Supporting Information

Stereoselective *E/Z* Photoisomerization of Oxazolidinone Functionalized Enecarbamates: Direct and Triplet Sensitized Irradiation.

Hideaki Saito,^{†,‡} J. Sivaguru,[†] Steffen Jockusch,[†] Yoshihisa Inoue, ^{*,‡,§} Waldemar Adam,^{*,#} and Nicholas J. Turro^{*,†}

[†]The Department of Chemistry and the Department of Chemical Engineering, Columbia University, 3000 Broadway, Mail Code 3119, New York, NY 10027

[‡]The Department of Molecular Chemistry, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan

[§]Entropy Control Project, ICORP, JST, 4-6-3 Kamishinden, Toyonaka 560-0085, Japan [#]Institute für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany, and the Department of Chemistry, University of Puerto Rico, Rio Piedras, PR 00931

E-mail: njt3@columbia.edu

Contents

- 1. Materials and Methods
- 2. Compounds Characterization
- 3. Synthesis of chiral sensitizers
- 4. Photoreactions
- 5. Typical ¹H NMR Spectra of Photoisomerization of 1*Z* with the sensitizer 3c in CD₃OD: Temperature Effect
- 6. Comparison of Directirracdiation of Z-enecarbamates at 254 and 300 nm
- 7. References

1. Materials and Methods

Deuterated solvents obtained from Cambridge Isotope Labs were used as received. Products ratio and diastereoselectivities were determined by ¹H NMR (300MHz, Bruker). The Z and E enecarbamates were synthesized as previously described.^{S1}

2. Compounds Characterization

E-(4*R*,3'*R*)-3-(2',3'-Diphenylbut-1'-enyl)-4-isopropyloxazolidin-2-one

[(*E*,4*R*,3'*R*)-1]: ¹H NMR (300 MHz, CDCl₃) δ = 0.76 (d, *J* = 7.03, 3H), 0.86 (d, *J* = 6.85, 3H), 1.33 (d, *J* = 7.20, 3H), 2.00-2.12 (m, 1H), 3.65 (ddd, *J* = 8.10, 4.23, 3.66, 1H), 4.04 (dd, *J* = 8.95, 4.33, 1H), 4.10 (t, *J* = 8.68, 1H), 4.32 (q, *J* = 7.20, 1H), 5.89 (s, 1H), 6.96-7.01 (m, 2H), 7.10-7.22 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ = 14.6, 17.8, 18.4, 28.2, 39.2, 62.7, 63.1, 121.0, 126.3, 127.5, 127.6 (2C), 127.7 (2C), 128.2 (2C), 129.0 (2C), 138.9, 143.1, 146.1, 157.1; MS (FAB): M+H⁺ calcd 336.1958, exptl 336.1972.

E-(4R,3'S)-3-(2',3'-Diphenylbut-1'-enyl)-4-isopropyloxazolidin-2-one

[(*E*,4*R*,3'*S*)-1]: ¹H NMR (300 MHz, CDCl₃) δ = 0.87 (d, *J* = 6.92, 6H), 1.39 (d, *J* = 7.20, 3H), 2.01-2.15 (m, 1H), 3.75 (ddd, *J* = 8.70, 4.78, 3.92, 1H), 4.08 (dd, *J* = 8.95, 4.88, 1H), 4.19 (t, *J* = 8.80, 1H), 4.28 (q, *J* = 7.20, 1H), 5.88 (s, 1H), 6.84-6.87 (m, 2H), 7.07-7.27 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ = 15.6, 17.3, 18.6, 29.5, 39.5, 63.2, 63.9, 121.9, 126.7, 127.9, 128.0 (4C), 128.7 (2C), 129.4 (2C), 138.4, 142.2, 144.9, 157.1; MS (FAB): M+H⁺ calcd 336.1958, exptl 336.1961.

E-(4*S*,3'*S*)-3-(2',3'-Diphenylbut-1'-enyl)-4-isopropyloxazolidin-2-one

[(*E*,4*S*,3'*S*)-1]: ¹H NMR (300 MHz, CDCl₃) δ = 0.85 (d, 3H), 0.92 (d, 3H), 1.42 (d, 3H), 2.11-2.18 (m, 1H), 3.71-3.76 (ddd, 1H), 4.12 (dd, 1H), 4.19 (t, 1H), 4.41 (q, 1H), 5.97 (s, 1H), 7.06-7.11 (m, 2H), 7.20-7.34 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ = 15.1, 18.5, 19.0, 28.2, 39.9, 62.9, 63.2, 121.4, 126.7, 127.9, 128.1 (4C), 128.7 (2C), 129.5 (2C), 138.9, 143.3, 146.6, 157.1; MS (FAB) M+H⁺ calcd 336.1958, exptl 336.1952.

E-(4*S*,3'*R*)-3-(2',3'-Diphenylbut-1'-enyl)-4-isopropyloxazolidin-2-one

[(*E*,4*S*,3'*R*)-1]: ¹H NMR (300 MHz, CDCl₃) δ = 0.96 (d, 6H), 1.42 (d, 3H), 2.12-2.22 (m, 1H), 3.81-3.87 (ddd, 1H), 4.16 (dd, 1H), 4.28 (t, 1 H), 4.37 (q, 1 H), 5.96 (s, 1H), 6.93-6.97 (m, 2H), 7.16-7.35 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ = 15.6, 17.3, 18.6, 29.5, 39.5, 63.2, 63.9, 121.9, 126.7, 127.9, 128.0 (4C), 128.7 (2C), 129.4 (2C), 138.4, 142.2, 144.9, 157.1; MS (FAB) M+H⁺ calcd 336.1958, exptl 336.1950.

Z-(4S,3'R)-3-(2',3'-Diphenylbut-1'-enyl)-4-isopropyloxazolidin-2-one

[(*Z*,4*S*,3'*R*)-1]: ¹H NMR (300 MHz, CDCl₃) δ = 0.40 (d, *J* = 7.10, 3H), 0.75 (d, *J* = 6.88, 3H), 1.43 (d, *J* = 7.20, 3H), 1.74-1.85 (m, 1H), 2.85 (td, *J* = 5.70, 3.10, 1H), 3.89 (q, *J* = 7.20, 1H), 3.95 (d, *J* = 5.70, 2H), 6.70 (s, 1H), 6.82-6.86 (m, 2H), 7.18-7.28 (m, 8H); ¹³C

NMR (75 MHz, CD₃CN) *δ* = 13.2, 16.8, 20.4, 27.2, 45.8, 59.2, 63.0, 120.0, 126.6, 127.7, 128.0, 128.3, 128.6, 128.8, 129.2, 133.4, 138.8, 144.8

Z-(4S,3'S)-3-(2',3'-Diphenylbut-1'-enyl)-4-isopropyloxazolidin-2-one

[(*Z*,4*S*,3'*S*)-1]: ¹H NMR (300 MHz, CDCl₃) δ = 0.43 (d, *J* = 7.10, 3H), 0.72 (d, *J* = 6.87, 3H), 1.51 (d, *J* = 7.20, 3H), 1.78-1.89 (m, 1H), 2.87 (td, *J* = 5.80, 3.10, 1H), 3.75 (q, *J* = 7.20, 1H), 3.94 (d, *J* = 5.80, 2H), 6.46 (s, 1H), 6.96-6.99 (m, 2H), 7.18-7.36 (m, 8H); ¹³C NMR (75 MHz, CD₃CN) δ = 13.3, 16.8, 20.3, 27.2, 46.3, 59.3, 63.0, 120.5, 126.8, 127.8, 128.0, 128.4, 128.6, 128.8, 129.5, 134.8, 139.6, 145.0

3. Synthesis of chiral sensitizers

General. Mitsunobu reaction $^{S2, S3}$ was applied for the synthesis of chiral sensitizers (**3b**~**3d**).

(S)-2-Methyl-1-butyletherof4'-hydroxyacetophenone(3b):4'-Hydroxyacetophenone(6.9 g, 51 mmol), triphenylphosphine(13.4 g, 51 mmol) and(S)-2-methyl-1-butanol(3.0 g, 34 mmol) were stirred in 60 mL of dry THF under N2 at 0°C. Diethyl azodicarboxylate(DEAD, 8.9 g, 51 mmol) was added into the solution bydrop wise for 20 min, followed by warming up to room temperature and stirred overnight.The reaction mixture was purified by silica gel chromatography (hexanes/ethyl acetate =

95/5).colorless liquid, 4.0 g (57% yield): ¹H NMR (300 MHz, CDCl₃) δ 0.962 (t, *J* = 7.5 Hz ,3H), 1.03 (d, *J* = 6. Hz, 3H), 1.28 (m, 1H), 1.58 (m, 1H), 1.88 (m, 1H), 2.56 (s, 3H), 3.79 (dd, *J* = 6.5, 9.0 Hz, 1H), 3.88 (dd, *J* = 6.0, 9.0 Hz, 1H), 6.91 (d, *J* = 6.8 Hz, 2H), 7.91 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 11.2, 16.5, 26.0, 26.4, 34.5, 72.8, 114, 131, 163, 197 Hz.

(1*R*,2*R*,5*S*)-Neomenthyl ether of 4'-hydroxyacetophenone (3c): (1*S*,2*R*,5*S*)-(+)-menthol and the same procedure as for **3b** was employed. Colorless liquid (16% yield). ¹H NMR (300 MHz, CDCl₃) δ 0.745 (d, *J* = 5.0 Hz, 3H), 0.768 (d, *J* = 4.8, 3H), 0.854 (d, *J* = 6.6 Hz, 3H), 0.971 (m, 1H), 1.01 (m, 2H), 1.56 (m, 3H), 1.69 (m, 2H), 2.01 (m, 1H), 2.47 (s, 3H), 4.64 (m, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.1, 21.4, 22.6, 25.2, 26.6, 27.0, 29.7, 35.2, 38.0, 48.0, 74.1, 115, 130, 131, 163, 197 Hz.

(*S*)-1-Phenyl-1-ethyl ether of 4'-hydroxyacetophenone (3d): (*R*)-(+)-1-Phenylethanol and the same procedure as for 3b was employed. White solid (52% yield). ¹H NMR (300 MHz, CDCl₃) δ 1.66 (d, *J* = 6.4 Hz, 3H), 2.5 (s, 3H), 5.39 (q, *J* = 6.4 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 7.25-7.35 (m, 5H), 7.83 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 24.9, 26.7, 76.6, 116, 126, 128, 129, 130.5, 130.9, 143, 162, 197.

4. Photoreactions

General. Direct irradiations of enecarbamates 1 in solution were performed in quartz NMR tubes by irradiating the solutions at 254 nm (monochromatic) in a Rayonet reactor. Triplet sensitizations were performed by irradiating solutions of 1 and the triplet sensitizers (2, 3) at 300 nm (Gaussian distribution) under N_2 atmosphere in a Rayonet reactor.

5. Typical ¹H NMR Spectra of Photoisomerization of 1*Z* with the sensitizer 3c in CD₃OD: Temperature Effect

6.60 6.50 6.40 6.30 6.20 6.10 6.00 5.90 5.80 *Chart S1.* ¹H NMR Chemical Shift of the vinyl proton of 1Z or 1E after 5min Photoirradiation in CD₃OD at 20°C.

Chart S2. ¹H NMR Chemical Shift of the vinyl proton of 1Z or 1E after 5min Photoirradiation in CD₃OD at -40°C.

Chart S3. ¹H NMR Chemical Shift of the vinyl proton of 1Z or 1E after 5min Photoirradiation in CD₃OD at -65°C.

6. Comparison of Directirracdiation of Z-enecarbamates at 254 and 300 nm

Table S1 Direct irradiation of 1Z: Z : E ratio dependence on excitation wavelength at photo-stationary state.^{*a*}

Solvent	Z : E		
	Irdn. at 254 nm	Irdn. at ~300	
		nm	
CD ₃ CN	62:38	76:24	
CD ₃ OD	53:47	65:35	
CD_2Cl_2	53:47	57:43	
CDCl ₃	54:46	61:39	
C_6D_6	54:46	-	

^{*a*}[1*Z*] = 4.3 mM. Irradiations performed at 20^oC under N₂ atmosphere. de values and Z/E ratio determined by ¹H-NMR spectroscopy.

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Solvent	time/min	%de $(1E)^b$	%de $(\mathbf{1Z})^b$	Z: E
CD3CN	1	4 (3'R)	4 (3'S)	88:12
	2	5 (3'R)	6 (3'S)	82:18
	5	2 (3'R)	6 (3'S)	76:24
	10	1 (3'R)	4 (3'S)	74:26
	15	2 (3'R)	5 (3'S)	76:24
CD ₃ OD	2	8 (3'S)	4 (3'S)	83:27
	5	10 (3'S)	10 (3'S)	74:26
	10	7 (3'S)	5 (3'S)	64 : 36
	15	6 (3'S)	10 (3'S)	64 : 36
CD ₂ Cl ₂	2	6 (3'S)	2 (3'S)	71:29
	5	6 (3'S)	8 (3'S)	57:43
	10	7 (3'S)	8 (3'S)	58:42
	15	3 (3'S)	9 (3'S)	55:45
CDCl ₃	2	7 (3'R)	12 (3'S)	81:19
	5	2 (3'R)	19 (3'S)	61 : 39

Table S2 Direct irradiation of 1Z at 300 nm.^a

^{*a*} [1Z] = 4.3 mM. Irradiations were performed at >300 nm at 20°C in Pyrex NMR tubes under N₂ atmosphere. A product's de and a Z/E ratio were determined by NMR analyses. ^{*b*} Stereochemistry for 3'-position of the predominated encarbamate was shown in a parenthesis.

7. References

- ^{S1} W. Adam, S. G. Bosio, N. J. Turro, and B. T. Wolff, J. Org. Chem., 2004, **69**, 1704.
- ^{S2} O. Mitsunobu, *Synthesis*, 1981, 1.
- ^{S3} Y.-J. Shi, D. L. Hughes, and J. M. McNamara, *Tetrahedron Lett.*, 2003, 44, 3609.