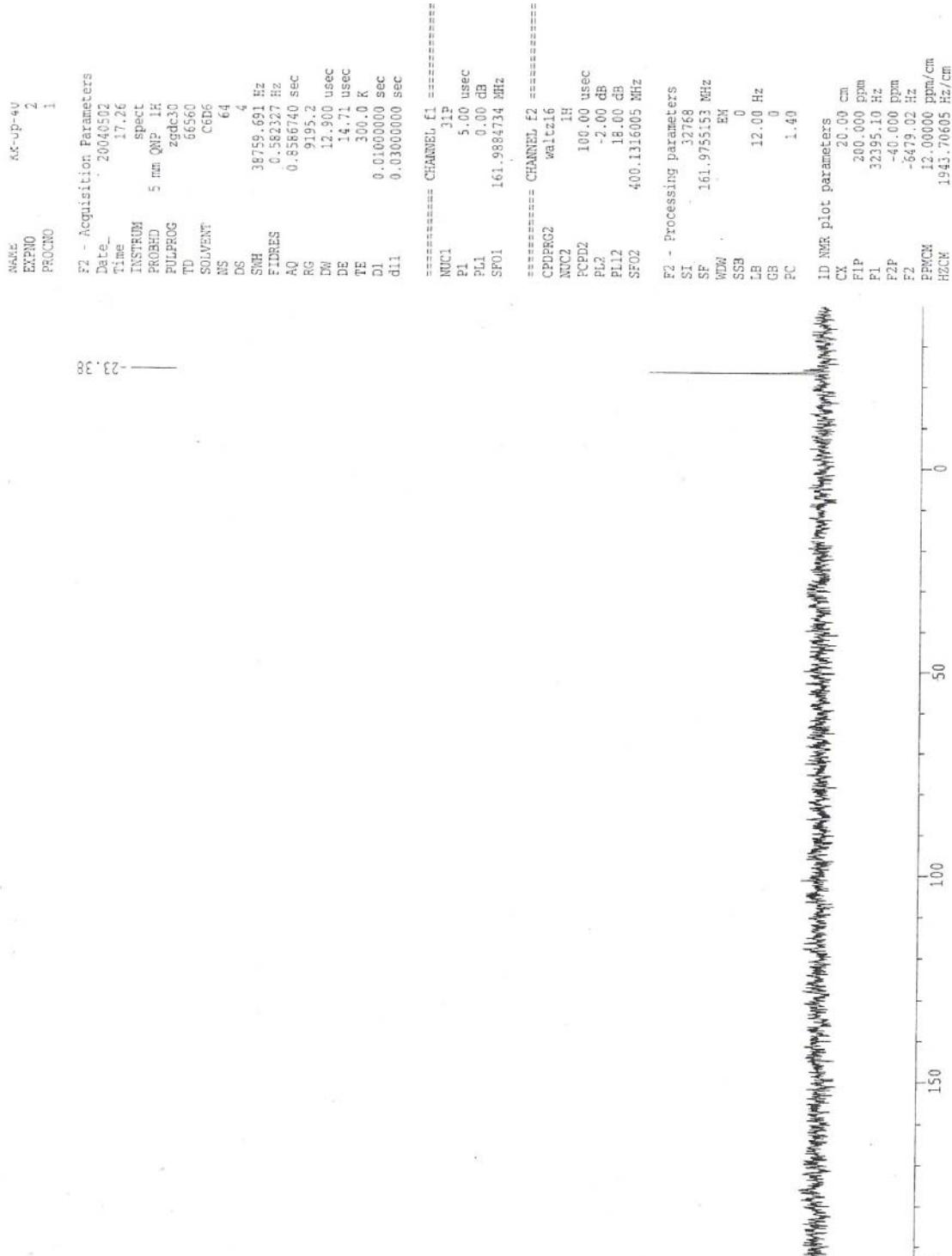
¹ Ferguson, G. S.; Wolczanski, P. T.; *J. Am. Chem. Soc.* **1986**, *108*, 8293-8295.

² (a) Barnhardt, R. W.; Bosnich, B. *Organometallics* **1994**, *13*, 4131-4133. (b) Fairlie, D. P.; Bosnich, B. *Organometallics* **1988**, *7*, 936-945.

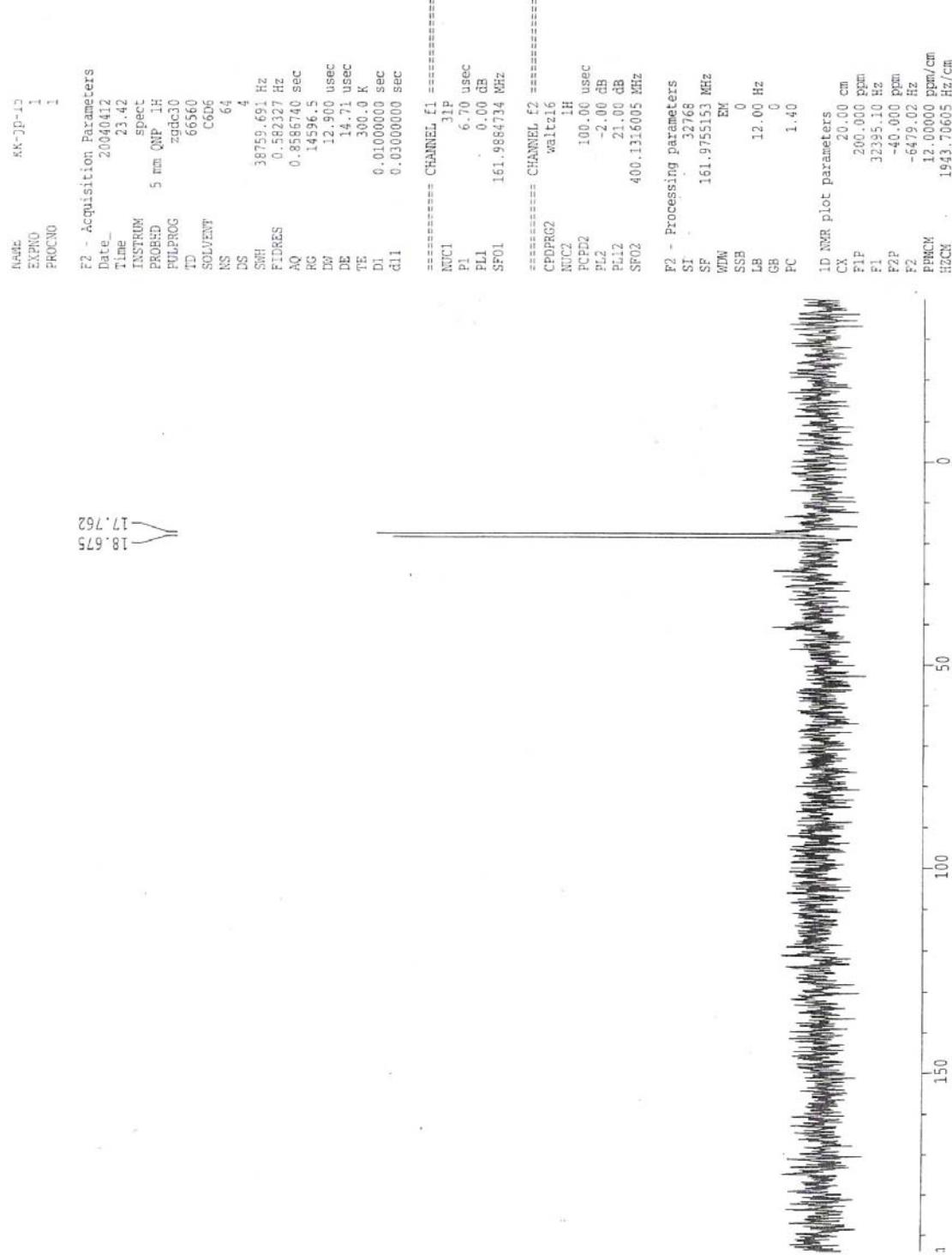
DRX or AMX 400 instrument, and chemical shifts are reported in parts per million (ppm, δ) from Me_4Si (TMS, for ^1H), from residual solvent (CD_2Cl_2 , δ 45.00 for ^{13}C), or from H_3PO_4 (for ^{31}P) standards. Mass spectra were recorded using fast atom bombardment (FAB) on a JEOL SX102a instrument.

In situ preparation of $(i\text{PrO})\text{Ti}(\mu: \eta^l, \eta^l\text{-OCMe}_2\text{CH}_2\text{PPh}_2)_3\text{RhCl}$ (14). To a flame dried NMR tube equipped with Teflon stopcock was added $\text{HOCMe}_2\text{CH}_2\text{PPh}_2$ **10** (5.4 mg, 21 μmol , 3 eq.) in 0.5 mL CD_2Cl_2 . Titanium tetraisopropoxide (2 mg, 7 μmol , 1 eq.) was subsequently added by microsyringe, resulting in an immediate color change from colorless to a pale yellow color ($^{31}\text{P}\{^1\text{H}\}$ NMR (CD_2Cl_2 , 162 MHz): -23.38 ppm (s)). The solution was gently mixed for 0.5 hr. A solution of *bis*-(cyclooctadienerhodium(I) chloride) (2 mg, 4 μmol , 1.1 eq.) in CD_2Cl_2 (0.2 mL) was then added to the NMR tube, and the reaction mixture turned pale brown-yellow over the next 10 minutes. After 0.5 hr, the pentenal substrate (**1** or **8**, 70 μmol) was added via microsyringe to start the hydroacylation reaction. ^1H NMR (CD_2Cl_2 , 400 MHz): δ 7.81 (comp, 10H, Ph), 6.83 (comp, 20 H, Ph), 5.83 (d, J = 10 Hz, 1H), 5.47 (dd, J = 4, 10 Hz, 1H), 4.37 (s, 12H), 3.72 (m, J = 6 Hz, 1 H, iPr), 2.26 (d, J = 10 Hz, 1 H), 2.04 (br s, 2 H), 1.52 (comp, 2 H), 1.43 (s, 1H), 1.34 (comp, 3 H), 1.20 (s, 1 H), 1.06 (d, J = 6.4 Hz, 4 H), 0.97 (d, J = 6 Hz, 10 H, Me). ^{13}C NMR (CD_2Cl_2 , 100.6 MHz): 135.5, 134.5, 132.9, 132.3, 130.9, 130.8, 129.4, 129.3, 129.2, 128.6, 71.3, 41.9, 41.2, 32.0, 31.9, 28.6. $^{31}\text{P}\{^1\text{H}\}$ NMR (CD_2Cl_2 , 162.0 MHz): δ 18.194 (d, J_{RhP} = 147 Hz). Mass spectrum (FAB, m/z): 956.6 ([M - $\text{O}i\text{Pr}]^+$), 877.6, 782.7, 652.8, 619.4, 455.3, 407.2, 275.3, 201.2, 132.9, 85.0, 41.0.

General Procedure for Rhodium(I)-diphosphine in situ catalyst synthesis. The following procedure is adapted from that reported by Sakai, et al.:³ To a flame-dried NMR tube equipped with Teflon stopcock was added ligand (triphos, R-(+)-BINAP, *S,S*-(+)-DIOP, or *R,R*-(+)-BDPP: 35 μ mol) in C₆D₆ or CD₂Cl₂ (0.5 mL). A solution of *bis*-(cyclooctadienerhodium(I) chloride) (3.2 mg, 3 μ mol) in C₆D₆ or CD₂Cl₂ (0.2 mL) was added by flame-dried pipet. The reaction was sealed under nitrogen for 1 hour (a color change to orange yellow was noted, except for the triphos case, in which the reaction mixture instantaneously became yellowish brown). Substrate **1** (15 μ mol) was then added by microsyringe to start the hydroacylation reaction.



³ Taura, Y.; Tanaka, M.; Wu, X. M.; Funakoshi, K.; Sakai, K. *Tetrahedron* **1991**, *47*, 4879-48888.


Compound 10, Ligand HOCMe₂CH₂PPh₂, ³¹P NMR, 162 MHz, CD₂Cl₂.

=====
NAME cat-1
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20/04/01
Time 22:59
INSTRUM spect
PROBHD 5 mm QNP 1H
PULPROG zg3d30
TD 66560
SOLVENT C6D6
NS 64
DS 4
SWH 38759.691 Hz
FIDRES 0.58327 Hz
AQ 0.858740 sec
RG 9155.2
DW 12.900 usec
DE 14.71 usec
TE 300.0 K
D1 0.0100000 sec
d11 0.0300000 sec

===== CHANNEL f1 =====
NUC1 31P
P1 6.70 usec
PL1 0.00 dB
SF01 161.9384734 MHz

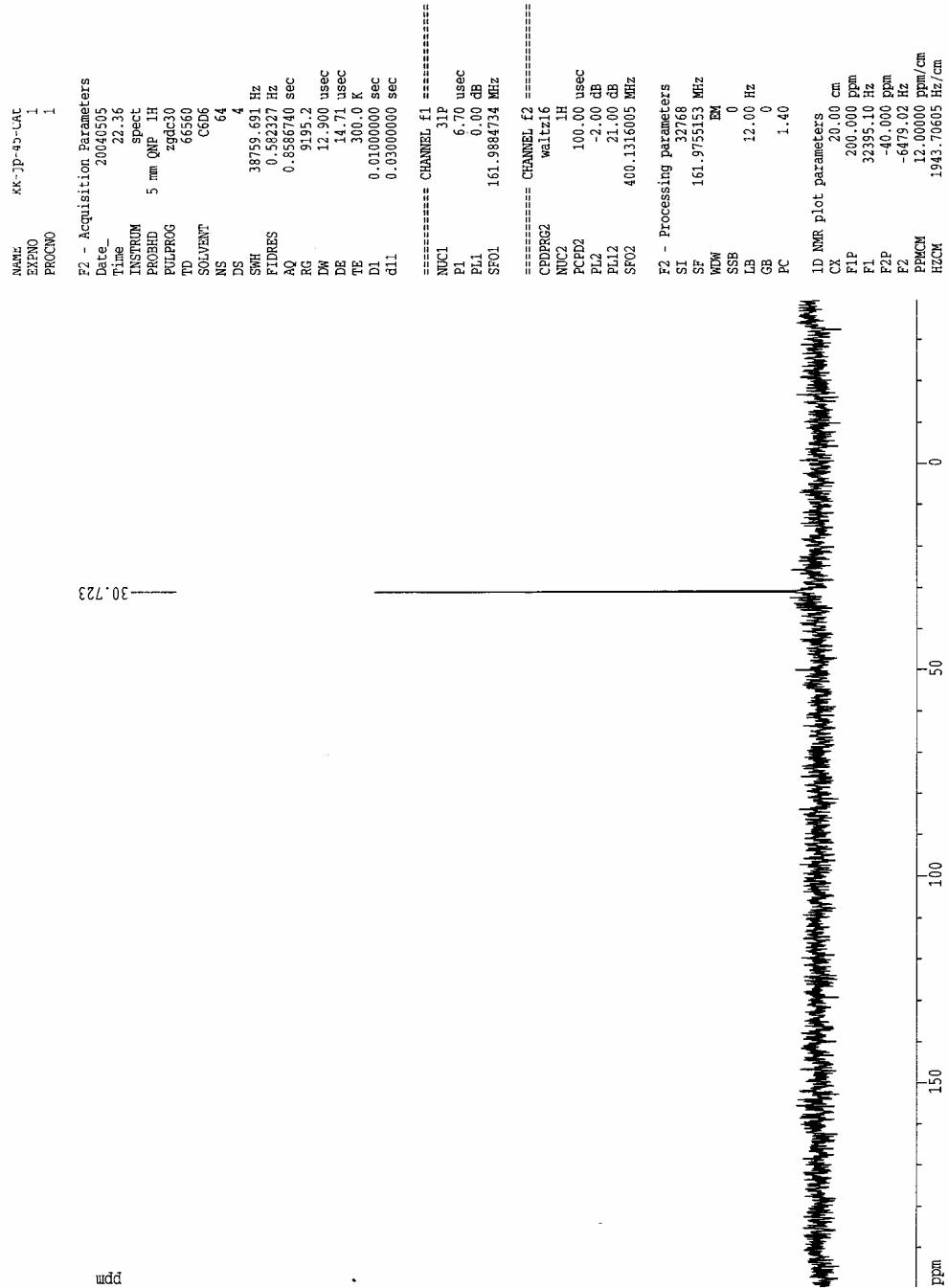
===== CHANNEL f2 =====
CPDPF22 waltz16
NUC2 1H
PCPD2 100.00 usec
PL2 -2.00 dB
PL12 21.00 dB
SF02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 161.9755153 MHz
WDW EM
SSB 0
LB 12.00 Hz
GB 0
PC 1.40

1D NMR plot parameters
CX 20.00 cm
F1P 200.000 ppm
F1 32395.10 Hz
F2P -40.000 ppm
F2 -6479.02 Hz
PPMCM 12.00000 ppm/cm
HZCM 1943.77605 Hz/cm

=====
-21.95

Compound 12, Ti(O*i*Pr)(OCMe₂CH₂PPh₂)₃, ³¹P NMR, 162 MHz, CD₂Cl₂.



**Compound 14, (*i*PrO)Ti(μ : η^1 , η^1 -OCMe₂CH₂PPh₂)₃RhCl, ³¹P NMR, 162 MHz,
CD₂Cl₂.**

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Oily solid which results from concentration of a dichloromethane solution of compound 14 under reduced pressure, ^{31}P NMR, 162 MHz, CD_2Cl_2 .

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005