Stereoselective y-Lactam Synthesis via Palladium-catalysed Intramolecular Allylation

Donald Craig,^a Christopher J. T. Hyland^a and Simon E. Ward^b

- ^{*a*} Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- ^b GlaxoSmithKline Research Ltd, New Frontiers Science Park North, Third Avenue, Harlow, Essex CM19 5AW, U.K.

Experimental procedures and spectroscopic data/physical characteristics of all compounds prepared in this work

N-(Toluene-4-sulfonyl)-L-serine

To a rapidly-stirred solution of L-serine (18.0 g, 171 mol, 1.0 equiv) and TsCl (43.2 g, 227 mol, 1.3 equiv) in EtOAc (400 ml) and H₂O (120 ml) was added NaOH (228 ml of a 2 M aqueous solution, 456 mmol, 2.7 equiv) dropwise over 3 h. After a further 1 h the phases were separated and the aqueous layer acidified with *c*.HCl (25 ml). The resulting white precipitate was filtered and dried azeotropically with toluene to yield *N*-(toluene-4-sulfonyl)-L-serine (26.2 g, 79%) as a colourless solid; mp 236 °C (EtOAc); $R_f 0.32$ (50% EtOAc–petrol); δ_H (300 MHz) 7.94 (1H, d, J 8.5 Hz, NH), 7.68 (2H, d, J 8.5 Hz, *ortho* Ts), 7.36 (2H, d, J 8.5 Hz, *meta* Ts), 3.75-3.68 (1H, m, *CH*NHTs), 3.53-3.49 (2H, m, *CH*₂OH), 2.50 (1H, s, CH₂OH), 2.37 (3H, s, Me of Ts); *m/z* (CI) 277 [M+NH₄]⁺. *In agreement with published data*.¹

(+)-(S)-3-hydroxy-1-(4-methoxyphenyl)-2-(toluene-4-sulfonamido)propan-1-one

Activated magnesium turnings (15.4 g, 632 mmol, 4.1 equiv) were suspended in THF (400 ml) and 4-bromoanisole (77.2 ml, 616 mmol, 4.0 equiv) added dropwise to maintain a steady reflux. After stirring for 1 h the mixture was transferred to a solution of acid **170** (40.0 g, 154 mmol, 1.0 equiv), and *n*-BuLi (193 ml of a 1.6 M solution in hexanes, 308 mmol, 2.0 equiv) in THF (400 ml) at –78 °C. The mixture was allowed to warm to rat and after 37 h the reaction mixture was poured into HCl (1 M; 400 ml) and extracted with Teac (3 x 400 ml). The combined organic extracts were washed with saturated aqueous NaHCO₃ (600 ml) and dried (MgSO₄). Concentration under reduced pressure and recrystallisation (EtOAc–petrol) gave the *ketone* (39.0 g, 73%) as an off-white solid; mp 80–82 °C (EtOH); R_f 0.25 (10% EtOAc–CH₂Cl₂); $[\alpha]_D^{20}$ +84.0 (*c* 1.0, EtOH); v_{max} (film) 3489, 3283, 3264, 1680, 1601, 1336, 1308, 1165, 910, 739 cm⁻¹; $\delta_{\rm H}$ (300 MHz), 7.80 (2H, d, J 9.0 Hz, *ortho* ArOMe), 7.73 (2H, d, J 8.0 Hz, *ortho* Ts), 7.21 (2H, d, J 8.0 Hz, *meta* Ts), 6.93 (2H, d, J 9.0 Hz, *meta* ArOMe), 6.11 (1H, d, J 7.5 Hz, NHTs), 4.90-4.85 (1H, m, CHNHTs), 4.10-3.90 (1H, m, CHHOH), 3.88 (3H, s, ArOMe), 3.78-3.73 (1H, m, CHHOH), 2.34 (3H, s, Me of Ts); δ_C (75 MHz) 202.2 (C=O), [164.5, 144.0, 136.5 (q Ar)], [131.1, 129.8, 127.1 (ArH)], 126.5 (q Ar), 114.2 (ArH),

64.7 (CH₂OH), 59.6 and 55.7 (CHNHTs and OMe of ArOMe), 21.8 (Me of Ts); m/z (CI) 367 $[M+NH_4]^+$, 350 $[M+H]^+$ (Found: C, 58.49; H, 5.32; N, 3.92. C₁₇H₁₉NO₅S requires C, 58.44; H, 5.48; N, 4.01%).

(+)-(*R*)-2-(Toluene-4-sulfonamido)-3-(4-methoxyphenyl)propan-1-ol (3)

(+)-(S)-3-Hydroxy-1-(4-methoxyphenyl)-2-(toluene-4-sulfonamido)propan-1-one (30.1 g, 85.9 mmol, 1.0 equiv) was dissolved in trifluoroacetic acid (132 ml, 1.72 mol, 20.0 equiv), treated dropwise with triethylsilane (137 ml, 860 mmol, 10.0 equiv) over 3 h and stirred at 40 °C for 1 d. NaOH (2 M; 1.5 l) was then added and the mixture extracted with EtOAc (3 x 500 ml). The combined organic extracts were concentrated under reduced pressure and the resulting residue stirred with 4% NaOH–MeOH (500 ml) for 1 h. The solution was then diluted with Et₂O (500 ml) and HCl (2 M; 500 ml) and the aqueous phase extracted with Et₂O (2 x 500 ml). The combined organic extracts were washed with H₂O (500 ml), brine (500 ml) and dried (MgSO₄). Concentration under reduced pressure and chromatography (60% Et₂O-petrol) gave alcohol **3** (27.0 g, 93%) as a colourless oil; $R_f 0.65$ (90% CH₂Cl₂-EtOAc); $[\alpha]_D^{20}$ +12.7 (*c* 1.3, CHCl₃); v_{max} (film) 3517, 3289, 1612, 1598, 1440, 1423, 1320, 1247, 1157, 1091, 1037, 813, 665, 549 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.59 (2H, d, J 8.0 Hz, ortho Ts), 7.22 (2H, d, J 8.0 Hz, meta Ts), 6.90 (2H, d, J 9.0 Hz, meta ArOMe), 6.72 (2H, d, J 9.0 Hz, ortho ArOMe), 4.86 (1H, d, J 7.0 Hz, NHTs), 3.79 (3H, s, OMe of ArOMe), 3.66 (1H, dd, J 15.0, 5.0 Hz, CHHOH) 3.55 (1H, dd, J 11.0, 5.0 Hz, CHHOH) 3.41-3.39 (1H, m, CHNHTs), 2.74 (1H, dd, J 14.0, 7.0 Hz, CHHArOMe), 2.62 (1H, dd, J 14.0, 8.0 Hz, CHHArOMe) 2.44 (3H, s, Me of Ts); δ_C (67.5 MHz) 158.3, 143.2, 137.2, 130.2, 129.7, 129.1, 127.0, 114.0, 64.2, 57.2, 55.2, 36.8, 21.6; m/z (CI) 353 $[M+NH_4]^+$, 336 $[M+H]^+$, 189 (Found: $[M+H]^+$, 336.1272. $C_{17}H_{21}NO_4S$ requires $[M+H]^+$, 336.1270).

(+)-(R)-(E)-Ethyl 5-(4-methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-enoate

To a solution of $(COCl)_2$ (470 µl, 5.40 mmol, 1.2 equiv) in CH₂Cl₂ (8 ml) at -78 °C was added DMSO (767 µl, 10.8 mmol, 2.4 equiv) in CH₂Cl₂ (8 ml). After 5 min (+)-(*R*)-2-(toluene-4-sulfonamido)-3-(4-methoxyphenyl)propan-1-ol (1.50 g, 4.48 mmol, 1.0 equiv) in CH₂Cl₂ (10 ml) was added and the solution stirred at -78 °C for 45 min. Et₃N (3.14 ml, 22.5 mmol, 5.0 equiv) in CH₂Cl₂ (5 ml) was then added and the solution warmed to 0 °C over 30 min and then to rt. After 10 min the mixture was diluted with CH₂Cl₂ (25 ml) and washed with saturated aqueous NaHCO₃ (50 ml). The aqueous layer was extracted with CH₂Cl₂ (2 x 50 ml) and the combined organic extracts washed with H₂O (100 ml), brine (100 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave the crude aldehyde as a yellow oil. This was immediately dissolved in CH₂Cl₂ (50 ml) and to it was added Ph₃PCHCO₂Et (7.83 g, 22.5 mmol, 5.0 equiv). After 12 h the reaction was

concentrated under reduced pressure and triturated with Et₂O (250 ml) to precipitate triphenylphosphine oxide. Concentration of the filtrate under reduced pressure and chromatography (50% EtOAc–petrol) gave the *ester* (1.60 g, 86%) as a colourless oil; $R_f 0.65$ (50% EtOAc–petrol); $[\alpha]_D^{20}$ +29.6 (*c* 0.5, CHCl₃); v_{max} (film) 3274, 2981, 1716, 1658, 1612, 1513, 1444, 1369, 1322, 1303, 1282, 1249, 1178, 1159, 1093, 1035, 973, 813, 667, 580; δ_H (300 MHz) 7.56 (2H, d, J 8.0 Hz, *ortho* Ts), 7.20 (2H, d, J 8.0 Hz, *meta* Ts), 6.88 (2H, d, J 8.5 Hz, *meta* ArOMe), 6.78 (1H, d, 16.0 Hz, *CHCO*₂Et), 6.71 (2H, d, J 9.0 Hz, *ortho* ArOMe), 5.81 (1H, dd, J 16.0, 1.5 Hz, CH=CHCHNHTs), 4.44 (1H, d, J 7.0 Hz, NHTs), 4.18-4.07 (3H, m, CHNTs and CO₂CH₂CH₃), 3.77 (3H, s, OMe of ArOMe), 2.78 (2H, dd, J 14.0, 5.0 Hz, CH=CO₂CH₂CH₃); δ_C (67.5 MHz) 165.9 (C=O), 158.5 (q Ar), 146.3 (CH=CHCO₂Et), [143.5, 137.2, 127.1 (q Ar)], [130.4, 129.7, 127.1, 122.4, 114.2 (ArH and CH=CHCO₂Et)], 60.6 (OCH₂CH₃); *m/z* (CI) 421 [M+NH₄]⁺, 252, 189 (Found: [M+NH₄]⁺, 421.1786. C₂₁H₂₅NO₅S requires [M+NH₄]⁺, 421.1797).

(+)-(*R*)-(*E*)-5-(4-Methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-enol

To a solution of (+)-(R)-(E)-ethyl 5-(4-methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-enoate (685 mg, 1.70 mmol, 1.0 equiv), in CH₂Cl₂ (18 ml) at -78 °C was added DIBAL-H (6.12 ml of a 1 M solution in CH₂Cl₂, 6.12 mmol, 3.6 equiv). After 1 h MeOH (15 ml) and H₂O (15 ml) were added at -50 °C and the mixture stirred for 10 min. The reaction mixture was then diluted with EtOAc (100 ml), poured onto NaHCO₃ (25 g) and Na₂SO₄ (25 g) and stirred for 30 min. Filtration, concentration under reduced pressure and chromatography (50% EtOAc-petrol) gave the allylic *alcohol* (466 mg, 76%) as a pale yellow oil; $R_f 0.37$ (50% EtOAc-petrol); $[\alpha]_D^{20}$ +7.5 (c 1.0, CHCl₃); v_{max} (film) 3502, 3284, 2924, 1612, 1598, 1511, 1440, 1421, 1320, 1247, 1178, 1157, 1091, 1035, 993, 970, 813; δ_H (300 MHz) 7.60 (2H, d, J 8.0 Hz, ortho Ts), 7.24 (2H, d, J 8.0 Hz, meta Ts), 6.95 (2H, d, J 8.5 Hz ortho ArOMe), 6.77 (2H, d, J 8.5 Hz, meta ArOMe), 5.64 (1H, dt, J 16.0, 4.0 Hz, CH=CHCHNHTs), 5.52 (1H, dd, J 16.0, 6.0 Hz, CH=CHCHNHTs), 4.02-4.00 (3H, m, CH₂OH and CHNHTs), 3.81 (3H, s, OMe of ArOMe), 2.76 (2H, dd, J 14.0, 5.0 Hz, CHHArOMe), 2.66 (2H, dd, J 14.0, 7.0 Hz, CHHArOMe), 2.40 (3H, s, Me of Ts); δ_C (67.5 MHz) [158.6, 143.3, 137.6 (q Ar)], 131.3, 130.6 (CH=CHCO₂Et), [130.5, 129.5 (ArH)], 128.1 (q Ar), [127.3, 114.0 (ArH)], 62.7 (CH₂OH), 56.4 (CHNHTs), 55.3 (OMe of ArOMe), 41.1 (CH₂ArOMe), 21.6 (Me of Ts); *m/z* (CI) 379 [M+NH₄]⁺, 189, 150, 132 (Found: [M+NH₄]⁺, 379.1694. C₁₉H₂₃NO₄S requires [M+NH₄]⁺, 379.1692).

(R)-(E)-5-(4-Methoxyphenyl)-4-(4-methylbenzylamino)pent-2-enol (4)

To a solution of sodium (823 mg, 35.8 mmol, 6.0 equiv) dissolved in liquid ammonia (ca. 65 ml) at -78 °C was added (+)-(R)-(E)-5-(4-methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-en-1-ol (2.00 g, 5.54 mmol, 1.0 equiv). After 30 min MeOH (5 ml) was added dropwise until the colour was discharged. The ammonia was then allowed to evaporate and the remaining residue partitioned between H₂O (100 ml) and CH₂Cl₂ (100 ml) and the aqueous layer was extracted with CH₂Cl₂ (3 x 100 ml). The combined organic extracts were then dried (Na₂SO₄) and the solvent removed under reduced pressure to give (R)-(E)-4-amino-5-(4-methoxyphenyl)pent-2-en-1-ol (1.1 g, 5.37 mmol) as a brown oil; $\delta_{\rm H}$ (300 MHz) 7.13 (2H, d, J 8.5 Hz, ortho ArOMe), 6.87 (2H, d, J 8.5 Hz, meta ArOMe), 5.78-5.77 (2H, m, CH=CH), 4.12-4.11 (2H, m, CH₂OH), 3.80 (3H, s, OMe of ArOMe), 3.63-3.58 (1H, m, CHNH₂), 2.83-2.76 (2H, m, CHHArOMe), 2.57 (1H, dd, J 13.5, 8.5 Hz, CHHArOMe). 4-Methylbenzaldehyde (2.50 ml, 21.2 mmol, 4.0 equiv), the crude primary amine (1.10 g, 5.3 mmol, 1.0 equiv), MeOH (20 ml), 4 Å MS (2 g), AcOH (10 ml) and THF (20 ml) were stirred together for 1 h at room temperature. NaCNBH₃ (1.64 g, 26.5 mmol, 5.0 equiv) was then added in portions over 3 h, after which time the reaction was filtered through celite and concentrated under reduced pressure. The residue was portioned between Et₂O (100 ml) and NaOH (2 M; 100 ml). The organic layer was washed with H₂O (100 ml), brine (100 ml), dried (MgSO₄) and concentrated under reduced pressure. Chromatography (MeOH-CH₂Cl₂) yielded the amine 4 (1.00 g, 60%) as a colourless oil; $R_f 0.10$ (90% CH₂Cl₂-Et₂O); $[\alpha]_D^{24}$ +40.0 (c 0.1, CHCl₃); v_{max} (film) 3305, 3004, 2919, 2834, 1612, 1511, 1456, 1230, 1248, 1178, 1095, 1036, 808 cm⁻¹; $\delta_{\rm H}$ (300 MHz); 7.13-7.05 (6H, m, ArMe, and ortho ArOMe), 6.84 (2H, d, J 9.0 Hz, meta ArOMe), 5.69-5.64 (2H, m, CH=CH), 4.14 (2H, d, J 5.0 Hz, CH₂OH), 3.81 (3H, s, OMe of ArOMe), 3.76 (1H, d, J 14.0 Hz, CHHArMe), 3.55 (1H, d, J 14.0 Hz, CHHArMe), 3.31 (1H, q, J 6.0 Hz, CHNHArMe), 2.77-2.75 (2H, m, CH₂ArOMe), 2.34 (3H, s, Me of CH₂ArMe); δ_C (75 MHz) 158.6, 136.9, 133.1, 132.6, 130.8, 130.6, 130.5, 129.5, 128.7, 114.5, 63.0, 61.1, 55.7, 51.2, 41.7, 21.5; *m/z* (CI) 312 [MH]⁺, 294, 190, 122, 105 (Found: [MH]⁺, 312.1955. C₂₀H₂₅O₂N requires [MH]⁺, 312.1964) (Found: C, 77.23; H, 8.13; N, 4.45. C₂₀H₂₅O₂N requires C, 77.14; H, 8.10; N, 4.50%).

(+)-(*R*)-(*E*)-5-(4-Methoxyphenyl)-4-{(4-methylbenzyl)[(toluene-4-sulfonyl)acetyl]amino}pent-2-enol

To a solution of amine 4 (250 mg, 0.804 mmol, 1.0 equiv) and tosylacetic acid (342 mg, 1.61 mmol, 2.0 equiv) in CH_2Cl_2 (3 ml) was added DCC (350 mg, 1.77 mmol, 2.1 equiv). The reaction was stirred at rt for 15 h and was then filtered and stirred in 4% NaOH–MeOH for 1 h. The mixture was then concentrated under reduced pressure and the residue partitioned between EtOAc (50 ml) and HCl (2 M; 50 ml). The aqueous phase was then extracted with EtOAc (2 x 50 ml) and the combined

organic extracts washed with saturated aqueous NaHCO₃ (100 ml) and dried (Na₂SO₄). $(+)-(R)-(E)-5-(4-methoxyphenyl)-4-{(4-$ Concentration under reduced pressure gave methylbenzyl)[(toluene-4-sulfonyl)acetyl]amino}pent-2-enol (370 mg, 91%) as a colourless oil; R_f 0.84 (10% MeOH–CH₂Cl₂); $[\alpha]_{D}^{25}$ +27.2 (c 2.5, CHCl₃); v_{max} (film) 3443, 1642, 1318 cm⁻¹; δ_{H} (400 MHz) 7.71 (1.4H, d, J 8.0 Hz, ortho Ts rotamer 1) 7.70 (0.88H, d, J 8.0 Hz, ortho Ts rotamer 2), 7.28 (1.12H, d, J 8.0 Hz, meta Ts rotamer 1), 7.28 (0.6H, d, J 8.0 Hz, meta Ts rotamer 2), 7.26-7.09 (2.88H, m, ortho ArMe rotamer 1 and rotamer 2 and meta ArOMe rotamer 2), 7.05-7.01 (2H, m, ortho ArOMe rotamer 1 and rotamer 2), 6.95 (1.12H, d, J 8.0 Hz, ortho ArMe), 6.82 (0.88H, d, J 9.0 Hz, meta ArOMe rotamer 2), 6.79 (1.12H, d, J 9.0 Hz, meta ArOMe, rotamer 1) 5.85 (0.44H, dt, J 16.0, 4.5 Hz CH=CHCH₂OH rotamer 2), 5.74-5.69 (1.56H, m, CH=CHCH₂OH rotamer 1 and CH=CHCH₂OH rotamer 1 and rotamer 2), 4.95-4.96 (0.56H, CHN rotamer 1), 4.80-4.83 (0.44H, CHN rotamer 2), 4.55-4.66 (1.56H, CH₂Ts rotamer 1 and CHHTs rotamer 2), 4.41 (0.44H, d, J 15.0 Hz, CHHTs rotamer 2), 4.07-3.99 (3.12H, m, CH₂ArMe rotamer 1 and CH₂OH), 3.87 (0.44H, d, J 14.0 Hz, CHHArMe rotamer 2), 3.78 (3H, s, OMe of ArOMe), 3.71 (0.44H, d, J 14.0 Hz, CHHArMe rotamer 2), 3.00-2.79 (2H, m, CH₂ArOMe), 2.45 (1.68H, s, Me of Ts rotamer 1), 2.42 (1.32H, s, Me of Ts rotamer 2), 2.33 (1.32H, s, Me of CH₂ArMe rotamer 2), 2.32 (1.68H, s, Me of CH₂ArMe rotamer 1); δ_C (100 MHz); 162.4, 158.7, 158.3, 145.2, 137.5, 136.6, 136.1, 135.2, 133.6, 133.6, 132.9, 130.4, 130.3, 129.7, 129.6, 129.3, 129.1, 128.9, 128.6, 127.8, 126.3, 114.3, 113.9, 62.9, 62.8, 61.6, 60.9, 59.8, 59.5, 55.3, 49.5, 46.1, 37.7, 21.8, 21.1, 21.0; *m/z* (CI) 525 [M+NH₄]⁺, 508 [M+H]⁺, 354, 238 (Found: [M+H]⁺, 508.2152. C₂₉H₃₃NO₅S requires [M+NH₄]⁺, 508.2158).

(+)-(*R*)-(*E*)-Carbonic acid 5-(4-methoxyphenyl)-4-[(4-methylbenzyl)-2-(toluene-4sulfonyl)acetylamino]pent-2-enyl ester methyl ester (2)

 $(+)-(R)-(E)-5-(4-methoxyphenyl)-4-{(4-methylbenzyl)[(toluene-4-$ То а solution of sulfonyl)acetyl]amino}pent-2-enol (600 mg, 1.18 mmol, 1.0 equiv) in CH₂Cl₂ (10 ml) at 0 °C was added pyridine (130 µl, 2.40 mmol, 2.0 equiv), methyl chloroformate (290 µl, 2.40 mmol, 2.0 equiv) and DMAP (14.4 mg, 0.118 mmol, 0.1 equiv). The reaction was brought to rt for 1 h and then quenched with saturated aqueous NH_4Cl (10 ml). The organic phase washed with H_2O (10 ml) brine (10 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (40% EtOAc-petrol) gave the carbonate 2 (650 mg, 96%) as a colourless oil; R_f 0.72 (60%) EtOAc-petrol); $[\alpha]_D^{22}$ +24.0 (c 0.5, CHCl₃); v_{max} (film) 1747, 1647, 1514, 1443, 1265, 1155, 793 cm^{-1} ; δ_{H} (400 MHz) 7.69 (1.32H, d, J 8.0 Hz, ortho Ts rotamer 1), 7.65 (0.68H, d, J 8.0 Hz, ortho Ts rotamer 2), 7.29 (1.32H, d, J 8.0 Hz, meta Ts rotamer 1), 7.21 (0.68H, d, J 8.0 Hz, meta Ts rotamer 2), 7.10 (0.68H, d, J 8.0 Hz, ortho CH₂ArMe rotamer 2), 7.05 (2H, m, meta CH₂ArMe rotamer 2 and ortho CH₂ArMe rotamer 1) 7.00-6.96 (2H, m, meta ArOMe rotamer 1 and rotamer 2),

6.91 (1.32H, d, J 8.0 Hz, meta CH₂ArMe rotamer 1), 6.78-6.73 (2H, m, ortho ArOMe), 5.85-5.76 (1.34H, m, CH₂CH=CH and CH₂CH=CH rotamer 2), 5.59 (0.66H, dt, J 16.0, 6.0 Hz, CH₂CH=CH rotamer 1), 4.82 (1H, m, CHN), 4.61 (0.66H, d, J 18.0 Hz, CHHTs rotamer 1), 4.53-4.44 (3H, m, CH₂OCO₂Me, CHHTs rotamer 1 and CHHTs rotamer 2), 4.39 (0.34H, d, J 15.0 Hz, CHHTs rotamer 2), 4.10-4.02 (1.32H, m, CH₂ArMe rotamer 1), 3.87 (0.34H, d, J 14.0 Hz, CHHArMe rotamer 2), 3.71-3.64 (6.34H, m, OMe of ArOMe, OCO₂CH₃ and CHHArMe rotamer 2), 2.92-2.75 (2H, m, CH₂ArOMe), 2.38 (1.98H, s, Me of Ts rotamer 1), 2.35 (1.02H, s, Me of Ts rotamer 2), 2.29 (1.02H, s, Me of CH₂ArMe rotamer 2), 2.28 (1.98H, s, Me of CH₂ArMe rotamer 1); $\delta_{\rm C}$ (100 MHz) 162.4 (OCO₂Me rotamer 1), 162.3 (OCO₂Me rotamer 2), 158.6 (NCOCH₂ rotamer 2), 158.3 (NCOCH₂ rotamer 1), [145.1, 145.0, 137.3, 136.4, 136.0, 135.7, 134.9, 133.4, (q Ar)], 132.8 (CH₂CH=CH rotamer 2), 132.1 (CH₂CH=CH rotamer 1), 130.5, 130.2, 129.7, 129.6, 129.5 (ArH)], 129.4 (q Ar), [128.9, 128.6, 128.4, 127.9 (ArH)], 126.9 (CH₂CH=CH rotamer 1), 126.6 (CH₂CH=CH rotamer 2), [126.3, 114.1, 113.8 (ArH)], 67.4 (CH₂OCO₂Me rotamer 1), 67.3 (CH₂OCO₂Me rotamer 2), 61.5 (CHN rotamer 1), 60.7 (CH₂ArMe rotamer 1), 59.8 (CHN rotamer 2), 59.6 (CH₂ArMe rotamer 2), [55.1 and 54.8, (OMe of ArOMe and OCO₂CH₃)], 49.8 (CH₂Ts rotamer 1), 46.0 (CH₂Ts rotamer 2), 37.5 (CH₂ArOMe), 21.7 (Me of CH₂ArMe rotamer 1), 21.6 (Me of CH₂ArMe rotamer 2), 21.1 (Me of Ts rotamer 2), 21.0 (Me of Ts rotamer 2); m/z (CI) 583 $[M+NH_4]^+$, 566 $[M+H]^+$, 490, 447, 412, 284, 240, 196, 133, 124 (Found: $[M+NH_4]^+$, 583.2479. C₃₁H₃₅NO₇S requires [M+NH₄]⁺, 583.2478) (Found: C, 65.71; H, 6.32; N, 2.40. C₃₁H₃₅NO₇S requires C, 65.82; H, 6.24; N, 2.48%).

(3*R*, 4*S*,5*R*)-5-(4-Methoxybenzyl)-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (1) and (3*S*,4*R*,5*R*)-5-(4-methoxybenzyl)-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (5)

To carbonate **2** (500 mg, 0.890 mmol, 1.0 equiv), Pd₂(dba)₃ (42 mg, 0.046 mmol, 5.0 mol%) and tris(2,4,6-trimethoxyphenyl)phosphine (244 mg, 0.458 mmol, 0.5 equiv) was added MeCN (10 ml) and the mixture stirred rapidly at rt. After 30 min the reaction mixture was concentrated under reduced pressure. Chromatography (50% Et₂O–petrol) gave an inseparable 5.6:1 mixture of γ -*lactam* **1** and γ -*lactam* **5** (380 mg, 90%) as a colourless oil; R_f 0.33; v_{max} (film) 2925, 1697, 1612, 1513, 1439, 1303, 1148, 813, 660 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.87 (2H, d, J 8.0 Hz, *ortho* Ts of **5**), 7.84 (2H, d, J 8.0 Hz, *ortho* Ts of **1**), 7.36 (2H, d, J 8.0 Hz, *meta* Ts of **1**), 7.11 (2H, d, J 8.0 Hz, *ortho* CH₂ArMe of **1**), 7.10 (2H, d, J 8.0 Hz, *ortho* ArMe of **5**), 7.05 (2H, d, J 9.0 Hz, *ortho* ArOMe of **5**), 7.04 (2H, d, J 8.0 Hz, *meta* CH₂ArMe), 6.94 (2H, d, J 8.0 Hz, *ortho* CH₂ArMe of **1**), 6.90 (2H, d, J 9.0 Hz, *meta* ArOMe of **5**), 6.78 (2H, d, J 9.0 Hz, *ortho* ArOMe of **1**), 5.83 (1H, ddd, J 17.0, 10.0, 9.5 Hz, CH=CH₂ of **1**), 5.41 (1H, ddd, J 17.0, 11.0, 7.0

Hz, CH=CH₂ of 5), 5.26 (1H, d, J 17.0 Hz, trans CH₂=CH of 1), 5.12 (1H, d, J 10.0 Hz, cis CH₂=CH of 1), 4.99 (1H, d, J 15.0 Hz, CHHN of 5), 4.98 (1H, d, J 15.0 Hz, CHHN of 1), 4.86 (1H, d J 17.0, trans CH=CH₂ of 5), 4.72 (1H, d, 10.0 Hz, cis CH=CH₂ of 5), 4.01-4.00 (1H, m, CHN of 1), 4.01 (1H, d, J 15.0 Hz, CHHN of 5), 3.84 (1H, d, J 4.0 Hz, CHTs of 5), 3.81 (3H, s, OMe of ArOMe of 5), 3.80 (1H, d, J 3.5 Hz, CHTs of 1), 3.77 (3H, s, OMe of ArOMe of 1), 3.70 (1H, d, J 15.0 Hz, CHHN of 1) 3.53-3.51 (1H, m, CHCH=CH2 of 1), 3.39-3.33 (2H, m, CHCH=CH2 and CHN of 5), 3.17 (1H, dd, J 14.0, 5.0 Hz, CHHArOMe of 5), 2.80 (1H, dd, J 14.0, 10.0 Hz, CHHArOMe of 5), 2.79 (1H, dd, J 14.0, 6.0 Hz CHHArOMe of 1), 2.72 (1H, dd, J 14.0, 8.0 Hz, CHHArOMe of 1), 2.48 (3H, s, Me of Ts of 5), 2.45 (3H, s, Me of Ts of 1), 2.35 (3H, s, Me of CH₂ArMe of **5**), 2.33 (3H, s, Me of CH₂ArMe of **1**); δ_c (75 MHz) 165.6 (C=O, of **5**), 164.7 (C=O, of 1), [158.5, 158.4, 145.2 (2 signals) (q Ar of 1 and 5)], [137.6 137.3 (q Ar of 1 and 5)], 137.0 (CH=CH₂ of 5), 135.0 (2 signals) (q Ar of 1 and 5), 133.5 (CH=CH₂ of 1), [132.5, 132.2, 130.4, 130.3 (q Ar of 1 and 5)], [129.7, 129.6, 129.5 (2 signals), 129.4, 129.3, 128.9, 128.2, 128.0, 127.7 (ArH of 1 and 5)], 119.8 (CH=CH₂ of 1), 116.6 (CH=CH₂ of 5), [114.1, 114.0 (ArH of 1 and 5)], 70.4 (CHTs of 1), 71.3 (CHTs of 5), 62.4 (CHN of 5), 59.5 (CHN of 1), 55.3 (OMe of CH₂ArOMe of 1 and 5), 44.9 (CH₂N of 1 and 5), 42.1 (CHCH=CH₂ of 1), 40.3 (CHCH=CH₂ of 5), 38.0 (CH₂ArOMe of 5), 34.2 (CH₂ArOMe of 1), 21.8 (Me of Ts of 1 and 5), 21.1 (Me of CH₂ArMe of 1 and **5**); *m/z* (CI) 507 [M+NH₄]⁺, 490 [M+H]⁺, 436, 353, 336, 59, 53, 35 (Found: [MH]⁺, 490.2071. $C_{29}H_{31}O_4NS$ requires [MH]⁺, 490.2052).

(S)-2-(Toluene-4-sulfonamido)propionic acid

To a rapidly stirred solution of L-alanine (15.0 g, 170 mmol, 1.0 equiv) and TsCl (42.0 g, 220 mmol, 1.3 equiv) in EtOAc (400 ml) and H₂O (120 ml) was added NaOH (230 ml of a 2 M aqueous solution, 460 mmol, 2.7 equiv) dropwise over 3 h. After a further 1 h the aqueous phase was separated, washed with Et₂O (3 x 250 ml), acidified to pH 1 with concentrated HCl (20 ml) and extracted with EtOAc (3 x 250 ml). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure to yield (*S*)-2-(toluene-4-sulfonamido)propionic acid (30.0 g, 73%) as a colourless solid; mp 129–131 °C (EtOAc); $\delta_{\rm H}$ (300 MHz) 7.76 (2H, d, J 8.0 Hz, *ortho* Ts), 7.32 (2H, d, J 8.0 Hz, *meta* Ts), 5.32 (1H, d, J 10.0 Hz, NH), 4.05-4.00 (1H, m, *CH*NHTs), 2.43 (3H, s, Me of Ts), 1.43 (3H, d, J 7.0 Hz, CHC*H*₃); *m/z* (CI) 303, 261 [M+NH₄]⁺, 240, 189, 174, 132, 86. *In agreement with published data*.²

(S)-3-Methyl-2-(toluene-4-sulfonamido)butyric acid

To a rapidly stirred solution of L-valine (15.0 g, 130 mmol, 1.0 equiv) and TsCl (32.0 g, 170 mmol, 1.3 equiv) in EtOAc (276 ml) and H₂O (82 ml) was added NaOH (175 ml of a 2 M aqueous solution,

350 mmol, 2.7 equiv) dropwise over 3 h. After a further 1 h the aqueous phase was separated, washed with Et₂O (3 x 250 ml), acidified to pH 1 with concentrated HCl (20 ml) and extracted with EtOAc (3 x 250 ml). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure to yield (*S*)-3-methyl-2-(toluene-4-sulfonamido)butyric acid (15.0 g, 38%) as a white solid; mp 149–151 °C (EtOAc); $\delta_{\rm H}$ (300 MHz) 7.74 (2H, d, J 8.0 Hz, *ortho* Ts), 7.30 (2H, d, J 8.0 Hz, *meta* Ts), 5.14 (1H, d, J 10.0 Hz, NH), 3.81 (1H, dd, *CH*NHTs), 2.43 (3H, s, Me of Ts), 2.15-2.09 (1H, m, *CH*(CH₃)₂), 0.98 (3H, d, J 7.0 Hz, CH(CH₃)₂), 0.89 (3H, d, J 7.0 Hz, CH(CH₃)₂); *m/z* (CI) 271 [M+NH₄]⁺, 189, 1174, 118, 106, 72. *In agreement with published data*.³

(S)-4-Methyl-2-(toluene-4-sulfonamido)pentanoic acid

To a rapidly stirred solution of L-leucine (20.0 g, 150 mmol, 1.0 equiv) and TsCl (36.4 g, 0.19 mol, 1.3 equiv) in EtOAc (300 ml) and H₂O (100 ml) was added NaOH (205 ml of a 2 M aqueous solution, 410 mmol, 2.7 equiv) dropwise over 3 h. After a further 1 h the aqueous phase was separated, washed with Et₂O (3 x 250 ml), acidified to pH 1 with concentrated HCl (20 ml) and extracted with EtOAc (3 x 250 ml). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure to yield (*S*)-4-methyl-2-(toluene-4-sulfonamido)pentanoic acid (32.0 g, 73%) as an odorous, off-white solid; mp 115–116 °C (EtOAc); $\delta_{\rm H}$ (300 MHz) 7.75 (2H, d, J 8.0 Hz, *ortho* Ts), 7.31 (2H, d, J 8.0 Hz, *meta* Ts), 5.07 (1H, d, J 10.0 Hz, NH), 3.96-3.91 (1H, m, *CH*NHTs), 2.44 (3H, s, Me of Ts), 1.81-1.74 (1H, m, *CH*(CH₃)₂), 1.56-1.51 (2H, m, *CH*₂^{*i*}Pr), 0.92 (3H, d, J 7.0 Hz, CH(CH₃)₂), 0.85 (3H, d, J 7.0 Hz, CH(CH₃)₂); *m/z* (CI) 303 [M+NH₄]⁺, 189, 86. *In agreement with published data*.⁴

2-(Toluene-4-sulfonamido)hexanoic acid

To a rapidly stirred solution of DL-norleucine (15.0 g, 110 mol, 1.0 equiv) and TsCl (27.3 g, 140 mol, 1.3 equiv) in EtOAc (400 ml) and H₂O (120 ml) was added NaOH (230 ml of a 2 M aqueous solution, 460 mmol, 2.7 equiv) dropwise over 3 h. After a further 1 h the aqueous phase was separated, washed with Et₂O, acidified to pH 1 with concentrated HCl (20 ml) and extracted with EtOAc (3 x 250 ml). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure to yield acid 2-(toluene-4-sulfonamido)hexanoic acid (30.2 g, 73%) as a colourless solid; mp 124 °C (EtOAc); $\delta_{\rm H}$ (300 MHz DMSO) 12.57 (1H, br s, CO₂H), 8.03 (1H, d, J 9.0 Hz, NH), 7.66 (2H, d, J 8.0 Hz, *ortho* Ts), 7.36 (2H, d, J 8.0 Hz, *meta* Ts), 3.68-3.60 (1H, m, *CH*NHTs), 2.36 (3H, s, Me of Ts), 1.54-1.45 (2H, m, *CH*₂CH), 1.13-1.08 (4H, m, (*CH*₂)₂Me), 0.75-0.71 (3H, m, Me of *n*Bu); *m/z* (CI) 303 [M+NH₄]⁺, 206, 149, 103, 86. *In agreement with published data*.⁵

(S)-2-(Toluene-4-sulfonamido)propan-1-ol

To a solution of (*S*)-2-(toluene-4-sulfonamido)propionic acid (12.0 g, 49.0 mmol, 1.0 equiv) in THF (192 ml) at 0 °C was added LiAlH₄ (147 ml of a 1 M solution in THF, 147 mmol, 3.0 equiv), the reaction brought slowly to rt and then heated to reflux. After 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% sat. aq. solution) and stirred for 1 h. The solution was extracted with EtOAc (3 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (MgSO₄). Concentration under reduced pressure yielded (*S*)-2-(toluene-4-sulfonamido)propan-1-ol (10.9 g, 97%) as a colourless solid; mp 128–130 °C (Et₂O); R_f 0.85 (50% EtOAc–petrol); δ_H (300 MHz) 7.80 (2H, d, J 8.0 Hz, *ortho* Ts), 7.33 (2H, d, J 8.0 Hz, *meta* Ts), 4.92 (1H, d J 6.5 Hz, NH), 3.60-3.36 (3H, m, CH₂OH and CHNHTs), 2.45 (3H, s, Me of Ts), 2.16 (1H, s, OH), 1.05 (3H, d, CHCH₃); *m/z* (CI) 247 [M+NH₄]⁺, 230 [M+H]⁺, 189, 108, 76, 44. *In agreement with published data*.⁶

(S)-3-Methyl-2-(toluene-4-sulfonamido)butan-1-ol

To a solution of (*S*)-3-methyl-2-(toluene-4-sulfonamido)butyric acid (12.0 g, 44.0 mmol, 1.0 equiv) in THF (192 ml) at 0 °C was added LiAlH₄ (132 ml of a 1 M solution in THF, 132 mmol, 3.0 equiv), the reaction brought slowly to rt and then heated to reflux. After 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% sat. aq. solution) and stirred for 1 h. The solution was extracted with EtOAc (3 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (MgSO₄). Concentration under reduced pressure yielded (*S*)-3-methyl-2-(toluene-4-sulfonamido)butan-1-ol (11.5 g, 99%) as a colourless solid; mp 74–75 °C (Et₂O); R_f0.70 (50% EtOAc–petrol); $\delta_{\rm H}$ (300 MHz) 7.80 (2H, d, J 8.0 Hz, *ortho* TS), 7.33 (2H, d, J 8.0 Hz, *meta* Ts), 4.81 (1H, d J 8.0 Hz, NH), 3.59-3.58 (2H, m, CH₂OH), 3.08-3.02 (1H, m, CHNHTS), 2.45 (3H, s, Me of Ts), 2.06-2.00 (1H, m, OH), 1.83-1.77 (1H, m, CH CH(CH₃)₂), 0.81 (3H, d J 3.0 Hz, CH(CH₂)₂), 0.80 (3H, d J 3.0 Hz, CH(CH₃)₂). *m/z* (CI) 275 [M+NH₄]⁺, 258 [M+H]⁺, 243. *In agreement with published data*.⁷

(S)-4-Methyl-2-(4-methyl benzenesulfonamido)pentan-1-ol

To a solution of (*S*)-4-methyl-2-(toluene-4-sulfonamido)pentanoic acid 12.0 g, 31.0 mmol, 1.0 equiv) in THF (192 ml) at 0 °C was added LiAlH₄ (93 ml of a 1 M solution in THF, 93.0 mmol, 3.0 equiv), the reaction brought slowly to rt and then heated to reflux. After 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and stirred for 1 h. The solution was extracted with EtOAc (3 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (MgSO₄). Concentration under reduced pressure yielded alcohol **214c** (11.0 g, 95%) as a colourless solid; mp 98–100 °C (Et₂O); R_f 0.74 (50% EtOAc–petrol); $\delta_{\rm H}$ (300 MHz) 7.80 (2H, d, J 8.0 Hz, *ortho* TS), 7.33 (2H, d, J 8.0 Hz, *meta*

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005
Ts), 4.66 (1H, d, J 7.0 Hz, NH), 3.60-3.44 (2H, m, CH₂OH), 3.32-3.31 (1H, m, CHNHTs), 2.45 (3H, s, Me of Ts), 1.62 (1H, s, OH), 1.52-1.44 (1H, m, CH(CH₃)₂), 1.28-1.26 (2H, m, CH₂ⁱPr), 0.80 (3H, d J 6.5 Hz, CH(CH₃)₂), 0.66 (3H, d J 6.5 Hz, CH(CH₃)₂); *m/z* (CI) 289 [M+NH₄]⁺, 272 [M+H]⁺, 240, 189, 118, 86. In agreement with published data.⁷

2-(Toluene-4-sulfonamido)hexan-1-ol

A solution of 2-(toluene-4-sulfonamido)hexanoic acid (10.0 g, 35.1 mmol, 1.0 equiv) in THF (50 ml) was added to a suspension of LiAlH₄ (4.00 g, 105 mmol, 3.0 equiv) in THF (200 ml) at 0 °C. The resulting solution was warmed slowly to rt and then heated to reflux. After 12 h the reaction was quenched with EtOAc (50 ml) and poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and stirred for 1 h. The solution was extracted with EtOAc (3 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (MgSO₄). Concentration under reduced pressure yielded 2-(toluene-4-sulfonamido)hexan-1-ol (9.50 g, 99%) as a colourless crystalline solid; mp 61–62 °C (Et₂O–petrol); R_f 0.35 (50% EtOAc–petrol); v_{max} (film) 3498, 3278, 2954, 2872, 1452, 1323, 1159, 1092, 816, 665 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.80 (2H, d, J 8.0 Hz, *ortho* Ts), 7.32 (2H, d, J 8.0 Hz, *meta* Ts), 5.13-5.06 (1H, m, NH), 3.60-3.47 (2H, m, CH₂OH), 3.24-3.22 (1H, m, CH₂(CH₂)₂CH₃), 0.76 (3H, t, J 6.0 Hz, CH₂(CH₂)₂CH₃); $\delta_{\rm C}$ (75 MHz) 143.6, 137.6, 129.7, 127.2, 64.9, 55.7, 31.4, 27.7, 22.3, 21.6, 13.8; *m*/z (CI) 289 [M+NH₄]⁺, 272 [M+H]⁺, 240, 189, 118, 86 (Found: C, 57.52; H, 7.59; N, 5.19. C₁₃H₂₁NO₃S requires C, 57.54; H, 7.80; N, 5.16%).

(-)-(S)-(E)-Ethyl 4-(toluene-4-sulfonamido)pent-2-enoate

To a solution of oxalyl chloride (4.50 ml, 52.1 mmol, 1.2 equiv) in CH₂Cl₂ (50 ml) at -78 °C was added DMSO (7.40 ml, 104 mmol, 2.4 equiv) in CH₂Cl₂ (50 ml). After 5 min a solution of (S)-2-(toluene-4-sulfonamido)propan-1-ol (10.0 g, 43.4 mmol, 1.0 equiv) in CH₂Cl₂ (75 ml) was added dropwise with stirring. After a further 45 min Et₃N (30.2 ml, 217 mmol, 5.0 equiv) in CH₂Cl₂ (30 ml) was added dropwise and the solution brought slowly to rt. After a further 30 minutes the reaction mixture was diluted with CH₂Cl₂ (500 ml), washed with saturated aqueous NaHCO₃ (400 ml) and the aqueous layer re-extracted with CH₂Cl₂ (100 ml). The combined organic extracts were then washed with acetic acid (1 M; 100 ml), H₂O (400 ml), brine (400 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in CH₂Cl₂ (500 ml) and Ph₃PCHCO₂Et (53.9 g, 154.8 mmol, 4 equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with Et₂O (250 ml) to remove triphenylphosphine oxide. Chromatography (30% EtOAc-petrol) gave (-)-(S)-(E)-ethyl 4-(toluene-4-sulfonamido)pent-2-enoate (8.73 g, 67%) as a colourless oil; R_f 0.33 (30% EtOAc-petrol); $[\alpha]_D^{16}$ -60.0 (c 1.0, CHCl₃); v_{max} (film) 1716, 1659, 1369, 1305, 1156, 1093, 977, 815, 666 cm⁻¹; δ_H (300 MHz) 7.76 (2H, d, J 8.0 Hz, ortho TS), 7.31 (2H, d, J 8.0 Hz, meta Ts), 6.67 (1H, dd, J 16.0, 6.0 Hz, CH=CHCO₂Et), 5.83 (1H, d, J 16.0 Hz C=CHCO₂Et), 4.89 (1H, d, J 8.0 Hz, NH), 4.16 (2H, q, J 7.0 Hz, CH₂CH₃), 5.06 (1H, q, J 6.0 Hz, CHNHTs), 2.43 (3H, s, Me of Ts), 1.27 (3H, t, J 7.0 Hz, CH₂CH₃) 1.22 (3H, d, J 7.0 Hz, CHCH₃); δ_C (75 MHz) 172.5,

147.6, 143.7, 137.5, 129.8, 127.2, 121.4, 60.6, 50.2, 21.6, 21.2, 14.2; m/z (CI) 315 [M+NH₄]⁺, 298 [M+H]⁺, 189, 144 [MH-Ts]⁺, 52 (Found: [M+H]⁺, 298.1118. C₁₄H₁₉NO₄S requires [M+H]⁺, 298.1113) (Found: C, 56.72; H, 6.31; N, 4.75. C₁₄H₁₉NO₄S requires C, 56.55, 6.44, 4.71%).

(-)-(S)-(E)-Ethyl 5-methyl-4-(toluene-4-sulfonamido)hex-2-enoate

To a solution of oxalyl chloride (4.10 ml, 46.4 mmol, 1.2 equiv) in CH₂Cl₂ (50 ml) at -78 °C was added DMSO (6.60 ml, 92.9 mmol, 2.4 equiv) in CH₂Cl₂ (50 ml). After 5 min a solution of (S)-3methyl-2-(toluene-4-sulfonamido)butan-1-ol (10.0 g, 38.7 mmol, 1.0 equiv) in CH₂Cl₂ (75 ml) was added dropwise with stirring. After a further 45 min Et₃N (27.0 ml, 193 mmol, 5.0 equiv) in CH₂Cl₂ (30 ml) was added dropwise and the solution brought slowly to rt. After a further 30 minutes the reaction mixture was diluted with CH₂Cl₂ (500 ml), washed with saturated aqueous NaHCO₃ (400 ml) and the aqueous layer re-extracted with CH₂Cl₂ (100 ml). The combined organic extracts were then washed with acetic acid (1 M; 100 ml), H₂O (400 ml), brine (400 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in CH₂Cl₂ (500 ml) and Ph₃PCHCO₂Et (53.9 g, 154 mmol, 4.0 equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with Et₂O (250 ml) to remove triphenylphosphine oxide. Chromatography (30% EtOAc-petrol) gave (-)-(S)-(E)-ethyl 5-methyl-4-(toluene-4-sulfonamido)hex-2-enoate (11.2 g, 88%) as a colourless crystalline solid; mp 88–90 °C (Et₂O); $R_f 0.50$ (30% EtOAc–petrol); $[\alpha]_D^{22}$ –24.1 (c 1.0, CHCl₃); v_{max} (film) 3279, 2966, 1719, 1657, 1465, 1326, 1183, 1093, 1039, 984, 667cm⁻¹; δ_H (300 MHz) 7.74 (2H, d, J 8.0 Hz, ortho Ts), 7.28 (2H, d, J 8.0 Hz, meta Ts), 6.59 (1H, dd, J 16.0, 7.0 Hz, C=CHCH), 5.67 (1H, d, J 16.0 Hz =CHCO₂Et), 5.14 (1H, d, J 9.0 Hz, NH), 4.13 (2H, q, J 7.0 Hz, CH₂CH₃), 3.75 (1H, q, J 7.0 Hz, CHNHTs), 2.40 (3H, s, Me of Ts), 1.84-1.76 (1H, m, CH(CH₃)₂) 1.26 (3H, t, J 7.0 Hz, CH₂CH₃), 0.86 (6H, t, J 7.0 Hz, CH(CH₃)₂); δ_C (75 MHz) 165.7, 145.2, 143.5, 137.7, 129.6, 127.2, 122.8, 60.5, 60.2, 32.7, 21.5, 18.5, 18.1, 14.2; *m/z* (CI) 343 [M+NH₄]⁺, 189 (Found: C, 59.23; H, 7.25; N, 4.34. C₁₆H₂₃NO₄S requires C, 59.05; H, 7.12; N, 4.30%).

(-)-(S)-(E)-Ethyl 6-methyl-4-(toluene-4-sulfonamido)hept-2-enoate

To a solution of oxalyl chloride (2.50 ml, 29.0 mmol, 1.2 equiv) in CH_2Cl_2 (31 ml) at -78 °C was added DMSO (4.10 ml, 58.1 mmol, 2.4 equiv) in CH_2Cl_2 (31 ml). After 5 min a solution of (*S*)-4-methyl-2-(toluene-4-sulfonamido)pentan-1-ol (9.00 g, 24.2 mmol, 1.0 equiv) in CH_2Cl_2 (47 ml) was added dropwise with stirring. After a further 45 min Et₃N (16.9 ml, 121 mmol, 5.0 equiv) in CH_2Cl_2 (19 ml) was added dropwise and the solution brought slowly to rt. After a further 30 minutes the reaction mixture was diluted with CH_2Cl_2 (500 ml), washed with saturated aqueous NaHCO₃ (400 ml) and the aqueous layer re-extracted with CH_2Cl_2 (100 ml). The combined organic extracts were

then washed with acetic acid (1 M; 100 ml), H₂O (400 ml), brine (400 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in CH₂Cl₂ (500 ml) and Ph₃PCHCO₂Et (33.7g, 96.8 mmol, 4.0 equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with Et₂O (250 ml) to remove triphenylphosphine oxide. Chromatography (30% EtOAc–petrol) gave (–)-(*S*)-(*E*)-ethyl 6-methyl-4-(toluene-4-sulfonamido)hept-2-enoate (8.40 g, 70 %) as a colourless oil; R_f 0.52 (30% EtOAc–petrol); $[\alpha]_D^{22}$ –44.0 (*c* 1.0, CHCl₃); v_{max} (film) 3279, 2958, 1713, 1659, 1369, 1284, 1094, 813, 666 cm⁻¹; δ_H (300 MHz) 7.73 (2H, d, J 8.0 Hz, *ortho* Ts), 7.27 (2H, d, J 8.0 Hz, *meta* Ts), 6.55 (1H, dd J, 16.0, 7.0 Hz, CH=CHCH), 5.71 (1H, d, J 16.0 Hz, CH=CHCH), 5.40 (1H, d, J 8.0 Hz, NH), 4.11 (2H, q, J 7.0 Hz, CH₂CH₃), 3.91 (1H, quintet, J 7.5 Hz, CHNHTs), 2.39 (3H, s, Me of Ts), 1.57 (1H, sextet, J 7.0 Hz, CH(CH₃)₂) 1.39-1.21 (5H, m, CH₂ⁱPr and CH₂CH₃), 0.80 (3H, d, J 6.5 Hz, CH(CH₃)₂), 0.75 (3H, d, J 6.5 Hz, CH(CH₃)₂); δ_C (75 MHz) 165.9, 146.9, 143.4, 137.7, 129.6, 127.2, 121.6, 60.4, 53.0, 44.0, 24.2, 22.4, 21.9, 21.5, 14.2; *m/z* (CI) 357 [M+NH₄]⁺, 340 [M+H]⁺, 189 (Found: C, 60.22; H, 7.19; N, 4.14. C₁₇H₂₅NO₄S requires C, 60.15; H, 7.42; N, 4.14%).

(E)-Ethyl (toluene-4-sulfonamido)oct-2-enoate

To a solution of oxalyl chloride (1.94 ml, 22.2 mmol, 1.2 equiv) in CH₂Cl₂ (25 ml) at -78 °C was added DMSO (3.15 ml, 44.4 mmol, 2.4 equiv) in CH₂Cl₂ (25 ml). After 5 min a solution of 2-(toluene-4-sulfonamido)hexan-1-ol (5.00 g, 18.5 mmol, 1.0 equiv) in CH₂Cl₂ (35 ml) was added dropwise with stirring. After a further 45 min Et₃N (12.9 ml, 92.5 mmol, 5.0 equiv) in CH₂Cl₂ (15 ml) was added dropwise and the solution brought slowly to rt. After a further 30 minutes the reaction mixture was diluted with CH₂Cl₂ (250 ml), washed with saturated aqueous NaHCO₃ (200 ml) and the aqueous layer re-extracted with CH_2Cl_2 (50 ml). The combined organic extracts are then washed with acetic acid (1 M; 50 ml), H₂O (200 ml), brine (200 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in CH₂Cl₂ (250 ml) and Ph₃PCHCO₂Et (25.8 g, 74.0 mmol, 4.0 equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with Et₂O (125 ml) to remove triphenylphosphine oxide. Chromatography (30% EtOAc-petrol) gave (E)-ethyl (toluene-4-sulfonamido)oct-2-enoate (5.00 g, 80%) a colourless oil; Rf 0.30 (30% EtOAc-petrol); v_{max} (film) 2958, 1699, 1657, 1456, 1325, 1159 cm⁻¹; δ_H (300 MHz) 7.71 (2H, d, J 8.0 Hz, ortho Ts), 7.23 (2H, d, J 8.0 Hz, meta Ts), 6.57 (1H, dd J 16.0, 7.0 Hz, CH=CHCO₂Et), 5.74-5.67 (2H, m, C=CHCO₂Et and NH), 4.08 (1H, q J 7.0 Hz, OCH₂), 3.83 (1H, t J 7.0 Hz, CHNHTs), 2.35 (3H, s, Me of Ts), 1.45-1.43 (2H, m CHCH₂) 1.23-1.12 (7H, m, (CH₂)₂ and OCH₂CH₃), 0.80-0.73 (3H, m, (CH₂)₃CH₃); δ_C (75 MHz) 166.0, 147.0, 143.3, 137.8, 129.6, 128.3,

121.7, 60.4, 54.7, 34.5, 27.3, 22.1, 21.4, 14.2, 13.7; m/z (CI) 357 [M+NH₄]⁺, 206, 189, 86 (Found: [M+NH₄]⁺, 357.1846. C₁₇H₂₉N₂O₄S requires [M+H]⁺, 357.1848) (Found: C, 59.96; H, 7.58; N, 4.13. C₁₄H₂₅N₂O₃S requires C, 60.15; H, 7.58; N, 4.13%).

(-)-(S)-(E)-4-(Toluene-4-sulfonamide)pent-2-en-1-ol

DIBAL-H (91.4 ml of a 1 M solution in CH₂Cl₂, 91.4 mmol, 3.6 equiv) was added dropwise to a solution of (-)-(S)-(E)-ethyl 4-(toluene-4-sulfonamido)pent-2-enoate (8.00 g, 25.4 mmol, 1.0 equiv) in CH₂Cl₂ (200 ml) at -78 °C with vigorous stirring. After 15 min the mixture was allowed to warm to rt. After a further 2 h the reaction was quenched with EtOAc (20 ml) and poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc (2 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave alcohol (-)-(S)-(E)-4-(toluene-4-sulfonamido)pent-2-en-ol (6.01 g, 86%) as an off-white crystalline solid; mp 64–65 °C (Et₂O); $R_f 0.25$ (50% EtOAc-petrol); $[\alpha]_D^{23}$ –40.0 (c 1.0. CHCl₃); v_{max} (film) 3479, 3273, 1450, 1313, 1147, 1093, 974, 816, 665 cm⁻¹; δ_H (300 MHz) 7.77 (2H, d, J 8.0 Hz, ortho Ts), 7.31 (2H, d, J 8.0 Hz, meta Ts), 5.66 (1H, dt, J 15.5, 5.0 Hz, CH=CHCH₂), 5.51 (1H, dd, J 15.5, 6.0 Hz, CH=CHCH₂), 4.86 (2H, d, J 7.0 Hz, NH), 4.00 (br s, CH₂OH), 3.91 (1H, q, J 7.0 Hz, CHNHTs), 2.44 (3H, s, Me of Ts), 1.18 (3H, d, J 7.0 Hz, CHCH₃); δ_C (75 MHz) 143.4, 138.0, 132.1, 130.1, 129.6, 127.3, 62.7, 50.9, 21.7, 21.5; *m/z* (CI) 273 $[M+NH_4]^+$, 189, 52 (Found: $[M+NH_4]^+$, 273.1297. $C_{12}H_{17}NO_3S$ requires $[M+NH_4]^+$, 273.1273) (Found: C, 56.41; H, 6.57; N, 5.47. C₁₂H₁₇NO₃S requires C, 56.45; H, 6.71; N, 5.49%).

(-)-(S)-(E)-5-Methyl-4-(toluene-4-sulfonamido)hex-2-en-1-ol

DIBAL-H (94.3 ml of a 1 M solution in CH₂Cl₂, 94.3 mmol, 3.6 equiv) was added dropwise to a solution of (–)-(*S*)-(*E*)-ethyl 5-methyl-4-(toluene-4-sulfonamido)hex-2-enoate (8.50 g, 26.2 mmol, 1.0 equiv) in CH₂Cl₂ (200 ml) at –78 °C with vigorous stirring. After 15 min the mixture was allowed to warm to rt. After a further 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc (2 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave alcohol (–)-(*S*)-(*E*)-5-methyl-4-(toluene-4-sulfonamido)hex-2-en-1-ol (6.20 g, 96%) as a colourless oil; R_f 0.30 (50% EtOAc–petrol); $[\alpha]_D^{22}$ –28.0 (*c* 1.0, CHCl₃); v_{max} (film) 3569, 3126, 2964, 2873, 2360, 1452, 1396, 1317, 1153, 1092, 999 cm⁻¹; δ_H (300 MHz) 7.75 (2H, d, J 8.0 Hz, *ortho* Ts), 7.30-7.28 (2H, m, *meta* Ts), 5.49 (1H, dt, J 15.5, 5.0 Hz, C=CHCH₂), 5.38 (1H, dd, J 15.5, 7.0 Hz, CH=CHCH₂), 4.83 (1H, d, J 8.0 Hz, NH),

3.94-3.91 (2H, m, CH₂OH), 3.59 (1H, q, J 7.0 Hz, CHNHTs), 2.43 (3H, s, Me of Ts), 1.76-1.70 (1H, m, CH(CH₃)₂), 0.85 (6H, t, J 7.0 Hz, CH(CH₃)₂); $\delta_{\rm C}$ (75 MHz) 143.3, 138.1, 131.8, 129.5, 128.9, 127.4, 62.7, 61.0, 32.8, 21.5, 18.3 (2 signals); *m/z* (CI) 301 [M+NH₄]⁺, 283, 266, 264, 202, 189, 112, 110, 72 (Found: [M+NH₄]⁺, 301.1589. C₁₄H₂₅N₂O₃S requires [M+NH₄]⁺, 301.1588) (Found: C, 59.57; H, 7.36; N, 4.70. C₁₄H₂₅N₂O₃S requires C, 59.34; H, 7.47; N, 4.94%).

(-)-(S)-(E)-6-Methyl-4-(toluene-4-sulfonamido)hept-2-en-1-ol

DIBAL-H (74.6 ml of a 1 M solution in CH₂Cl₂, 74.6 mmol, 3.6 equiv) was added dropwise to a solution of (-)-(S)-(E)-ethyl 6-methyl-4-(toluene-4-sulfonamido)hept-2-enoate (7.40 g, 20.7 mmol, 1.0 equiv) in CH₂Cl₂ (200 ml) at -78 °C with vigorous stirring. After 15 min the mixture was allowed to warm to rt. After a further 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc (2 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave (-)-(S)-(E)-6-methyl-4-(toluene-4-sulfonamido)hept-2enol (7.3 g, 98%) as a colourless crystalline solid; mp 101-102 °C (EtOAc); Rf 0.45 (50% EtOAc-petrol); [a]_D²² -8.0 (c 1.0, CHCl₃); v_{max} (film) 3460, 3180, 2954, 2362, 1319, 1146, 1090 cm⁻¹; δ_H (300 MHz) 7.56 (2H, d, J 8.0 Hz, ortho Ts), 7.31 (2H, d, J 8.0 Hz, meta Ts), 5.53-5.61 (1H, dt, J 15.0, 5.0 Hz, C=CHCH₂); 5.35 (1H, dd, J 15.0, 7.0 Hz, CHCH=CH), 4.49 (1H, d, J 8.0 Hz, NH), 3.93-3.89 (2H, m CH₂OH), 3.84 (1H, t, J 8.0 Hz, CHNHTs), 2.44 (3H, s, Me of Ts), 1.64-1.56 (1H, m CH(CH₃)₂), 1.54-1.26 (2H, m, CH₂^{*i*}Pr), 0.79 (6H, q, J 6.0 Hz, CH(CH₃)₂); δ_{C} (75 MHz); 142.9, 137.9, 131.2, 130.7, 129.2, 127.4, 62.6, 53.9, 44.9, 24.2, 22.6, 22.4, 20.9; *m/z* (CI) 315 $[M+NH_4]^+$, 189, 126, 124, 86 (Found: $[M+NH_4]^+$, 315.1749. C₁₅H₂₃NO₃S requires $[M+NH_4]^+$, 315.1742) (Found: C, 60.58; H, 7.87; N, 4.68. C₁₅H₂₃NO₃S requires C, 60.58; H, 7.79; N, 4.71%).

(E)-4-(Toluene-4-sulfonamido)oct-2-en-1-ol

DIBAL-H (39.2 ml of a 1 M in CH₂Cl₂ solution, 39.2 mmol, 3.6 equiv) was added dropwise to a solution of (*E*)-ethyl 4-(toluene-4-sulfonamido)oct-2-enoate (3.70 g, 10.9 mmol, 1.0 equiv) in CH₂Cl₂ (100 ml) at -78 °C with vigorous stirring. After 15 h the mixture was allowed to warm to rt. After a further 2 h the reaction was quenched with EtOAc (10 ml) and poured into Rochelle's salt (250 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc (2 x 150 ml) and the combined organic extracts washed with brine (200 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave (*E*)-4-(toluene-4-sulfonamido)oct-2-enol (3.21 g, 99%) as an oil, which upon trituation with Et₂O yielded a white powder; mp 55–59 °C (Et₂O); R_f 0.20 (50% EtOAc–petrol);

v_{max} (film) 3055, 1987, 2306, 1421, 1265, 1160, 897, 737 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.56 (2H, d, J 8.0 Hz, *ortho* Ts), 7.31 (2H, d, 8.0 Hz, *meta* Ts), 5.58 (1H, dt, J 16.0, 5.0 Hz, CH=CHCH₂), 5.39 (1H, dd, J 16.0, 7.0 Hz, CH=CHCH₂), 4.59 (1H, br s, NH), 3.96 (2H, d, J 5.0 Hz, CH₂OH), 3.77 (1H, t, J 6.0 Hz, CHNHTs), 2.44 (3H, s, Me of Ts), 1.48-1.43 (2H, m, OH and (CH₂)₂CHH), 1.22 (5H, br s, (CH₂)₂CHH), 0.85-0.83 (3H, m, CH₃(CH₂)₂); $\delta_{\rm C}$ (75 MHz) 143.3, 138.2, 131.0, 130.9, 129.5, 127.4, 62.7, 55.5, 35.4, 27.5, 22.3, 21.5, 13.9; *m*/*z* (CI) 315 [M+NH₄]⁺, (Found: [M+NH₄]⁺, 315.1735. C₁₅H₂₃NO₃S requires [M+NH₄]⁺, 315.1742) (Found: C, 60.60; H, 7.82; N, 4.52. C₁₅H₂₃NO₃S requires C, 60.58; H, 7.82; N, 4.71%).

(+)-(S)-(E)-4-(4-Methylbenzylamino)pent-2-en-1-ol (6a)

Onto a solution of (-)-(S)-(E)-4-(toluene-4-sulfonamide)pent-2-en-1-ol (1.77 g, 6.94 mmol, 1.0 equiv), in THF (2 ml) at -78 °C was condensed NH₃(l) (~50 ml) and freshly-cut sodium metal (1.11 g, 48.3 mmol, 7.0 equiv) added. After the sodium had dissolved (10 min) the reaction was guenched with MeOH (10 ml) until decolourisation was observed. The NH₃(l) was then allowed to evaporate and the residue partitioned between CH₂Cl₂ (50 ml) and NaHCO₃(50 ml). The organic layer was washed with H_2O (20 ml) and the aqueous phase extracted with 10:8:1 CHCl₃:MeOH:NH₄OH (3 x 10 ml). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure to give the crude amine (540 mg); δ_H (300 MHz) 5.67-5.55 (2H, m, CH=CH), 4.04-3.94 (2H, m, CH₂OH), 3.43-3.39 (1H, m, CHNH₂), 1.08 (3H, d, J 6.5 Hz, CHCH₃); δ_C (75 MHz) 136.8, 128.6, 62.5, 48.6, 24.8. A portion of the resulting yellow solid (185 mg, 1.83 mmol, 1.0 equiv) was dissolved in MeOH (7 ml) containing activated 4Å MS. Tolualdehyde (240 µl, 2.01 mmol, 1.1 equiv) was then added and the mixture stirred at rt. After 12 h the reaction was cooled to 0 °C and NaBH₄ (84.0 mg, 2.20 mmol, 1.2 equiv) added and the mixture warmed slowly to rt. After a further 1 h, the reaction was filtered and concentrated under reduced pressure. Chromatography (50% MeOH-EtOAc) gave the amine 6a as a pale yellow oil (298 mg, 80%); Rf 0.50 (50% MeOH-EtOAc); $\left[\alpha\right]_{D}^{22}$ +20.0 (c 1.0, CHCl₃); v_{max} (film) cm⁻¹ 3275, 2970, 2924, 1516, 1452, 1371, 1095, 1014, 974, 804; δ_H (300 MHz) 7.20-7.12 (4H, m, CH₂ArMe), 5.73 (1H, dt, J 15.0, 5.0 Hz, C=CHCH₂), 5.61 (1H, dd, J 15.0, 7.0 Hz, CHCH=C), 4.10-4.09 (2H, m, CH₂OH,) 3.75 (1H, d, J 13.0 Hz, NCHH), 3.65 (1H, d, J 13.0 Hz, NCHH), 3.29-3.24 (1H, m, CHNH), 2.72 (2H, br, s, NH and OH), 2.34 (3H, s, Me of CH₂ArMe), 1.19 (3H, d, J 6.0 Hz, CHCH₃); δ_C (75 MHz) 136.9, 136.6, 134.7, 130.7, 129.2, 128.2, 62.6, 54.7, 51.0, 21.6, 21.1; *m/z* (CI) 206 [M+H]⁺, 190, 122, 105 (Found: $[M+NH_4]^+$, 206.1547. C₁₃H₉NO requires $[M+NH_4]^+$, 206.1545). Elemental analysis failed twice due to the hygroscopic nature of the compound.

(-)-(S)-(E)-5-Methyl-4-(4-methylbenzylamino)hex-2-en-1-ol (6b)

Onto a solution of (-)-(S)-(E)-5-methyl-4-(toluene-4-sulfonamide)hex-2-en-1-ol (3.50 g, 12.3 mmol, 1.0 equiv) in THF (10 ml) at -78 °C was condensed NH₃(1) (~150 ml) and freshly cut sodium metal (1.70 g, 74.0 mmol, 7.0 equiv) then added. After the sodium had dissolved (10 min) the reaction was quenched with MeOH (50 ml) until the solution decolourised. The NH₃(1) was then allowed to evaporate and the residue partitioned between 2:1 CHCl₃:EtOH (20 ml) and H₂O (20 ml). The aqueous phase was further extracted with 2:1 CHCl₃:EtOH (5 x 25 ml) and the combined organic extracts washed with brine (50 ml) and dried (Na₂SO₄). After concentration under reduced pressure the resulting residue was passed through a short pad of silica (10:8:1 CHCl₃:MeOH:NH₃) and concentrated under reduced pressure to give the crude amine (1.05 g); $\delta_{\rm H}$ (300 MHz) 5.66-5.49 (2H, m, CH=CH), 3.99 (2H, d, J 5.0 Hz, CH₂OH), 3.00 (1H, t, J 6.0 Hz, CHNH₂), 2.65 (2H, br s, NH₂), 1.59-1.49 (1H, m, CH(CH₃)₂), 0.81 (3H, d, J 7.5 Hz, CH(CH₃)₂), 0.79 (3H, d, J 7.5 Hz, CH(CH₃)₂); δ_C (75 MHz) 131.1, 130.6, 62.2, 59.0, 33.7, 18.6, 18.5. A portion of this (240 mg, 1.86 mmol, 1.0 equiv) was dissolved in MeOH (7 ml) containing activated 4Å MS. Tolualdehyde (440 µl, 3.70 mmol, 2.0 equiv) was then added and the mixture stirred at rt. After 12 h the reaction was cooled to 0 °C and NaBH₄ (170 mg, 4.50 mmol, 2.4 equiv) added and the mixture warmed slowly to rt. After a further 1 h, the reaction was filtered, NaOH (2 M; 10 ml) added and the mixture extracted with CH₂Cl₂ (2 x 10 ml). The combined organic extracts were washed with brine (20 ml) and dried (Na₂SO₄). Chromatography (5-10% MeOH–CH₂Cl₂) gave the *amine* **6b** (330 mg, 53%); R_f 0.53 (50% MeOH–EtOAc); [α]_D²⁸ -32.0 (*c* 0.5, CHCl₃); ν_{max} (film) 3307, 2956, 2870, 1513, 1452, 1367, 1088, 976, 806 cm⁻¹; δ_H (300 MHz) 7.21 (2H, d, J 8.0 Hz, ortho CH₂ArMe), 7.24 (2H, d, J 8.0 Hz, *meta* CH₂ArMe), 5.72 (1H, dt, J 15.5, 5.0 Hz, C=CHCH₂), 5.54 (1H, dd, J 15.5, 8.0 Hz, CHCH=C), 4.15 (2H, d, J 5.0 Hz, CH₂OH,) 3.82 (1H, d, J 13.0 Hz, NCHH), 3.60 (1H, d, J 13.0 Hz, NCHH), 2.85-2.81 (2H, m, CHNH and NH), 2.35 (3H, s, Me of CH₂ArMe), 1.77-1.71 (1H, m, CH(CH₃)₂), 0.93 (3H, d, J 7.0 Hz, CH(CH₃)₂), 0.90 (3H, d, J 7.0 Hz, CH(CH₃)₂); δ_C (75 MHz) 137.2, 136.5, 132.9 131.8, 129.1, 128.2, 65.5, 62.7, 51.0, 32.2, 21.2, 19.5, 18.5; *m/z* (CI) 234 [M+H]⁺, 216, 190, 122, 105 (Found: $[M+H]^+$, 234.1860. $C_{15}H_{23}NO$ requires $[M+H]^+$, 234.1858). Elemental analysis failed twice due to the hygroscopic nature of the compound.

(+)-(S)-(E)-6-Methyl-4-(4-methylbenzylamino)hept-2-en-1-ol (6c)

Onto a solution of (-)-(S)-(E)-6-methyl-4-(toluene-4-sulfonamido)hept-2-en-1-ol (3.00 g, 10.1 mmol, 1.0 equiv) in THF (5 ml) at -78 °C was condensed NH₃(l) (~75 ml) and freshly cut sodium metal (1.39 g, 60.6 mmol, 7.0 equiv) added. After the sodium had dissolved (10 min) the reaction was quenched with solid NaOAc until the solution decolourised. The NH₃(l) was then allowed to evaporate and the residue partitioned between 2:1 CHCl₃:EtOH (20 ml) and H₂O (20 ml). The

aqueous phase was extracted with 2:1 CHCl₃:EtOH (5 x 25 ml) and the combined organic extracts washed with brine (50 ml) and dried (Na₂SO₄). After concentration under reduced pressure the resulting residue was passed through a short pad of silica (10:8:1 CHCl₃:MeOH:NH₃) and concentrated under reduced pressure to give the crude amine (1.05 g); $\delta_{\rm H}$ (300 MHz) 5.76 (1H, dt, J 15.5, 5.0 Hz, C=CHCH₂), 5.64 (1H, dd, J 15.5, 7.0 Hz, CH=CHCH₂), 4.15 (2H, d, J 5.0 Hz, CH₂OH), 3.41 (1H, q, J 7.0 Hz, CHNH₂), 1.71-1.62 (4H, m, NH₂ and CH₂iPr), 1.30 (1H, t, J 7.5 Hz, *CH*(CH₃)₂), (6H, d, J 6.5 Hz, CH(CH₃)₂); δ_C (75 MHz) 137.2, 128.3, 63.2, 51.3, 47.1, 24.9, 22.7 (2) signals). A portion of this (250 mg, 1.75 mmol, 1.0 equiv) was dissolved in MeOH (7 ml) containing activated 4Å MS. Tolualdehyde (230 µl, 1.93 mmol, 1.1 equiv) was then added and the mixture stirred at rt. After 12 h the reaction was cooled to 0 °C and NaBH₄ (106 mg, 2.80 mmol, 1.6 equiv) added and the mixture warmed slowly to rt. After a further 1 h, the reaction was filtered, NaOH (1 M; 10 ml) added and the mixture extracted with CH₂Cl₂ (2 x 10 ml). The combined organic extracts were washed with brine (20 ml) and dried (Na₂SO₄). Chromatography (10% MeOH-CH₂Cl₂) gave the *amine* 6c (453 mg, 72%) as a pale yellow oil; R_f 0.57 (10%) MeOH-CH₂Cl₂); $[\alpha]_{D}^{26}$ +4.0 (c 1.0, CHCl₃); v_{max} (film) 3255, 1951, 2912, 1566, 1516, 1254, 1319, 1089, 1025, 972, 804 cm⁻¹; δ_H (300 MHz) 7.19 (2H, d, J 8.0 Hz, *ortho* CH₂ArMe), 7.13 (2H, d, J 8.0 Hz, meta CH₂ArMe), 5.73 (1H, dt, J 15.0, 5.0 Hz, C=CHCH₂), 5.51 (1H, dd, J 15.0, 8.0 Hz, CH=CHCH₂), 4.13 (2H, d, J 5.0 Hz, CH₂OH), 3.79 (1H, d, J 13.0 Hz, NCHH), 3.61 (1H, d, J 13.0 Hz, NCHH), 3.14 (1H, td, J 8.0, 8.0 Hz, CHN), 2.34 (3H, s, Me of CH₂ArMe), 1.65-1.58 (1H, m, CH(CH₃)₂), 1.38-1.33 (2H, m, CH₂*i*Pr), 0.86 (6H, d, J 6.5 Hz, CH(CH₃)₂); δ_C (75 MHz) 137.0, 136.6, 133.8, 131.8, 129.1, 128.2, 62.7, 57.9, 50.9, 44.9, 24.7, 23.9, 23.1, 21.1; *m/z* (CI) 248 $[M+H]^+$, 190, 122 (Found: $[M+H]^+$, 248.2007. C₁₆H₂₅NO requires $[M+NH]^+$, 248.2014). *Elemental* analysis failed twice due to the hygroscopic nature of the compound.

(E)-4-(4-Methylbenzylamino)oct-2-en-1-ol (6d)

Onto a solution of (*E*)-4-(toluene-4-sulfonamido)oct-2-en-1-ol (90.0 mg, 0.231 mmol, 1.0 equiv) in THF (2 ml) at -78 °C was condensed NH₃(l) (~15 ml) and freshly cut sodium metal (37.0 mg, 1.61 mmol, 7.0 equiv) then added. After the sodium had dissolved (10 min) the reaction was quenched with MeOH (0.5 ml) until the solution decolourised. The NH₃(l) was then allowed to evaporate and the residue extracted with CHCl₃ (5 x 5 ml), filtered through celite and dried (Na₂SO₄). Evaporation under reduced pressure gave the crude amine (30.1 mg); $\delta_{\rm H}$ (300 MHz) 5.74-5.67 (2H, m, *CH=CH*), 4.14 (2H, d, J 5.0 Hz, *CH*₂OH), 3.32 (1H, t, J 6.5 Hz, *CH*NH₂), 1.76-1.53 (2H, m, *CHCH*₂), 1.47-1.21 (4H, m, CH(*CH*₂)₂), 0.91-0.83 (3H, m, (CH₂)₂*CH*₃); $\delta_{\rm C}$ (75 MHz) 135.6, 127.4, 62.6, 53.7, 35.7, 28.6, 23.0, 14.4. This was then dissolved in MeOH (1 ml) containing activated 4Å MS. Tolualdehyde (30.0 µl, 0.230 mmol, 1.1 equiv) was then added and the mixture stirred at rt. After

12 h the reaction was cooled to 0 °C and NaBH₄ (18.1 mg, 0.460 mmol, 2.0 equiv added and the mixture warmed slowly to rt. After a further 1 h, the reaction was filtered, NaOH (2 M; 5 ml) added and the mixture extracted with CH₂Cl₂ (2 x 5 ml). The combined organic extracts were washed with brine (20 ml) and dried (Na₂SO₄). Chromatography (5-10% MeOH–CH₂Cl₂) gave the *amine* **6d** (40.0 mg, 0.162 mmol, 70%) as a pale yellow oil; R_f 0.50 (50% MeOH–EtOAc); v_{max} (film) 2954, 2927, 2858, 1514, 1456, 1375, 1090, 974, 806 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.21 (2H, d, J 8.0 Hz, *ortho* CH₂ArMe), 7.14 (2H, d, J 8.0 Hz, *meta* CH₂ArMe), 5.74 (1H, dt, J 15.5, 5.0 Hz, C=CHCH₂), 5.54 (1H, dd, J 15.5, 8.0 Hz, CHC*H*=C), 4.15 (2H, d, J 5.0 Hz, CH₂OH,) 3.79 (1H, d, J 13.0 Hz, NC*H*H), 3.63 (1H, d, J 13.0 Hz, NC*H*H), 3.11-3.04 (1H, m, *CH*NH), 2.35 (3H, s, Me of CH₂ArMe), 1.54-1.42 (2H, m, *CH*₂(CH₂)₂CH₃), 1.28-1.27 (4H, m, *CH*₂(*CH*₂)₂CH₃), 0.89 (3H, t, J 6.0 Hz, CH₂(CH₂)₂C*H*₃); $\delta_{\rm C}$ (75 MHz); 137.0, 136.6, 134.0, 131.7, 129.1, 128.5, 63.0, 59.9, 50.9, 35.3, 28.1, 22.7, 21.2, 14.1 *m/z* (CI) 248 [M+H]⁺, 190, 122, 105, 52 (Found: [M+H]⁺, 248.2013. C₁₆H₂₅NO requires [M+H]⁺, 234.2014). *Elemental analysis failed twice due to the hygroscopic nature of the compound*.

(-)-(S)-(E)-4-{(4-Methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}pent-2-enol

PyBOP (177 mg, 0.340 mmol, 1.0 equiv) was added to a solution of amine 6a (58.0 mg, 0.280 mmol, 1.0 equiv), TsCH₂CO₂H (72.8 mg, 0.340 mmol, 1.0 equiv) and Hünig's base (16.0 µl, 0.920 mmol, 3.3 equiv) in CH₂Cl₂ (2 ml). After 12 h the reaction was quenched with saturated aqueous NH₄Cl (1 ml) and extracted with CH₂Cl₂ (2 x 5 ml). The combined organic extracts were concentrated under reduced pressure and dissolved in THF (1 ml) and NaOH (2 M; 1 ml). After stirring at rt for 1h the mixture was extracted with CH₂Cl₂ (3 x 5 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (5% MeOH-CH₂Cl₂) yielded (-)-(S)-(E)-4-{(4-methylbenzyl)-[2-(toluene-4-sulfonyl)acetyl]amino}pent-2-enol (103 mg, 92%) as a colourless oil; $R_f 0.50$ (5% MeOH–CH₂Cl₂); $[\alpha]_D^{25}$ –53.3 (*c* 1.0, CHCl₃); v_{max} (film) 3435, 1643, 1439, 1321, 1153, 1001 cm⁻¹; δ_H (300 MHz) 7.83-7.77 (2H, m, ortho Ts), 7.37-7.28 (2H, m, meta Ts), 7.14 (2H, d, J 8.0 Hz, ortho CH₂ArMe), 7.04 (2H, d, J 8.0 Hz, meta CH₂ArMe), 5.83-5.63 (2H, m, CH=CH), 5.20 (0.67H, t, J 5.0 Hz, CHN rotamer 1), 4.81-4.79 (0.33 H, m, CHN rotamer 2), 4.69 (0.67 H, d, J 18.0 Hz, CHHTs rotamer 1), 4.57 (1H, d, J 18.0 Hz, CHHTs rotamer 1and CHHTs rotamer 2), 4.43 (0.33H, d, J 14.0 Hz, CHHArMe rotamer 2), 4.50 (0.33H, d, J 15.0 Hz, CHHTs rotamer 2), 4.28 (0.33 H, d, J 14.0 Hz, CHHArMe rotamer 2), 4.01-4.13 (3.34H, CH₂OH and CH₂ArMe rotamer 1), 2.45 (3H, s, Me of Ts), 2.34 (3H, s, Me of CH₂Ar), 1.32 (0.99H, d, J 7.0 Hz, CHCH₃ rotamer 1), 1.22 (2.01H, d, J 7.0 Hz, CHCH₃ rotamer 1); δ_C (75 MHz) 162.5, 162.1, 145.3, 137.4, 136.5, 136.1, 136.0, 135.2, 134.2, 131.5, 131.2, 130.8, 130.4, 129.8, 129.7, 129.4, 129.0, 128.6, 127.5, 62.9, 62.6, 60.8, 60.4, 51.4, 47.3, 46.1, 44.2, 21.8, 21.2, 19.0, 17.1; m/z (CI) 419

 $[M+NH_4]^+$, 402 $[M+H]^+$, 190 (Found: $[M+NH_4]^+$, 419.2000. $C_{22}H_{27}NO_4S$ requires $[M+NH_4]^+$, 419.2005) (Found: C, 65.72; H, 6.49; N, 3.22. $C_{22}H_{27}NO_4S$ requires C, 65.81; H, 6.78; N, 3.49%).

(-)-(S)-(E)-5-Methyl-4-{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}hex-2-enol

PyBOP (146 mg, 0.274 mmol, 1.2 equiv) was added to a solution of amine 6b (53.0 mg, 0.228 mmol, 1.0 equiv), TsCH₂CO₂H (58.6 mg, 0.274 mmol, 1.2 equiv) and Hünig's base (131 µl, 0.752 mmol, 3.3 equiv) in CH₂Cl₂ (2 ml). After 12 h the reaction was guenched with saturated aqueous NH₄Cl (4 ml) and extracted with CH₂Cl₂ (3 x 5 ml). The combined organic extracts were concentrated under reduced pressure and dissolved in THF (2 ml) and NaOH (2 M; 2 ml). After stirring at rt for 1h the mixture was extracted with CH₂Cl₂ (3 x 5 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (80% Et₂O-petrol) yielded (-)-(S)-(E)-5-methyl-4-{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}hex-2-enol (75.0 mg, 76%) as a colourless oil; $R_f 0.57$ (50% EtOAc-petrol); $[\alpha]_D^{24}$ -22.2 (c 1.0, CHCl₃); v_{max} (film) 3431, 2960, 1643, 1429, 1321, 1155, 1086, 1018, 974, 800 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.73-7.66 (2H, m, ortho Ts), 7.19-7.18 (2H, m, meta Ts), 7.06-6.93 (4H, m, CH₂ArMe), 5.80 (0.2H, dt, J 16.0 Hz, 4.0 Hz, CH=CHCH₂ rotamer 2), 5.68 (0.8H, dt, J 15.0, 5.0 Hz, H-3, CH=CHCH₂ rotamer 1), 5.51-5.43 (1H, m, CH=CHCH₂), 4.82 (0.8H, d, J 18.0 Hz, CHHTs rotamer 1), 4.67 (0.2H, d, J 15.0 Hz, CHHTs rotamer 2), 4.49 (0.8H, d, J, 18.0 Hz, CHHTs rotamer 1), 4.46-4.39 (0.4H, m, CHHTs rotamer 2) and CHHArMe rotamer 2), 4.17 (0.2H, d, J 15.0 Hz, CHHArMe rotamer 2), 4.07 (0.8H, d, J 14.0 Hz, CHHArMe rotamer 1), 3.89-3.85 (2.8H, m, CHHArMe rotamer 1 and CHN), 2.36 (3H, s, Me of CH₂ArMe), 2.25 (3H, s, Me of Ts), 2.15-1.90 (2H, m, CH₂OH), 1.24-1.08 (1H, m, CH(CH₃)₂), 0.94 (2.4H, d, J 6.0 Hz, CH(CH₃)₂ rotamer 1), 0.88 (0.6H, d, J 6.0 Hz, CH(CH₃)₂ rotamer 2), 0.81 (3H, d, J, 6.0 Hz, CH(CH₃)₂ rotamer 1 and rotamer 2); $\delta_{\rm C}$ (75 MHz) 162.3, 145.1, 137.5, 136.0, 134.4, 134.0, 129.7, 129.5, 128.8, 128.6, 128.5, 128.1, 127.9, 126.3, 64.0, 62.8, 60.9, 48.8, 30.3, 21.7, 21.0, 20.0, 19.4; m/z (CI) 447 [M+NH₄]⁺, 430 [M+H]⁺, 412, 276, 188, 174 (Found: [M+NH₄]⁺, 430.2049. $C_{24}H_{31}NO_4S$ requires $[M+NH_4]^+$, 430.2052).

(E)-4-{(4-methylbenzyl)[(2-toluene-4-sulfonyl)acetyl]amino}oct-2-enol

PyBOP (146 mg, 0.280 mmol, 2.0 equiv) was added to a solution of amine **6d** (34.0 mg, 0.140 mmol, 1.0 equiv), TsCH₂CO₂H (59.9 mg, 0.280 mmol, 2.0 equiv) and Hünig's base (120 μ l, 0.770 mmol, 5.5 equiv) in CH₂Cl₂ (1 ml). After 12 h the reaction was quenched with saturated aqueous NH₄Cl (1 ml) and extracted with CH₂Cl₂ (2 x 5 ml). The combined organic extracts were concentrated under reduced pressure and dissolved in THF (1 ml) and NaOH (2 M; 1 ml). After stirring at rt for 1h the mixture was extracted with CH₂Cl₂ (3 x 5 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (50% EtOAc–petrol) yielded (*E*)-4-{(4-

methylbenzyl)[(2-toluene-4-sulfonyl)acetyl]amino}oct-2-enol (45.2 mg, 72%) as a colourless oil; R_f 0.25 (50% EtOAc–petrol); v_{max} (film) 3458, 2953, 2929, 2249, 1641, 1429, 1321, 1155, 1086, 1018, 976, 910, 810, 731 cm⁻¹; δ_H (300 MHz) 7.72 (2H, d, J 8.0 Hz, *ortho* Ts), 7.36-7.34 (2H, m, *meta* Ts), 7.15 (2H, d, J 8.0 Hz, *ortho* ArMe), 7.04 (2H, d, J 8.0 Hz, *meta* ArMe), 5.82-5.77 (1H, m, CH=CHCH₂), 5.62 (1H, dd, J 15.0, 7.0 Hz, CH=CHCH₂), 4.95-4.93 (0.7 H, m, CHN rotamer 1), 4.73 (0.7 H, d, J 18.0 Hz, CHHTs rotamer 1), 4.61 (0.7 H, d, J 18.0 Hz, CHHTs rotamer 1), 4.55-4.02 (5H, m, CH₂Ts rotamer 2, 2H CH₂ArMe, 2H CH₂OH and CHN rotamer 2), 2.46 (3H, s, Me of CH₂ArMe), 2.34 (3H, s, Me of Ts), 1.61-0.84 (9H, m, (CH₂)₃CH₃); δ_C (75 MHz) 162.4, 145.2, 137.4, 136.6, 136.0, 135.2, 134.1, 132.8, 132.2, 129.6, 129.3, 128.9, 128.6, 126.1, 62.9, 62.7, 60.9, 60.4, 60.1, 56.7, 48.0, 46.3, 32.6, 31.6, 28.6, 28.3, 22.5, 21.8, 21.3, 14.0; *m/z* (CI) 444 [M+H]⁺, 290 (Found: [M+H]⁺, 444.2201. C₂₅H₃₃NO₄S requires [M+H]⁺, 444.2209) (Found: C, 67.55; H, 7.29; N, 3.07. C₂₅H₃₃NO₄S requires C, 67.69; H, 7.50; N, 3.16%).

(-)-(S)-(E)-Carbonic acid methyl ester 4-{(4-methylbenzyl)-[2-(toluene-4-sulfonyl)acetyl]amino}pent-2-enyl (7a)

To a solution of $(-)-(S)-(E)-4-{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}pent-2-enol$ (87.0 mg, 0.220 mmol, 1.0 equiv) in CH_2Cl_2 (2 ml) at 0 °C was added pyridine (34.5 μ l, 0.660 mmol, 3.0 equiv), methyl chloroformate (50.1 µl, 0.660 mmol, 3.0 equiv) and DMAP (1.3 mg, 0.011 mmol, 0.05 equiv). The reaction mixture was warmed to rt. and after 1 h was diluted with CH₂Cl₂ (5 ml) then guenched by addition of saturated aqueous NH₄Cl (5 ml). The organic layer was washed with brine (5 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (30% EtOAc-petrol) gave the carbonate 7a (95.4 mg, 95%) as a colourless oil; R_f 0.83 (5% MeOH-CH₂Cl₂); [a]_D²² -72.0 (c 0.5, CHCl₃); v_{max} (film) 2958, 1750, 1645, 1441, 1265, 1160, 794 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.81-7.76 (2H, m, ortho Ts), 7.38-7.32 (2H, m, meta Ts), 7.17-7.03 (4H, m, CH₂ArMe), 5.77-5.71 (2H, m, CH=CH), 5.22.5.20 (0.86 H, m, CHN rotamer 1), 4.74-4.72 (0.14H, m, CHN rotamer 2), 4.71 (1H, d, J 18.5 Hz, CHHTs), 4.59-4.51 (2.86 H, m, CH₂OH and CHHTs rotamer 1), 4.38 (0.14 H, d, J 14.0 Hz, CHHArMe rotamer 2), 4.27 (0.14 H, d, J 14.0 Hz, CHHArMe rotamer 2), 4.24 (0.14 H, d, J 15.0 Hz, CHHTs rotamer 2), 4.10 (0.86 H, d, J 14.0 Hz, CHHArMe rotamer 1), 4.03 (0.86 H, d, J 14.0 Hz CHHArMe rotamer 1), 3.81 (0.42H, s, OCO₂CH₃) rotamer 2), 3.78 (2.58H, s, OCO₂CH₃ rotamer 1), 2.45 (3H, s, Me of Ts), 2.35 (3H, s, Me of CH₂ArMe), 1.33 (0.42H, d, J 7.0 Hz, CHCH₃ rotamer 2), 1.22 (2.58H, d, J 7.0 Hz, CHCH₃ rotamer 1); δ_C (75 MHz) 162.5, 162.0, 155.5, 145.2, 137.4, 136.5, 136.0, 135.8, 135.0, 134.6, 134.4, 134.0, 129.8, 129.0, 128.6, 127.4, 125.8, 125.5, 67.6, 67.3, 60.8, 60.4, 55.1, 54.9, 51.3, 45.9, 21.8, 21.1, 18.6, 16.9; m/z (CI) 477 [M+NH₄]⁺, 460 [M+H]⁺, 384, 306, 230, 174 (Found: [M+NH₄]⁺, 460.1792.

 $C_{24}H_{29}N_1O_6S_1$ requires [M+NH4]⁺, 460.1794) (Found: C, 62.80; H, 6.23; N, 3.05. $C_{24}H_{29}N_1O_6S_1$ requires C, 62.73; H, 6.36; N, 3.05%).

(-)-(S)-(E)-Carbonic acid methyl ester 5-methyl-4-{(4-methylbenzyl)-[2-(toluene-4-sulfonyl)acetyl]amino}hex-2-enyl ester (7b)

To a solution of (-)-(S)-(E)-5-methyl-4-{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}hex-2-enol (50.0 mg, 0.117 mmol, 1.0 equiv) in CH₂Cl₂ (2 ml) at 0 °C was added pyridine (30.6 µl, 0.585 mmol, 5.0 equiv), methyl chloroformate (36.1 µl, 0.468 mmol, 4.0 equiv) and DMAP (1.4 mg, 0.012 mmol, 0.1 equiv). The reaction mixture was warmed to rt. and after 1 h was diluted with CH₂Cl₂ (5 ml) then quenched by addition of saturated aqueous NH₄Cl (5 ml). The organic layer was washed with brine (5 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (30% EtOAc-petrol) gave the *carbonate* 7b (54.1 mg, 95%) as a colourless oil; R_f 0.80 (50% EtOAc-petrol); $\left[\alpha\right]_{D}^{22}$ -3.0 (c 4.0, CHCl₃); v_{max} (film) 2958, 1749, 1647, 1443, 1323, 1269, 1155, 1086, 951, 914, 795, 731 cm⁻¹; δ_H (300 MHz) 7.83 (0.24H, d, J 8.0 Hz, ortho Ts rotamer 2), 7.76 (1.76H, d, J 8.0 Hz, ortho Ts rotamer 1), 7.28-7.40 (2H, meta Ts rotamer 1 and rotamer 2), 7.13 (2H, d, J 8.0 Hz, ortho CH₂ArMe), 7.02 (2H, d, J 8.0 Hz meta CH₂ArMe), 5.90 (0.12H, dt, J 15.0, 6.0 Hz, CH=CHCH₂ rotamer 2), 5.72-5.62 (1.88H, m, CH=CH rotamer 1 and CH=CHCH₂ rotamer 2), 4.89 (0.88H, d, J 18.0 Hz, CHHTs rotamer 1), 4.66 (0.12H, d, J 16.0 Hz, CHHTs rotamer 2), 4.60 (0.88H, CHHTs rotamer 1), 4.51-4.43 (3.12H, m, CH₂OCO₂Me CHN and CHHTs rotamer 2), 4.28 (0.12H, d, J 12.0 Hz, CHHArMe rotamer 2), 4.23 (0.12H, d, J 12.0 Hz, CHHArMe rotamer 2), 4.14 (0.88H, d, J 14.0 Hz, CHHArMe rotamer 1), 3.93 (0.88H. d, J 14.0 Hz, CHHArMe rotamer 1), 3.74 (3H, s, OCO₂OCH₃), 2.45 (3H, s, Me of Ts), 2.34 (3H, s, Me of CH₂ArMe), 2.06-2.01 (1H, m, CH(CH₃)₂), 1.04 (2.64H, d, J 6.5 Hz, CH(CH₃)₂ rotamer 1), 0.96 (0.36H, d, J 6.5 Hz, CH(CH₃)₂ rotamer 2), 0.88 (3H, d, J 6.5 Hz, CH(CH₃)₂); δ_C (75 MHz) 162.4, 155.4, 145.2, 237.4, 135.9, 135.7, 133.6, 132.2, 131.6, 130.2, 129.9, 129.7, 128.6, 127.8, 126.2, 67.4, 66.7, 64.2, 60.9, 60.8, 54.8, 48.9, 31.0, 29.9, 22.9, 22.2, 20.2, 19.7, 19.4; m/z (CI) 505 $[M+NH_4]^+$, 488 $[M+H]^+$, 412, 334, 258, 189 (Found: $[M+NH_4]^+$, 505.2367. C₂₆H₃₃NO₆S requires $[M+NH_4]^+$, 505.2372) (Found: C, 63.84; H, 6.62; N, 2.71. C₂₆H₃₃NO₆S requires C, 64.04; H, 6.82; N, 2.87%).

(-)-(*S*)-(*E*)-Carbonic acid methyl ester 6-methyl-4-{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}hept-2-enyl ester (7c)

To a solution of $TsCH_2CO_2H$ (501 mg, 2.34 mmol, 2.0 equiv), DCC (532 mg, 2.58 mmol, 2.2 equiv) and HOBt (348 mg, 2.58 mmol, 2.2 equiv) at 0 °C was added aminoalcohol **6c** (290 mg, 1.17 mmol 1.0 equiv) and the mixture warmed to rt. After 12 h the reaction was concentrated under reduced

pressure and the residue stirred in 10% NaOH:MeOH. After 12 h the mixture was extracted with CH₂Cl₂ (4 x 40 ml), the combined organic extracts washed with H₂O (20 ml), brine (20 ml) and dried (Na₂SO₄). Concentration under reduced pressure gave the crude amide (487 mg). A portion of this (430 mg, 0.970 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (5 ml) and methylchloroformate (150 µl, 1.94 mmol, 2.0 equiv), pyridine (101 µl, 1.94 mmol, 2.0 equiv) and DMAP (1.2 mg, 0.091 mmol, 0.1 equiv) added. The reaction was warmed to room temperature and after 12 h quenched with saturated aqueous NH₄Cl (10 ml). The mixture was extracted with CH₂Cl₂ (3 x 15 ml) and the combined organic extracts washed with H₂O (20 ml), brine (20 ml) and dried (Na₂SO₄). Evaporation under reduced pressure and chromatography (70% Et_2O -petrol) gave the *carbonate* 7c (455 mg, 80%) as a colourless oil; $R_f 0.32$ (30% EtOAc-petrol); $[\alpha]_D^{23}$ -12.0 (c 1.0, CHCl₃); v_{max} (film) 2929, 1749, 1649, 1443, 1267, 1155, 1086, 949, 793 cm⁻¹; δ_H (300 MHz) 7.81-7.74 (2H, m, ortho Ts), 7.36-7.30 (2H, m, meta Ts), 5.75-5.68 (2H, m, CH=CH), 5.03-5.02 (1H, m, CHN), 4.65-4.61 (2H, m, CH₂Ts), 4.56-4.52 (2H, m, CH₂ArMe), 4.12-4.02 (2H, m, CH₂OCO₂CH₃), 3.82-3.73 (3H, m, OCO₂CH₃), 2.44 (3H, s, Me of Ts), 2.33 (3H, s, Me of CH₂ArMe), 1.59-1.43 (3H, m, CH₂iPr and CH(CH₃)₂), 0.89 (3H, d, J 6.5 Hz, CH(CH₃)₂), 0.84 (3H, d, J 6.5 Hz, CH(CH₃)₂) (75 MHz) 162.4, 162.2, 155.5, 145.2, 137.4, 136.5, 135.9, 135.0, 133.9, 133.4, 133.0, 129.7, 129.6, 129.0, 128.6, 127.6, 127.2, 126.7, 67.6, 67.3, 60.9, 60.4, 58.0 54.8, 48.1, 46.2, 41.8, 40.8, 24.7, 23.2, 22.8, 21.8, 21.0; m/z (CI) 519 [M+NH₄]⁺, 502 [M+H]⁺, 426, 348, 272 (Found: [M+NH₄]⁺, 519.2508. C₂₇H₃₅NO₆S requires [M+NH₄]⁺, 519.2523) (Found: C, 64.83; H, 6.95; N, 2.66. C₂₇H₃₅NO₆S requires C, 64.65; H, 7.03; N, 2.79%).

(*E*)-Carbonic acid methyl ester 4-{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino}oct-2enyl ester (7d)

To a solution of (*E*)-4-{(4-methylbenzyl)[(2-toluene-4-sulfonyl)acetyl]amino}oct-2-enol (43.0 mg, 0.0971 mmol, 1.0 equiv) in CH₂Cl₂ (1 ml) at 0 °C was added pyridine (15.2 µl, 0.291 mmol, 3.0 equiv), methyl chloroformate (22.4 µl, 0.291 mmol, 3.0 equiv) and DMAP (1.2 mg, 0.01 mmol, 0.1 equiv). The reaction was warmed to rt and after 1 h was diluted with CH₂Cl₂ and quenched by addition of saturated aqueous NH₄Cl (5 ml). The organic layer was washed with brine (5 ml) and dried (Na₂SO₄). Concentration under reduced pressure and chromatography (30% EtOAc–petrol) gave the *carbonate* **7d** (43.3 mg, 96%) as a colourless oil; R_{*f*} 0.80 (50% EtOAc–petrol); v_{max} (film) 2956, 1749, 1649, 1443, 1267, 1155, 949, 793 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 7.81-7.76 (2H, m, *ortho* Ts) 7.38-7.33 (2H, m, *meta* Ts), 7.17-7.02 (4H, m, CH₂ArMe), 5.76-5.75 (2H, m, CH=CH), 4.92-4.91 (0.74 H, m, CHN rotamer 1), 4.74-4.32 (4.26 H, m, CH₂Ts, CH₂ArMe rotamer 2 and CH₂OCO₂Me), 4.10 (0.74 H, d, J 14.0 Hz, CHHArMe rotamer 1), 4.03 (0.74 H, d, J 14.0 Hz, CHHArMe rotamer 1), 3.81 (0.78 H, s, OCO₂CH₃ rotamer 2), 3.77 (2.22 H, s, OCO₂CH₃ rotamer 1), 2.46 (3H, s, Me of Ts),

2.35-2.33 (3H, m, Me of CH₂ArMe), 1.67-1.60 (2H, m, $CH_2(CH_2)_2CH_3$), 1.45-1.28 (4H, m, $CH_2(CH_2)_2CH_3$), 0.89-0.83 (3H, m, $CH_2(CH_2)_2CH_3$); δ_C (75 MHz) 162.5, 162.3, 155.5, 145.2, 137.4, 136.6, 135.9, 133.8, 133.3, 133.1, 129.7, 128.9, 128.6, 127.9, 126.4, 126.1, 67.6, 67.4, 60.9, 60.4, 60.1, 56.8, 54.9, 48.1, 46.1, 32.5, 31.5, 28.5, 28.3, 22.5, 21.8, 21.1, 14.0, 13.9; *m/z* (CI) 519 $[M+NH_4]^+$, 502 $[M+H]^+$, 376, 365, 348, 272, 225, 289, 174 (Found: $[M+NH_4]^+$, 519.2528. $C_{27}H_{35}NO_6S$ requires $[M+NH_4]^+$, 519.2529) (Found: C, 64.52; H, 7.15; N, 2.76. $C_{27}H_{35}NO_6S$ requires C, 64.65; H, 7.03; N, 2.79%).

(3*S*, 4*R*, 5*S*)-5-Methyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3*R*, 4*S*, 5*S*)-5-Methyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (*cis*-and *trans*-8a)

A solution of carbonate 7a (40.0 mg, 8.72×10^{-2} mmol, 1.0 equiv) in MeCN (1 ml) was added to a flask charged with Pd₂(dba)₃ (4.1 mg, 0.004 mmol, 5.0 mol%) and TTMPP (23.4 mg, 0.044 mmol, 0.5 equiv) at rt. After stirring for 2 h the reaction was concentrated under reduced pressure. Chromatography (30% EtOAc-petrol) gave an inseparable 86:14 mixture of cis- and trans- y*lactams* 8a (30.0 mg, 90%) as a colourless oil; R_f 0.43 (30% EtOAc-petrol); v_{max} (film) 1693, 1431, 1315, 1147, 1086, 1011, 935, 814, 737 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.89-7.82 (4H, m, ortho Ts of cis and trans), 7.37 (4H, d, J 8.0 Hz, meta Ts of cis and trans), 7.14 (2H, d, J 8.0 Hz, ortho CH₂ArMe of cis), 7.10 (2H, d, J 8.0 Hz, meta CH₂ArMe of cis), 7.09-7.08 (2H, m, ortho CH₂ArMe trans), 7.05 (2H, d, J 8.0 Hz, meta CH₂ArMe trans), 5.71 (2H, dt, J 17.0, 10.0 Hz, CH=CH₂ of cis and trans), 5.24 (2H, d, J 17.0 Hz, trans CH=CH₂ of cis and trans), 5.22 (1H, d, J 10.0 Hz, cis CH=CH₂ of cis), 5.16 (1H, d, J 10.0 Hz cis CH=CH2 trans), 4.97 (1H, d, J 15.0 Hz, CHHArMe of cis), 4.88 (1H, d, J 15.0 Hz, CHHArMe trans), 3.97 (1H, d, J 15.0 Hz, CHHArMe trans), 3.91 (1H, d, J 15.0 Hz, CHHArMe of cis), 3.89-3.82 (3H, m, CHN of cis and CHTs, of cis and trans), 3.60 (1H, ddd, J 5.0, 7.5, 4.5 Hz, CHCH=CH₂ of cis), 3.23-3.10 (1H, m, NCH trans), 2.46 (6H, s, Me of CH₂ArMe of cis and trans), 2.34 (3H, s, Me of Ts of cis), 2.31 (3H, s, Me of Ts trans), 1.27 (3H, d, J 6.5 Hz, NCH*Me trans*), 1.03 (3H, d, J 7.0 Hz, NCH*Me* of *cis*); $\delta_{\rm C}$ (100 MHz)⁸ 165.1 (C=O), 145.2 (g Ar). 137.4 (q Ar), 135.0 (q Ar), 133.6 (CH=CH₂), 132.3 (q Ar), 129.6 (meta Ts), 129.6 (ArH of CH₂ArMe), 129.4 (ortho Ts), 127.7 (ArH of CH₂ArMe), 119.4 (CH=CH₂), 70.6 (CHTs), 54.1 (NCHMe), 44.2 (CH₂ArMe), 21.8 (Me of CH₂ArMe), 21.1 (Me of Ts), 15.3 (NCHMe); m/z (CI) 401 $[M+NH_4]^+$, 384 $[M+H]^+$, 230 (Found: $[M+H]^+$, 384.1647. C₂₂H₂₅NO₃S requires $[M+H]^+$, 384.1633)

(3*S*, 4*R*, 5*S*)-5-Isopropyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3*R*, 4*S*, 5*S*)-5-isopropyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (*cis*- and *trans*-8b)

A solution of carbonate 7b (50.0 mg, 0.103 mmol, 1.0 equiv) in MeCN (1 ml) was added to a flask charged with Pd₂(dba)₃ (4.6 mg, 0.005 mmol, 5.0 mol%) and TTMPP (26.6 mg, 0.052 mmol, 0.5 equiv) at rt. After stirring for 12 h the reaction was concentrated under reduced pressure. Chromatography (30% EtOAc-petrol) gave an inseparable 67:33 mixture of cis- and trans- y*lactams* **8b** (31.9 mg, 78%) as a colourless oil; R_f 0.40 (30% EtOAc-petrol); v_{max} 1695, 1435, 1319, 1147, 1086, 812 (film) cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.90 (4H, d, J 8.0 Hz, ortho Ts of cis and trans), 7.38 (4H, d, J 8.0 Hz, meta Ts of cis and trans), 7.10 (2H, d, J 8.0 Hz ortho CH₂ArMe of cis), 7.09 (2H, d, J 8.0 Hz, ortho CH₂ArMe trans), 7.05 (2H, d, J 8.0 Hz, meta CH₂ArMe trans), 6.95 (2H, d, J 8.0 Hz, meta CH₂ArMe of cis), 5.85 (1H, ddd, J 17.0, 10.0, 9.0 Hz, CH=CH₂ of cis), 5.72 (1H, ddd, J 17.0, 10.0, 8.0 Hz, CH=CH₂ trans), 5.27 (2H, d, J 17.0 Hz, trans CH=CH₂ of cis and trans), 5.23 (1H, d, J 10.0 Hz, cis CH=CH₂ of cis), 5.20 (1H, d, J 15.0 Hz, CHHArMe of cis), 5.13 (1H, d, J 10.0 Hz cis CH=CH₂ trans), 5.05 (1H, d, J 15.0 Hz, CHHArMe trans), 4.03 (1H, d, J 9.0 Hz, CHTs of cis), 3.86 (1H, d, J 7.0 Hz, CHTs trans), 3.81 (1H, d, J 15.0 Hz, CHHArMe of cis), 3.77 (1H, d, J 15.0 Hz, CHHArMe trans), 3.59 (1H, ddd, J 8.0, 8.0, 8.0 Hz, CHCH=CH₂ of cis), 3.49 (1H, dd, J 8.0, 3.0 Hz, CH(CH₃)₂ of cis), 3.40 (1H, ddd, J 7.0, 7.0, 7.0 Hz, CHCH=CH₂ trans), 3.19-3.17 (1H, m, CHiPr trans), 2.47 (3H, s, Me of Ts of cis), 2.45 (3H, s, Me of Ts trans), 2.34 (3H, s, Me of CH₂ArMe of *cis*), 2.31 (3H, s, Me of CH₂ArMe *trans*), 2.26-2.21 (1H, m, CH(CH₃)₂ *trans*), 2.05 (1H, d quintet, J 7.0, 3.0 Hz CH(CH₃)₂ of cis), 0.98 (3H, d, J 7.0 Hz, CH(CH₃)₂ of 1), 0.90 (3H, d, J 7.0 Hz, CH(CH₃)₂ trans), 0.88 (3H, d, J 7.0 Hz, CH(CH₃)₂ trans), 0.86 (3H, d, J 7.0 Hz, CH(CH₃)₂ of *cis*); δ_C (100 MHz) 165.9 (C=O of *cis*), 165.4 (C=O *trans*), 145.1 (*ipso* Ts of *cis* and *trans*), 138.5 (CH=CH₂ trans), 137.6 (q Ar trans), 137.4 (q Ar of cis), 135.5 (q Ar trans), 134.8 (q Ar of cis), 134.0 (CH=CH₂ of cis), 132.2 (g Ar trans), 132.1 (g Ar of cis), 129.9 (ortho Ts of cis and trans), 129.6 (meta Ts of cis and trans), 129.4 (ortho CH₂ArMe of cis), 129.5 (ortho CH₂ArMe trans), 128.1 (meta CH₂ArMe trans), 127.7 (meta CH₂ArMe of cis), 119.8 (CH=CH₂ of cis), 117.8 (CH=CH₂ trans), 70.8 (CHTs trans), 69.7 (CHTs of cis), 63.6 (CHiPr of cis), 62.6 (CHiPr trans), 45.7 (CH₂ArMe of cis), 44.5 (CH₂ArMe trans), 42.7 (CHCH=CH₂, of cis), 36.0 (CHCH=CH₂) trans), 29.2 (CH(CH₃)₂ of cis), 28.2 (CH(CH₃)₂ trans), 21.8 (Me of Ts of cis and trans), 21.1 (Me of CH₂ArMe of *cis* and *trans*), 20.5 (CH(CH₃)₂ of *cis*), 18.5 (CH(CH₃)₂ *trans*), 17.5 (CH(CH₃)₂ *trans*), 14.7 (CH(CH₃)₂ of *cis*); m/z (CI) 429 [M+NH₄]⁺, 412 [M+H]⁺, 255 [M-Ts]⁺ (Found: $[M+NH_4]^+$, 412.1942. C₂₄H₂₉NO₃S requires $[M+NH_4]^+$, 412.1940).

(3*S*, 4*R*, 5*S*)-5-Isobutyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3*R*, 4*S*, 5*S*)-5-isobutyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (*cis*-and *trans*-8c)

A solution of carbonate 7c (45.0 mg, 8.98 x 10^{-2} mmol, 1.0 equiv) in MeCN (1 ml) was added to a flask charged with Pd₂(dba)₃ (4.6 mg, 0.005 mmol, 5.0 mol%) and TTMPP (26.6 mg, 0.045 mmol, 0.5 equiv) at rt. After stirring for 12 h the reaction was concentrated under reduced pressure. Chromatography (50% EtOAc-petrol) gave a inseparable 90:10 mixture of cis- and trans- y*lactams* 8c (33.0 mg, 85%) as a colourless oil; $R_f 0.40$ (50% EtOAc-petrol); v_{max} (film) 2926, 1697, 1448, 1304, 1149, 1086, 924, 812 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.87-7.82 (4H, m, ortho Ts of cis and trans), 7.37-7.35 (4H, m, meta Ts of cis and trans), 7.15-7.04 (8H, m, CH₂ArMe of cis and trans), 5.72 (1H, dt, J 17.0, 10.0 Hz, CH=CH₂ of cis), 5.70-5.68 (1H, m, CH=CH₂ trans), 5.25 (1H, d, J 17.0 Hz, trans CH=CH₂ of cis), 5.22 (1H, d, J 11.0 Hz, cis CH=CH₂ of cis), 5.16 (1H, d, J 17.0 Hz, trans CH=CH₂ trans), 5.09 (1H, d, J 10.0 Hz cis CH=CH₂ trans), 4.94 (2H, d, J 15.0 Hz, CHHArMe of cis and trans), 3.97 (1H, d, J 15.0 Hz, CHHArMe of cis), 3.92 (1H, d, J 15.0 Hz, CHHArMe trans), 3.88-3.81 (3H, m, CHTs of cis and CHN of cis and trans), 3.66 (1H, dd, J 10.0, 6.5 Hz, CHCH=CH₂ of cis), 3.35-3.31 (1H, m, CHTs, trans), 3.22-3.18 (1H, m, CHCH=CH₂ trans), 2.46 (6H, s, Me of Ts of cis and trans), 2.34 (3H, s, Me of CH₂ArMe of cis), 2.31 (3H, s, Me of CH₂ArMe trans), 1.75-1.67 (1H, m, CH(CH₃)₂ trans), 1.61-1.52 (3H, m, CH(CH₃)₂ of cis and *CH*₂*i*Pr *trans*), 1.33 (2H, dd, J 7.0, 7.0 Hz, *CH*₂*i*Pr of *cis*), 0.94 (3H, d, J 7.0 Hz, *CH*(*CH*₃)₂ *trans*), 0.80 (3H, d, J 7.0 Hz, CH(CH₃)₂ of cis), 0.76 (3H, d, J 7.0 Hz, CH(CH₃)₂ trans), 0.70 (3H, d, J 7.0 Hz, CH(CH₃)₂ of cis); $\delta_{\rm C}$ (100 MHz)⁸ 165.6 (C=O), 145.3 (ipso Ts), 137.2 (q Ar), 135.1 (q Ar), 133.6 (CH=CH₂), 132.4 (q Ar), 129.6 (meta Ts), 129.3 (ortho Ts and CH₂ArMe), 127.7 (CH₂ArMe), 119.2 (CH=CH₂), 71.5 (CHTs), 56.8 (CHN), 44.4 (CH₂ArMe), 41.8 (CHCH=CH₂), 36.9 (CH₂*i*Pr), 23.8 (CH(CH₃)₂), 23.7 (CH(CH₃)₂), 21.8 (Me of Ts), 21.3 (CH(CH₃)₂), 21.1 (Me of CH₂ArMe); m/z (CI) 443 $[M+NH_4]^+$, 426 $[M+H]^+$, 279, 272 (Found: $[M+NH_4]^+$, 426.2109. C₂₅H₃₁NO₃S requires $[M+NH_4]^+, 426.2103)$

(3*S*, 4*R*, 5*S*)-5-Butyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3*R*, 4*S*, 5*S*)-5-butyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (*cis*-and *trans*-8d)

A solution of carbonate **7d** (50.0 mg, 99.8 x 10^{-3} mmol, 1.0 equiv) in MeCN (1 ml) was added to a flask charged with Pd₂(dba)₃ (4.61 mg, 5.04 x 10^{-3} mmol, 5.0 mol%) and TTMPP (23.4 mg, 4.40 x 10^{-2} mmol, 0.5 equiv) at rt. After stirring for 6 h the reaction was concentrated under reduced pressure. Chromatography (30% EtOAc–petrol) gave an inseparable 83:17 mixture of *cis*- and *trans-* γ -*lactams* **8d** (30mg, 79%) as a colourless oil; R_f 0.46 (30% EtOAc–petrol); v_{max} (film) 2929,

1697 (C=O), 1423, 1319 (SO₂), 1149 (SO₂), 1086, 812 cm⁻¹; δ_H (400 MHz) 7.85 (4H, d, J 8.0 Hz ortho Ts of cis and trans), 7.37 (4H, d, J 8.0 Hz, meta Ts of cis and trans), 7.19-7.04 (4H, m, meta CH₂ArMe of cis and trans), 5.75 (1H, dt, J 17.0, 10.0 Hz, CH=CH₂ of cis), 5.70-5.66 (1H, m, CH=CH₂ trans), 5.28 (1H, d, J 17.0 Hz, trans CH=CH₂ of cis), 5.23 (1H, d, J 10.0 Hz, cis CH=CH₂ of cis), 5.19 (1H, d, J 17.0 Hz, trans CH=CH₂ trans), 5.12 (1H, d, J 10.0 Hz, cis CH=CH₂ trans), 4.95 (2H, d, J 15.0 Hz, CHHArMe of cis), 4.92 (2H, d, J 15.0 Hz, CHHArMe trans), 3.97 (2H, d, J 15.0 Hz, CHHArMe of cis), 3.91 (2H, d, J 15.0 Hz, CHHArMe trans), 3.79-3.74 (3H, m, CHnBu of cis and CHTs of cis and trans), 3.66-3.65 (1H, m, CHCH=CH₂ of cis), 3.34-3.30 (1H, m, CHCH=CH₂ trans), 3.14-3.12 (1H, m, CHnBu min), 2.45 (6H, s, Me of CH₂ArMe of cis and trans), 2.33 (3H, s, Me of Ts of cis), 2.31 (3H, s, Me of Ts trans), 1.77-1.55 (2H, m, CH₂(CH₂)₂CH₃ trans), 1.64-1.51 (2H m, CH₂(CH₂)₂CH₃ of cis), 1.34-1.04 (8H, m, CH₂(CH₂)₂CH₃ of cis and trans), 0.87 (3H, t, J 7.0 Hz, CH₂(CH₂)₂CH₃ trans), 0.81 (3H, t, J 7.0 Hz, CH₂(CH₂)₂CH₃ of cis); δ_C (75 MHz) 165.6 (C=O of cis), 164.8 (C=O trans), 145.2 (q Ar of cis and trans), 137.3 (CH=CH₂ trans), 135.1 (q Ar of cis), 135.0 (q Ar trans), 133.2 (CH=CH₂ of cis), 132.4 (q Ar of cis and min), 129.6 (meta Ts of cis), 129.5 (meta Ts min), 129.4 (q Ar of cis and trans), 129.3 (ortho Ts and ArMe of cis and trans) 128.0 (ArMe trans) 127.6 (ArMe of cis), 119.5 (CH=CH₂ of cis), 117.5 (CH=CH₂ trans), 71.3 (CHTs of cis), 71.1 (CHTs trans), 60.1 (CHnBu trans), 58.4 (CHnBu of cis), 44.6 (CH₂ArMe trans), 44.4 (CH₂ArMe of cis), 41.6 (CHCH=CH₂ of cis) 41.0 (CHCH=CH₂ trans), 31.2 (CH₂(CH₂)₂CH₃ trans), 29.7 (CH₂CH₂CH₂CH₃ trans), 27.7 (CH₂(CH₂)₂CH₃ of cis), 26.4 (CH₂CH₂CH₂CH₃ of *cis*), 26.1 ((CH₂)₂CH₂CH₃ *trans*), 22.5 ((CH₂)₂CH₂CH₃ of *cis*), 21.8 (Me of Ts of *cis* and *trans*), 21.1 (Me of CH₂ArMe of *cis* and *trans*), 13.9 (Me of *n*Bu *trans*), 13.8 (Me of *n*Bu of *cis*); m/z (CI) 443 [M+NH₄]⁺, 426 [M+H]⁺, 272 (Found: [M+NH₄]⁺, 426.2106. C₂₅H₃₁NO₃S requires [M+NH₄]⁺, 426.2103)

(+)-(3*S*, 4*S*, 5*R*)-5-(4-Methoxybenzyl)-1-(4-methylbenzyl)-3-(3-methylbut-2-enyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (10)

A solution of lactams *cis*-1 and *trans*-1 (5.6:1 mixture; 332 mg, 0.680 mmol, 1.0 equiv) in DMF (5 ml) was added to KH (94.0 mg of a 35% wt dispersion in mineral oil washed with pentane, 0.820 mmol, 1.2 equiv) at 0 °C under argon. After 15 min prenyl bromide (780 µl, 6.80 mmol, 10 equiv) was added and the mixture warmed to rt. After 20 min the reaction was quenched by dropwise addition of MeOH until the solution decolourised. Saturated aqueous NH₄Cl (5 ml) was then added and the mixture extracted with EtOAc (5 x 10 ml). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Chromatography (20% EtOAc–petrol) gave the *lactam* 10 (265 mg, 70%; 83% from *cis*-1) as a colourless oil; R_f 0.60 (30% EtOAc–petrol); $[\alpha]_D^{24}$ +72.0 (*c* 0.5, CHCl₃); v_{max} (film) 1691, 1512, 1441, 1315, 1248, 1140 cm⁻¹; δ_H (400 MHz) 7.72 (2H,

d, J 8.0 Hz, ortho Ts), 7.28 (2H, d, J 8.0 Hz, meta Ts), 7.06 (2H, d, J 8.5 Hz, ortho CH₂ArMe), 6.92 (2H, d, J 8.0 Hz, ortho ArOMe), 6.80 (2H, d, J 8.5 Hz, meta CH₂ArMe), 6.60 (2H, d, J 8.0 Hz, meta ArOMe), 6.50 (1H, dt, J, 17.0, 10.0, Hz CH=CH₂), 5.18 (1H, dd, J 10.0, 2.0 Hz, trans CH=CH₂), 5.00 (1H, dd, J 17.0, 2.0 Hz, cis CH=CH₂), 4.92 (1H, d, J 15.0 Hz, NCHH), 4.72 (1H, m, CH=C(Me)₂), 3.76 (3H, s, OMe of ArOMe), 3.59 (1H, ddd, J 9.0, 9.0, 5.0 Hz, CHN), 3.39 (1H, dd, J 14.0, 9.0 Hz, CHHArOMe), 3.22 (1H, m, CHCH=CH₂), 3.20 (1H, d, J 15.0 Hz, NCHH), 3.11 (1H, dd, J 14.0, 5.0 Hz, CHHArOMe), 2.69 (1H, dd, J 14.0, 11.0 Hz, CHHCH=C(CH₃)₂), 2.44-2.41 (1H, m, CHHCH=C(CH₃)₂), 2.38 (3H, s, Me of Ts), 2.21 (3H, s, Me of CH₂ArMe), 1.58 (3H, s, $CH_2CH=C(CH_3)_2$) 1.54 (3H, s, $CH_2CH=C(Me)_2$); δ_C (100 MHz); 167.7 (C=O), [158.3, 145.1 (q Ar)], 137.7 (C(CH₃)₂), [137.2, 133.9, 133.0 (q Ar)], 132.7 (CH=CH₂), 131.7 (q Ar), 131.1 (ortho Ts), 130.4 (ortho CH₂ArMe), 129.1 (meta Ts), 128.9 (meta ArOMe), 128.3 (ortho ArOMe), 120.1 (CH=CH₂), 117.1 (CH=C(Me)₂), 114.0 (meta CH₂ArMe), 75.8 (CTs), 59.8 (CHN), 55.3 (OMe of CH₂ArOMe), 47.7 (CHCH=CH₂), 45.7 (CH₂ArMe), 36.4 (CH₂ArOMe), 31.2 (CH₂CH=(CMe)₂), 25.9 (CH₂CH=C(CH₃)₂), 21.8 (Me of Ts), 21.1 (Me of CH₂ArMe), 18.4 (CH₂CH=C(CH₃)₂); m/z (CI) 558 $[M+H]^+$, 410, 404, 376, 174 (Found: $[M+H]^+$, 558.2682. C₃₄H₃₉NO₄S requires $[M+H]^+$, 558.2678) (Found: C, 73.03; H, 6.78; N, 2.50. C₃₃H₃₉NO₅S requires C, 73.22; H, 7.05; N, 2.51%).

References

- ⁴ McChesney, E. W.; Swann, W. K. J. Am. Chem. Soc. 1937, 59, 1116.
- ⁵ Burgess, K.; Liu, L. T.; Pal, B. J. Org. Chem. **1993**, 58, 4758.
- ⁶ Bergmeier, S. C.; Seth, P. P. J. Org. Chem. 1997, 62, 2671.

¹ J. J. Caldwell, D. Craig, and S. P. East, *Synlett*, 2001, 1602.

² Wang, J.; Hou, Y.; J. Chem. Soc. Perkin Trans. 1 1998, 12, 1919.

³ Kozikowski, Alan. P.; Ma, D.; Pang, Y. P.; Shum, P.; Likic, V. J. Amer. Chem. Soc. 1993, 115, 3957.

⁷ (a) Berry, M. B. *Ph.D Thesis, Imperial College*, **1993** (b) Hoppe, I.; Hoffmann, H.; Gaertner, I.; Krettek, T.; Hoppe, D. *Synthesis* **1991**, *12*, 1157.

⁸ Data given for major, *cis*- diastereomer. ¹³C Data for minor, *trans*- diastereoisomer are not listed due to low intensity.