A binary hydrogen bonding motif based on homochiral recognition: Crystal structures and hydrogen bonding networks of meso-(R,S)-bis(trifluorolactate)s

Satoshi Takahashi,^a Toshimasa Katagiri*^a and Kenji Uneyama^a

^a Department of Applied Chemistry, Faculty of Engineering, Okayama University

3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.

Fax: +81-086-251-8021; Tel: +81-086-251-8075;

E-mail: tkata@cc.okayama-u.ac.jp

Electronic Supplementary Information (ESI)

- (i) Experimental procedures.
- (ii) Crystallographic parameter table for 1a-1f'.
- (iii) ORTEP plots for 1a-1f' at 50% probability level.
- (iv) Additional figures for 1a-1e.
- (v) ¹H NMR spectra of crystal **1f** and **1f'** dissolved in CDCl₃.

General Methods. IR spectra were measured on Hitachi Model 270-30 Infrared Spectrophotometer. ¹H (300 MHz) and ¹⁹F (288 MHz) NMR spectra were recorded by Varian MERCURY 300 and the chemical shifts are reported in δ (ppm) values relative to TMS (δ 0 ppm for ¹H NMR in CDCl₃), C₆F₆ (δ 0 ppm for ¹⁹F NMR in CDCl₃). ¹³C (150 MHz) NMR spectra were recorded by Varian UNITY INOBA 600 and the chemical shifts are reported in δ (ppm) values relative to CDCl₃ or CD₃OD (δ 77 ppm or δ 49 ppm for ¹³C NMR, respectively). Coupling constants are reported in hertz (Hz). Elemental analyses were performed on Perkin Elmer series II CHNS/O Analyzer 2400. GC/MS analyses were performed on a Shimadzu GCMS-QP5050A. Melting points were performed on a Yanako MP-S3 melting point measurement apparatus. Optical rotation were measured by Horiba SEPA-300 digital polarimeter with a sodium (λ = 589 nm) lamp, and reported as follows: [α]^{T(°C)}_D (*c* g/100 mL, solvent). Toluene was distilled from CaH₂. All other reagents and solvents were employed without further purification. E. Merck silica gel (Kieselgel 60, 230-400 mesh) was employed for the column chromatography.

Preparation of single-headed (S)-trifluorolactate (4)

1,4-butanediol mono-(S)-**3,3,3-trifluorolactate** [(S)-**4a**]: Typical procedure of acid catalyzed monoesterification of α, ω -alkanediol with (S)-3,3,3-trifluorolactic acid¹. Two-necked round-bottomed flask equipped with a Teflon-coated magnetic stirring bar and a Dean-Stark apparatus surmounted by reflux condenser was charged with 1,4-butanediol 5a (9.01 g, 100 mmol), a (S)-trifluorolactic acid (2.88 g, 20 mmol) and 0.03 g of sulfuric acid as a catalyst in toluene (20 ml). The mixture was brought to reflux with the removal of water. After 1 h, the resulting mixture was cooled to ambient temperature and water was added to the mixture, which was extracted with ether. The combined organic phase was washed with brine, dried over anhydrous MgSO₄, filtrated, and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (hexane/AcOEt = 1/1) to give the monoester 4a (2.90 g, 13.4 mmol, 67% yield). White solid. Mp 52-53 °C. IR (KBr): 3468, 3108, 2972, 1752, 1340, 1268, 1224, 1180, 1132, 1042 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (q, J 7.2, 1H), 4.43 (dt, J₁ 10.8, J₂ 6.6, J₃) 4.5, 1H), 4.34 (dt, J₁ 10.8, J₂ 6.6, J₃ 4.5, 1H), 3.71 (t, J 6, 2H), 3.44 (brs, OH), 1.83 (quintet, J 6, 2H), 1.66 (quintet, J 6, 2H), terminal OH was not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 3F). ¹³C NMR (CDCl₃): δ 167.3, 122.3 (q, J 282), 70.0 (q, J 32.6), 64.2, 58.6, 28.2, 24.6; MS: m/z 185 (2), 145 (15), 117 (8), 99 (8), 87 (5), 79 (7), 71 (11). 55 (100). Anal. Calcd for C₇H₁₁F₃O₄: C 38.90, H 5.13. Found: C 39.19, H, 5.27. $[\alpha]^{25}_{D}$ –6.21 (*c* 1.0, acetone).

1,5-pentanediol mono-(*S*)**-3,3,3-trifluorolactate** [(*S*)**-4b**]: 75% yield. White solid. Mp 59-60 °C. IR (KBr): 3508, 2968, 1746, 1270, 1234, 1146, 1128 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (quintet, J 6.9, 1H), 4.37 (dt, J₁ 10.5, J₂ 6.6, 1H), 4.32 (dt, J₁ 10.8, J₂ 6.6, 1H), 3.67 (t, J = 6.3, 2H), 3.47 (brs, OH), 1.35-1.80 (m, 6H), terminal OH was not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 6.9, 3F). ¹³C NMR (CDCl₃): δ 167.4, 122.3 (q, J 282), 69.9 (q, J 32.7), 67.2, 62.4, 31.8, 28.0, 21.8; MS: m/z 172 (0.4), 145 (3), 144 (1), 117 (2), 101 (27), 86 (6), 79 (8), 69 (100). 68 (49), 67 (33), 57 (43), 56 (89), 55 (36), 51 (13). Anal. Calcd for C₈H₁₃F₃O₄: C 41.74, H 5.69. Found: C 41.58, H 5.85. [α]²⁵_D -4.77 (*c* 1.1, acetone).

1,6-hexanediol mono-(*S*)**-3,3,3-trifluorolactate** [(*S*)**-4c**]**:** 75% yield. White solid. Mp 57-58 °C. IR (KBr): 3488, 2952, 1742, 1358, 1272, 1250, 1220, 1132 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (q, J 6.9, 1H), 4.36 (dt, J₁ 10.5, J₂ 6.6, 1H), 4.31 (dt, J₁ 10.8, J₂ 6.6, 1H), 3.66 (t, J 6.3, 2H), 1.3-1.8 (m, 8H), OHs were not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 6.9, 3F). ¹³C NMR (CDCl₃): δ 167.4, 122.4 (q, J 282), 70.0 (q, J 32.7), 67.2, 62.6, 32.1, 28.1, 25.3, 25.1. MS: m/z 145 (47), 117 (13), 99 (6), 83 (24), 82 (18), 67 (55), 55 (100). Anal. Calcd for C₉H₁₅F₃O₄: C 44.26, H 6.19. Found: C 44.38, H 6.43. [α]²⁵_D –3.82 (*c* 1.1, acetone).

1,7-heptanediol mono-(*S*)**-3,3,3-trifluorolactate** [(*S*)**-4d**]: White solid. Mp 50-51 °C. IR (KBr): 3508, 2940, 1746, 1270, 1238, 1146, 1132 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (q, J 6.9, 1H), 4.37 (dt, J₁ 10.8, J₂ 6.6, 1H), 4.28 (dt, J₁ 10.5, J₂ 6.6, 1H), 3.65 (t, J 6.6, 2H), 3.46 (brs, OH), 1.3-1.8 (m, 10H), terminal OH was not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 3F). ¹³C NMR (CDCl₃): δ 167.3, 122.4 (q, J 282), 69.9 (q, J 32.0), 67.1, 62.6, 32.2, 28.6, 28.0, 25.3. MS: m/z 145 (9), 117 (2), 97 (10), 84 (30), 81 (22), 71 (16), 69 (23), 68 (51), 67 (55), 56 (41), 55 (100). Anal. Calcd for C₁₀H₁₇F₃O₄: C 46.51, H 6.64. Found: C 46.47, H 6.53. [α]²⁵_D –4.07 (*c* 1.1, acetone).

1,8-octanediol mono-(*S*)**-3,3,3-trifluorolactate** [(*S*)**-4e**]: 80% yield. White solid. Mp 47-48 °C. IR (KBr): 3476, 2948, 2868, 1750, 1336, 1212, 1184, 1128 cm⁻¹. ¹H NMR (CDCl₃): δ 4.47 (quintet, J 6.9, 1H), 4.36 (dt, J₁ 10.8, J₂ 6.6, 1H), 4.27 (dt, J₁ 10.5, J₂ 6.6, 1H), 3.65 (t, J 6.6, 2H), 3.53 (brs, OH), 1.3-1.75 (m, 12H), terminal OH was not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 6.9, 3F). ¹³C NMR (CDCl₃): δ 167.5, 122.3 (q, J 281), 69.9 (q, J 32.7), 67.5, 62.9, 32.5, 29.1, 28.9, 28.2, 25.5, 25.4. MS: m/z 145 (12), 110 (5), 99 (11), 98 (15), 83 (12), 82 (54), 81 (34), 70 (36), 69 (99), 68 (47), 67 (78), 57 (25), 56 (30), 55 (100), 54 (54). Anal. Calcd for C₁₁H₁₉F₃O₄: C 48.53, H 7.03. Found: C 48.53, H, 6.82. [α]²⁵_D –3.24 (*c* 1.0, acetone).

1,9-nonanediol mono-(*S*)**-3,3,3-trifluorolactate** [(*S*)**-4f**]**:** 82% yield. White solid. Mp 48-49 °C. IR (KBr): 3512, 3172, 2932, 2864, 1746, 1342, 1268, 1246, 1176, 1146, 1128 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (quintet, J 6.9, 1H), 4.37 (dt, J₁ 10.8, J₂ 6.6, 1H), 4.28 (dt, J₁ 10.8, J₂ 6.6, 1H), 3.65 (t, J 6.6, 2H), 3.47 (d, J 7.5, OH), 1.25-1.75 (m, 14H), terminal OH was not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 3F). ¹³C NMR (CDCl₃): δ 167.4, 122.4 (q, J 282), 69.9 (q, J 32.7), 67.4, 62.8, 32.5, 29.2, 29.1, 28.8, 28.2, 25.5, 25.4. MS: m/z 145 (3), 144 (2), 112 (7), 96 (26), 95 (24), 84 (18), 83 (46), 82 (49), 81 (46), 71 (16), 70 (18), 69 (81), 68 (60), 67 (70), 57 (26), 56 (32), 55 (100), 54 (49). Anal. Calcd for C₁₂H₂₁F₃O₄: C 50.34, H 7.39. Found: C 50.43, H, 7.33. [α]²⁵_D -3.14 (*c* 1.0, acetone).

Preparation of double-headed (R,S)-trifluorolactates (1)

Tetramethylene-(*R*,*S*)-bis(3,3,3-trifluorolactate) (1a): Typical procedure of hafnium(IV) catalyzed esterification² of (*S*)-4 with (*R*)-3,3,3-trifluorolactic acid³. Two-necked round-bottomed flask equipped with a Teflon-coated magnetic stirring bar and a Dean-Stark apparatus surmounted by a reflux condenser was charged with a compound (*S*)-4a (0.324 g, 1.50 mmol), a (*R*)-trifluorolactic acid (0.324 g, 2.25 mmol) and HfCl₄·(thf)₂ (0.0069 g, 0.015 mmol) as a catalyst in toluene (5 ml). The mixture was brought to reflux under Ar atmosphere with the removal of water. After 15 h, the resulting mixture was cooled to

ambient temperature and water (ca. 0.1 ml) was added. After being stirred for 10 min, the resultant mixture was dried over anhydrous MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by silica gel column chromatography (hexane:AcOEt = 5:1) to give the diester **1a** (0.428 g, 1.25 mmol, 83% yield). Colorless crystal. Mp 92-93 °C. IR (KBr): 3508, 3436, 2988, 2952, 1752, 1350, 1307, 1274, 1228, 1181, 1133 cm⁻¹. ¹H NMR (CDCl₃): δ 4.25-4.57 (m, 6H), 3.38 (d, J 7.8, 20H), 1.82 (m, 4H); ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 6F); ¹³C NMR (CDCl₃): δ 167.5, 122.2 (q, J 282), 69.8 (q, J 33.2), 66.7, 24.7; MS: m/z 199 (2), 145 (1), 129 (1), 99 (5), 79 (5), 73 (12), 56 (5), 55 (100). Anal. Calcd for C₁₀H₁₂F₆O₆: C 35.10, H 3.53. Found: C 34.9, H 3.86. [α]²⁵_D = ±0.0, σ (N-1) = 0.07 (*c* 1.0, acetone).

Pentamethylene-(*R*,*S*)-bis(3,3,3-trifluorolactate) (1b): 82% yield. Colorless crystal. Mp 71-72 °C. IR (KBr): 3448, 2968, 1743, 1272, 1135 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (quintet, J 7.5, 2H), 4.39 (dt, J₁ 10.8, J₂ 6.6, 2H), 4.29 (dt, J₁ 10.8, J₂ 6.3, 1H), 3.40 (d, J 7.8, 2OH), 1.70-1.80 (m, 4H), 1.40-1.55 (m, 2H). ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 6F). ¹³C NMR (CDCl₃): δ 167.5, 122.2 (q, J 282), 69.8 (q, J 32.6), 67.1, 27.8, 21.8; MS: m/z 145 (2), 99 (4), 78 (4), 69 (100), 55 (6). Anal. Calcd for C₁₁H₁₄F₆O₆: C 37.09, H 3.96. Found: C 37.0, H 4.16. $[\alpha]^{25}_{D} = \pm 0, \sigma(N-1) = 0.10$ (*c* 1.1, acetone).

Hexamethylene-(*R*,*S*)-bis(3,3,3-trifluorolactate) (1c): 67% yield. Colorless crystal. Mp 112-113 °C. IR (KBr): 3440, 1746, 1468, 1414, 1343, 1294, 1270, 1241, 1220, 1187, 1135, 964 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (quintet, J 7.2, 2H), 4.39 (dt, J₁ 10.8, J₂ 6.6, 2H), 4.28 (dt, J₁ 10.8, J₂ 6.3, 2H), 3.41 (d, J 7.5, 2OH), 1.74 (quintet, J 7, 4H), 1.41 (quintet, J 3, 4H). ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 6F). ¹³C NMR (CDCl₃): δ 167.5, 122.2 (q, J 282), 69.8 (q, J 33.2), 67.3, 28.1, 25.0. MS: m/z 145 (2), 127 (5), 117 (1), 99 (9), 83 (80), 82 (22), 79 (11), 67 (34), 56 (14), 55 (100). Anal. Calcd for C₁₂H₁₆F₆O₆: C 38.93, H 4.36. Found: C 38.8, H 4.5. $[\alpha]^{25}_{D} = \pm 0$, σ (N-1) = 0.16 (*c* 1.1, acetone).

Heptamethylene-(*R*,*S*)-bis(3,3,3-trifluorolactate) (1d): 75% yield. Colorless crystal. Mp 94-95 °C. IR (KBr): 3450, 2952, 1746, 1344, 1268, 1246, 1228, 1194, 1135 cm⁻¹. ¹H NMR (CDCl₃): δ 4.48 (quintet, J 7.2, 2H), 4.38 (dt, J₁ 10.5, J₂ 6.6, 2H), 4.27 (dt, J₁ 10.8, J₂ 6.6, 2H), 1.71 (quintet, J 7, 4H), 1.25-1.45 (m, 6H), OHs were not observed. ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 6F). ¹³C NMR (CDCl₃): δ 167.5, 122.2 (q, J 282), 69.8 (q, J 32.7), 67.5, 28.4, 28.1, 25.3. MS: m/z 141 (1), 97 (44), 81 (11), 69 (18), 68 (27), 67 (21), 55 (100). Anal. Calcd for C₁₃H₁₈F₆O₆: C 40.63, H 4.72. Found: C 40.86, H 4.98. $[\alpha]^{25}_{D} = \pm 0, \sigma(N-1) = 0.08$ (*c* 1.0, acetone).

Octamethylene-(*R*,*S*)-bis(3,3,3-trifluorolactate) (1e): 85% yield. Colorless crystal. Mp 84-85 °C. IR (KBr): 3456, 2972, 2944, 1749, 1342, 1272, 1232, 1188, 1136 cm⁻¹. ¹H NMR (CDCl₃): δ 4.47 (q, J 7.2, 2H), 4.37 (dt, J₁ 10.8, J₂ 6.9, 2H), 4.27 (dt, J₁ 10.5, J₂ 6.6, 2H), 3.43 (d, J 7.5, 2OH), 1.72 (quintet, J 7, 4H), 1.35-1.5 (m, 8H). ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 7.2, 6F). ¹³C NMR (CDCl₃): δ 167.5, 122.2 (q, J 282), 69.8 (q, J 33.2), 67.6, 28.7, 28.1, 25.3. MS: m/z 145 (4), 127 (4), 110 (8), 109 (9), 97 (18), 96 (18), 95 (22), 83 (42), 82 (47), 81 (41), 71 (13), 70 (15), 69 (54), 68 (50), 67 (56), 57 (21), 56 (27), 55 (100), 54 (40). Anal. Calcd for C₁₄H₂₀F₆O₆: C 42.22, H 5.06. Found: C 41.86, H 5.32. $[\alpha]^{25}_{D} = \pm 0$, σ (N-1) = 0.11 (*c* 1.2, acetone).

Nonamethylene-(*R*,*S*)-bis(3,3,3-trifluorolactate) (1f): 78% yield. Colorless crystal. Mp 67-68 °C. IR (KBr): 3588, 1750, 1226, 1134 cm⁻¹; ¹H NMR (CDCl₃): δ 4.48 (q, J 7.2, 2H), 4.37 (dt, J₁ 10.8, J₂ 6.6, 2H), 4.28 (dt, J₁ 10.5, J₂ 6.6, 2H), 3.43 (d, J 7.5, 2OH), 1.71 (quintet, J 7, 4H), 1.25-1.45 (m, 10H). ¹⁹F NMR (CDCl₃): δ 85.0 (d, J 6.9, 6F). ¹³C NMR (CDCl₃): δ 167.5, 122.2 (q, J 282), 69.8 (q, J 33.3), 67.7, 29.2, 28.9, 28.2, 25.5. MS: m/z 145 (1), 125 (6), 124 (9), 96 (26), 95 (20), 83 (48), 82 (42), 81 (31), 69 (100), 68 (40), 67 (42), 57 (18), 56 (14), 55 (85), 54 (35). Anal. Calcd for C₁₅H₂₂F₆O₆: C 43.69, H 5.38. Found: C 43.87, H 5.31. $[\alpha]^{25}_{D} = \pm 0, \sigma(N-1) = 0.07$ (*c* 1.2, acetone).

Preparation of single crystal. Crystallizations of **1a-1f** were performed by slow evaporation of solvents from hexane/ether solutions. Crystal **1f**' was obtained by slow evaporation of solvents from isooctane/THF solutions of compound **1f**.

X-ray crystallographic studies. X-ray diffraction data were collected with a Rigaku RAXIS-IV diffractometer, Mo-K α radiation [$\lambda = 0.71073$ Å]. The temperature was controlled by a low temperature device. The data were collected to a maximam 20 value of 55.0 °. All structures were solved by direct methods using SIR97⁴ or SAPI91⁵. All structures were refined by full-matrix least-squares on F^2 using SIR97 or SHELXL97⁶ program. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were located from Fourier difference maps or placed in calculated positions, and refined isotropically or treated as riding atoms using the SHELXL default parameters, or fixed. In case of the single crystal **1f**, the SQUEEZE⁷ option of the program PLATON⁸ was used to eliminate the contribution of solvent molecules that were highly disordered, thereby giving final models based only on the ordered part of the crystal structure. The calculations were performed with the teXsan⁹ and WinGX¹⁰ crystallographic software package.

References

1) T. Katagiri, F. Obara, S. Toda, K. Furuhashi, Synlett 1994, 507-508.

2) K. Ishihara, S. Ohara, H. Yamamoto, Science 2002, 290, 1140-1142.

3) C. von dem Bussche-Hunnefeld, C. Cescato, D. Seebach, Chem. Ber. 1992, 125, 2795-2802.

4) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G.

Moliterni, G. Polidori, R. Spagna, SIR97, J. Applied Cryst. 1999, 32, 115-119.

5) H.-F. Fan, *SAPI91*, Structure Analysis Programs with Intelligent Control, Rigaku Corporation, 1991.
6) G. M. Sheldrick, *SHELX*97 Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

7) P. van der Sluis, A. L. Spek, Acta Cryst. 1990, A46, 194-201.

8) A. L. Spek, *PLATON*, A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands, 2002.

9) *teXsan*, Single Crystal Structure Analysis Software. Version 1.11, Molecular Structure Corporation, Rigaku Corporation, 2000.

10) L.J. Farrugia, J. Appl. Cryst., 1999, 32, 837-838.

Compound	1a	1b	1c	1d	1e	1f (as hexane solvate)	1f '
CCDC number	246911	246912	246913	246914	246915	246916	264877
Formula	$C_{10}H_{12}F_6O_6$	$C_{11}H_{14}F_6O_6$	$C_{12}H_{16}F_6O_6$	$C_{13}H_{18}F_6O_6$	$C_{14}H_{20}F_6O_6$	$C_{15}H_{22}F_6O_6(C_6H_{14})_n$	$C_{15}H_{22}F_6O_6$
Formula weight	342.19	356.22	370.24	384.27	398.30	498.5 ^c	412.32
Crystal size (mm ³)	0.4x0.1x0.1	1.0x0.06x0.02	0.5x0.25x0.05	0.1x0.1x0.03	0.4x0.2x0.1	0.4x0.2x0.2	1.0x0.2x0.2
Crystal colour	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless
Crystal System	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Triclinic	Orthorhombic	Monoclinic
Space group	P2 ₁ /c(#14)	Pna2 ₁ (#33)	C2/c(#15)	Pnma(#62)	P-1(#2)	Pnma(#62)	P2 ₁ /c (#14)
a (Å)	7.1113(8)	15.40(1)	19.891(2)	15.613(3)	5.120(1)	15.7479(5)	5.3266(7)
<i>b</i> (Å)	5.0864(3)	18.79(2)	5.1138(2)	21.793(4)	10.895(3)	27.135(1)	20.331(5)
<i>c</i> (Å)	18.142(2)	5.045(3)	15.605(1)	5.0901(5)	17.165(4)	5.0309(1)	16.967(4)
α (°)	90	90	90	90	72.489(8)	90	90
β (°)	98.398(2)	90	100.918(1)	90	89.58(2)	90	94.52(1)
γ (°)	90	90	90	90	85.41(2)	90	90
Volume ($Å^3$)	649.17(10)	1460(6)	1558.6(2)	1731(1)	910.0(4)	2149.8(5)	1831.8(7)
Z value	2	4	4	4	2	4	4
$D_{\text{calc}} (\text{g-cm}^{-3})$	1.75	1.62	1.58	1.47	1.45	1.54 ^c	1.5
$\mu \ (\mathrm{mm}^{-1})$	0.193	0.175	0.167	0.153	0.149	0.143 ^c	0.075
Temperature (K)	120	120	120	120	120	100	115
Reflection collected	2819	6719	5843	10363	4258	4499	6930
Unique reflection	1487	2218	1679	1888	2601	1900	4035
<i>R</i> (int)	0.022	0.073	0.012	0.037	0.03	0.013	0.02
Transmission factor range	0.70-0.98	0.51-1.00	0.78-0.99	0.87-1.00	0.64-0.99	0.64-0.98	0.57-0.97
Max theta (°)	25.85	25.5	25.4	25.4	25.5	25.0	25.75
Data completeness	0.9912	0.887	0.953	0.948	0.769	0.987	0.946
Data / restraints / parameters	1247/0/124	2218/1/209	1371/0/137	1541/0/149	2601/0/236	1900/0/126	3330/0/332
Reflections used [I>2o(I)]	1043	1002	1283	836	2135	1707	3034
R 1 for $[I > 2\sigma(I)]^a$	0.0448	0.0567	0.0356	0.0506	0.0851	0.0432	0.0451
<i>R</i> 1 for all data	0.0536	0.1391	0.0375	0.0976	0.0963	0.0465	0.0494
wR2 for all data ^b	0.116	0.132	0.1273	0.1395	0.269	0.1167	0.1559
Max shift/error	0.0005	0.003	0.0004	0.0001	0	0.000	0.0003
Goodness of fit	1.397	0.869	1.251	1.185	1.111	1.124	1.65
Largest diff. peak (e·Å ⁻³)	0.24	0.32	0.25	0.54	0.55	0.33	0.17
Largest diff hole $(e, Å^{-3})$	-0.36	-0.36	-0.26	-0 54	-0.43	-0.22	-0.26

Table 1S Crystallographic parameter table for 1a-1f'

a) $R1 = \sum |Fo - Fc| / \sum |Fo|$ b) $wR2 = [\sum w(Fo^2 - Fc^2)^2 / \sum w(Fo^2)^2]^{1/2}$ c) calculated as hexane solvate

Figure 1S ORTEP plots for 1a-1f' at 50% probability level.

Figure 2S Crystal structure of 1a viewed down *a* axis.

Figure 3S Crystal structure of 1b viewed down *a* axis.

Figure 4S Crystal structure of 1c viewed down c axis.

Figure 5S Crystal structure of 1d viewed down *a* axis.

Figure 6S Crystal structure of 1e viewed down c axis.

mdd RS-1f dissolved crystal 2005.3.31 Pulse Sequence: s2pul Selvent: CDC13 Ambient temperature Mercury-300 *mp300* 1.0 48.12 548°T 1.5 L\$9 18.76 699 Z 6 9 912.1 657.1 2.0 F₃C 0H ŌН CF₃ 2.5 0 DATA PROCESSING FT size 5535 Total time 8 minutes 3.0 3.5 8.74 Z05'E H1, 300.0673669 825.5 OBSERVE 222 \$\$2. 852.8 4.0 992.1 082.9 £05.4 916.9 666.1 \$35.4 18.80 Pulse Sequence: s2pul 19E'B 1.000 **₽**८€ 965.3 76.4 degr time 3.200 5402.5 Hz repetition PULSE SEQUENCE 52P.P-5.59 delay 4.5 8\$**}**.Þ 279.9-Relax. Pulse Lax. Acq. t Width 128 re 967 220

Figure 8S¹H NMR spectrum of crystal 1f' dissolved in CDCl₃ (without guest molecules)

RS-11 dissolved crystal 2005.3.31