Stereoselective γ-Lactam Synthesis via Palladium-catalysed Intramolecular Allylation

Donald Craig, ${ }^{a}$ Christopher J. T. Hyland ${ }^{a}$ and Simon E. Ward ${ }^{b}$
${ }^{a}$ Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
${ }^{b}$ GlaxoSmithKline Research Ltd, New Frontiers Science Park North, Third Avenue, Harlow, Essex CM19 5AW, U.K.

Experimental procedures and spectroscopic data/physical characteristics of all compounds prepared in this work

\boldsymbol{N}-(Toluene-4-sulfonyl)-L-serine

To a rapidly-stirred solution of L-serine ($18.0 \mathrm{~g}, 171 \mathrm{~mol}, 1.0$ equiv) and $\mathrm{TsCl}(43.2 \mathrm{~g}, 227 \mathrm{~mol}, 1.3$ equiv) in EtOAc (400 ml) and $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{ml})$ was added $\mathrm{NaOH}(228 \mathrm{ml}$ of a 2 M aqueous solution, $456 \mathrm{mmol}, 2.7$ equiv) dropwise over 3 h . After a further 1 h the phases were separated and the aqueous layer acidified with $c . \mathrm{HCl}(25 \mathrm{ml})$. The resulting white precipitate was filtered and dried azeotropically with toluene to yield N-(toluene-4-sulfonyl)-L-serine ($26.2 \mathrm{~g}, 79 \%$) as a colourless solid; mp $236^{\circ} \mathrm{C}$ (EtOAc); $\mathrm{R}_{f} 0.32(50 \% \mathrm{EtOAc}-$ petrol $) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{NH})$, 7.68 (2H, d, J 8.5 Hz , ortho Ts), 7.36 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}$, meta Ts), 3.75-3.68 (1H, m, CHNHTs), 3.53-3.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $2.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts$) ; m / z(\mathrm{CI}) 277\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. In agreement with published data. ${ }^{1}$

(+)-(S)-3-hydroxy-1-(4-methoxyphenyl)-2-(toluene-4-sulfonamido)propan-1-one

Activated magnesium turnings ($15.4 \mathrm{~g}, 632 \mathrm{mmol}$, 4.1 equiv) were suspended in THF (400 ml) and 4-bromoanisole ($77.2 \mathrm{ml}, 616 \mathrm{mmol}, 4.0$ equiv) added dropwise to maintain a steady reflux. After stirring for 1 h the mixture was transferred to a solution of acid $\mathbf{1 7 0}$ ($40.0 \mathrm{~g}, 154 \mathrm{mmol}, 1.0$ equiv), and $n-\operatorname{BuLi}(193 \mathrm{ml}$ of a 1.6 M solution in hexanes, 308 mmol , 2.0 equiv) in THF (400 ml) at -78 ${ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to rat and after 37 h the reaction mixture was poured into HCl $(1 \mathrm{M} ; 400 \mathrm{ml})$ and extracted with Teac ($3 \times 400 \mathrm{ml}$). The combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(600 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure and recrystallisation (EtOAc-petrol) gave the ketone ($39.0 \mathrm{~g}, 73 \%$) as an off-white solid; $\mathrm{mp} 80-82{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{R}_{f} 0.25\left(10 \% \mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+84.0$ (c 1.0, EtOH); $v_{\max }$ (film) 3489, $3283,3264,1680,1601,1336,1308,1165,910,739 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}$, ortho ArOMe), 7.73 (2H, d, J 8.0 Hz , ortho Ts), 7.21 (2H, d, J 8.0 Hz , meta Ts), 6.93 (2H, d, J 9.0 Hz , meta ArOMe), 6.11 (1H, d, J 7.5 Hz, NHTs), 4.90-4.85 (1H, m, CHNHTs), 4.10-3.90 (1H, m, $\mathrm{CHHOH}), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.78-3.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHOH}), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts); $\delta_{\mathrm{C}}(75 \mathrm{MHz})$ $202.2(\mathrm{C}=\mathrm{O})$, [164.5, 144.0, 136.5 (q Ar)], [131.1, 129.8, 127.1 (ArH)], 126.5 (q Ar), 114.2 (ArH),
$64.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 59.6$ and 55.7 (CHNHTs and OMe of ArOMe), 21.8 (Me of Ts); m/z (CI) 367 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 350[\mathrm{M}+\mathrm{H}]^{+}$(Found: C, 58.49; H, 5.32; N, 3.92. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}$ requires C, 58.44; H, 5.48; N, 4.01\%).
(+)-(R)-2-(Toluene-4-sulfonamido)-3-(4-methoxyphenyl)propan-1-ol (3)
(+)-(S)-3-Hydroxy-1-(4-methoxyphenyl)-2-(toluene-4-sulfonamido)propan-1-one (30.1 g, 85.9 mmol, 1.0 equiv) was dissolved in trifluoroacetic acid ($132 \mathrm{ml}, 1.72 \mathrm{~mol}, 20.0$ equiv), treated dropwise with triethylsilane ($137 \mathrm{ml}, 860 \mathrm{mmol}, 10.0$ equiv) over 3 h and stirred at $40^{\circ} \mathrm{C}$ for 1 d . $\mathrm{NaOH}(2 \mathrm{M} ; 1.5 \mathrm{l})$ was then added and the mixture extracted with EtOAc (3 x 500 ml). The combined organic extracts were concentrated under reduced pressure and the resulting residue stirred with $4 \% \mathrm{NaOH}-\mathrm{MeOH}(500 \mathrm{ml})$ for 1 h . The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{ml})$ and $\mathrm{HCl}(2 \mathrm{M} ; 500 \mathrm{ml})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 500 \mathrm{ml})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$, brine $(500 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure and chromatography ($60 \% \mathrm{Et}_{2} \mathrm{O}$-petrol) gave alcohol 3 ($27.0 \mathrm{~g}, 93 \%$) as a colourless oil; $\mathrm{R}_{f} 0.65\left(90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+12.7$ (c 1.3, CHCl_{3}); $v_{\text {max }}$ (film) 3517, 3289, $1612,1598,1440,1423,1320,1247,1157,1091,1037,813,665,549 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.59(2 \mathrm{H}$, d, J 8.0 Hz , ortho Ts), 7.22 (2 H , d, J 8.0 Hz , meta Ts), $6.90(2 \mathrm{H}, \mathrm{d}$, J 9.0 Hz , meta ArOMe), 6.72 (2H, d, J 9.0 Hz , ortho ArOMe), 4.86 ($1 \mathrm{H}, \mathrm{d}$, J $7.0 \mathrm{~Hz}, \mathrm{NHTs}$), 3.79 (3 H , s, OMe of ArOMe), 3.66 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,5.0 \mathrm{~Hz}, \mathrm{CHHOH}) 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0,5.0 \mathrm{~Hz}, \mathrm{CHHOH}) 3.41-3.39(1 \mathrm{H}, \mathrm{m}$, CHNHTs), 2.74 (1 H, dd, J 14.0, 7.0 Hz , CHHArOMe), 2.62 (1 H , dd, J 14.0, 8.0 Hz , CHHArOMe) 2.44 (3H, s, Me of Ts); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz}) 158.3,143.2,137.2,130.2,129.7,129.1,127.0,114.0,64.2$, 57.2, 55.2, 36.8, 21.6; m/z (CI) $353\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 336[\mathrm{M}+\mathrm{H}]^{+}, 189$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 336.1272$. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 336.1270\right)$.

(+)-(R)-(E)-Ethyl 5-(4-methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-enoate

To a solution of $(\mathrm{COCl})_{2}\left(470 \mu \mathrm{l}, 5.40 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($767 \mu \mathrm{l}, 10.8 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$. After $5 \mathrm{~min}(+)-(R)$-2-(toluene-4-sulfonamido)-3-(4-methoxyphenyl)propan-1-ol ($1.50 \mathrm{~g}, 4.48 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) was added and the solution stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min . $\mathrm{Et}_{3} \mathrm{~N}(3.14 \mathrm{ml}, 22.5 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was then added and the solution warmed to $0^{\circ} \mathrm{C}$ over 30 min and then to rt . After 10 min the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(50$ $\mathrm{ml})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$ and the combined organic extracts washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, brine $(100 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the crude aldehyde as a yellow oil. This was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and to it was added $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(7.83 \mathrm{~g}, 22.5 \mathrm{mmol}, 5.0$ equiv). After 12 h the reaction was
concentrated under reduced pressure and triturated with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ to precipitate triphenylphosphine oxide. Concentration of the filtrate under reduced pressure and chromatography ($50 \% \mathrm{EtOAc}-$ petrol) gave the $\operatorname{ester}\left(1.60 \mathrm{~g}, 86 \%\right.$) as a colourless oil; $\mathrm{R}_{f} 0.65$ ($50 \% \mathrm{EtOAc}-$ petrol); $[\alpha]_{\mathrm{D}}{ }^{20}+29.6\left(c 0.5, \mathrm{CHCl}_{3}\right.$); $v_{\text {max }}(f \mathrm{film}) 3274,2981,1716,1658,1612,1513,1444,1369,1322$, 1303, 1282, 1249, 1178, 1159, 1093, 1035, 973, 813, 667, 580; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), $7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), 6.88 (2H, d, J 8.5 Hz , meta ArOMe), 6.78 ($1 \mathrm{H}, \mathrm{d}, 16.0$ $\left.\mathrm{Hz}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 6.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}$, ortho ArOMe), $5.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.0,1.5 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{C} H \mathrm{CHNHTs}$), $4.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{~N} H \mathrm{Ts}\right.$), 4.18-4.07 ($3 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NTs}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.77 ($3 \mathrm{H}, \mathrm{s}$, OMe of ArOMe), 2.78 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0,5.0 \mathrm{~Hz}, \mathrm{CHHArOMe}$) 2.66 (2H, dd, J 14.0, 7.0 $\mathrm{Hz}, \mathrm{CH} H \mathrm{ArOMe}), 2.40\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of Ts), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(67.5 \mathrm{MHz}) 165.9$ $(\mathrm{C}=\mathrm{O}), 158.5$ (q Ar$), 146.3\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right),[143.5,137.2,127.1$ (q Ar)], [130.4, 129.7, 127.1, 122.4, $114.2\left(\mathrm{ArH}\right.$ and $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$], $60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $55.6(\mathrm{CHNHTs}), 55.3$ (OMe of ArOMe), $40.3\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $21.6(\mathrm{Me}$ of Ts$)$, $14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; m / z(\mathrm{CI}) 421\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 252$, 189 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 421.1786 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 421.1797).

(+)-(R)-(E)-5-(4-Methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-enol

To a solution of $(+)-(R)-(E)$-ethyl 5-(4-methoxyphenyl)-4-(toluene-4-sulfonamido)pent-2-enoate ($685 \mathrm{mg}, 1.70 \mathrm{mmol}, 1.0$ equiv), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H $(6.12 \mathrm{ml}$ of a 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.12 \mathrm{mmol}$, 3.6 equiv). After $1 \mathrm{~h} \mathrm{MeOH}(15 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ were added at $-50{ }^{\circ} \mathrm{C}$ and the mixture stirred for 10 min . The reaction mixture was then diluted with EtOAc (100 ml), poured onto $\mathrm{NaHCO}_{3}(25 \mathrm{~g})$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}(25 \mathrm{~g})$ and stirred for 30 min. Filtration, concentration under reduced pressure and chromatography (50% EtOAc-petrol) gave the allylic alcohol ($466 \mathrm{mg}, 76 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.37\left(50 \%\right.$ EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{20}+7.5$ (c 1.0, CHCl_{3}); $v_{\text {max }}$ (film) $3502,3284,2924,1612,1598,1511,1440,1421,1320,1247,1178,1157,1091$, 1035, 993, 970, 813; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), $7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), 6.95 (2H, d, J 8.5 Hz ortho ArOMe), 6.77 (2H, d, J 8.5 Hz, meta ArOMe), 5.64 (1H, dt, J 16.0, 4.0 $\mathrm{Hz}, \mathrm{CH}=\mathrm{CHCHNHTs}$), $5.52\left(1 \mathrm{H}\right.$, dd, J 16.0, $6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCHNHTs}$), 4.02-4.00 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$ and CHNHTs), 3.81 ($3 \mathrm{H}, \mathrm{s}$, OMe of ArOMe), 2.76 (2 H , dd, J 14.0, $5.0 \mathrm{~Hz}, \mathrm{CHHArOMe}$), 2.66 (2 H , dd, J 14.0, 7.0 Hz , CHHArOMe), $2.40\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of Ts); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz})[158.6,143.3,137.6$ (q $\mathrm{Ar})$], 131.3, $130.6\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right),[130.5,129.5(\mathrm{ArH})], 128.1(\mathrm{q} \mathrm{Ar}),[127.3,114.0(\mathrm{ArH})], 62.7$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 56.4$ (CHNHTs), 55.3 (OMe of ArOMe), 41.1 ($\mathrm{CH}_{2} \mathrm{ArOMe}$), 21.6 (Me of Ts); $m / z(\mathrm{CI})$ $379\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 189,150,132$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 379.1694 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 379.1692).

(R)-(E)-5-(4-Methoxyphenyl)-4-(4-methylbenzylamino)pent-2-enol (4)

To a solution of sodium ($823 \mathrm{mg}, 35.8 \mathrm{mmol}, 6.0$ equiv) dissolved in liquid ammonia (ca. 65 ml) at $-78{ }^{\circ} \mathrm{C}$ was added $(+)-(R)-(E)-5-(4-m e t h o x y p h e n y)-4-(t o l u e n e-4-s u l f o n a m i d o) p e n t-2-e n-1-o l(2.00$ $\mathrm{g}, 5.54 \mathrm{mmol}, 1.0$ equiv). After $30 \mathrm{~min} \mathrm{MeOH}(5 \mathrm{ml})$ was added dropwise until the colour was discharged. The ammonia was then allowed to evaporate and the remaining residue partitioned between $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $100 \mathrm{ml})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure to give $(R)-(E)-4$-amino-5-(4-methoxyphenyl)pent-2-en-1-ol $(1.1 \mathrm{~g}, 5.37 \mathrm{mmol})$ as a brown oil; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.13(2 \mathrm{H}$, d, J 8.5 Hz , ortho ArOMe), $6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}$, meta ArOMe), 5.78-5.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 4.12-4.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $3.80(3 \mathrm{H}, \mathrm{s}$, OMe of ArOMe), 3.63-3.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}_{2}$), 2.83-2.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HArOMe}$), $2.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5,8.5 \mathrm{~Hz}$, CHHArOMe). 4-Methylbenzaldehyde ($2.50 \mathrm{ml}, 21.2 \mathrm{mmol}, 4.0$ equiv), the crude primary amine ($1.10 \mathrm{~g}, 5.3 \mathrm{mmol}, 1.0$ equiv), $\mathrm{MeOH}(20 \mathrm{ml}), 4 \AA \mathrm{MS}(2 \mathrm{~g}), \mathrm{AcOH}(10 \mathrm{ml})$ and THF (20 ml) were stirred together for 1 h at room temperature. $\mathrm{NaCNBH}_{3}(1.64 \mathrm{~g}, 26.5 \mathrm{mmol}, 5.0$ equiv) was then added in portions over 3 h , after which time the reaction was filtered through celite and concentrated under reduced pressure. The residue was portioned between $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and NaOH $(2 \mathrm{M} ; 100 \mathrm{ml})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, brine $(100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded the amine $\mathbf{4}$ $(1.00 \mathrm{~g}, 60 \%)$ as a colourless oil; $\mathrm{R}_{f} 0.10\left(90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}{ }^{24}+40.0\left(c 0.1, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (film) 3305, 3004, 2919, 2834, 1612, 1511, 1456, 1230, 1248, 1178, 1095, 1036, $808 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300$ MHz); 7.13-7.05 (6H, m, ArMe, and ortho ArOMe), 6.84 (2H, d, J 9.0 Hz, meta ArOMe), 5.69-5.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), $4.14\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right.$), 3.81 ($3 \mathrm{H}, \mathrm{s}$, OMe of ArOMe), 3.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$ $\mathrm{Hz}, \mathrm{C} H H \mathrm{HarMe}), 3.55$ ($1 \mathrm{H}, \mathrm{d}$, J $14.0 \mathrm{~Hz}, \mathrm{CHHArMe}$), 3.31 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CHNHArMe}$), 2.77$2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArOMe}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 158.6,136.9,133.1,132.6$, $130.8,130.6,130.5,129.5,128.7,114.5,63.0,61.1,55.7,51.2,41.7,21.5 ; ~ m / z(\mathrm{CI}) 312[\mathrm{MH}]^{+}, 294$, 190, 122, 105 (Found: $[\mathrm{MH}]^{+}, 312.1955 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}$ requires [MH] ${ }^{+}$, 312.1964) (Found: C, 77.23; $\mathrm{H}, 8.13 ; \mathrm{N}, 4.45 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}$ requires $\left.\mathrm{C}, 77.14 ; \mathrm{H}, 8.10 ; \mathrm{N}, 4.50 \%\right)$.
(+)-(R)-(E)-5-(4-Methoxyphenyl)-4-\{(4-methylbenzyl)[(toluene-4-sulfonyl)acetyl]amino\}pent-2-enol

To a solution of amine $4(250 \mathrm{mg}, 0.804 \mathrm{mmol}, 1.0$ equiv) and tosylacetic acid ($342 \mathrm{mg}, 1.61 \mathrm{mmol}$, 2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was added $\operatorname{DCC}(350 \mathrm{mg}, 1.77 \mathrm{mmol}, 2.1$ equiv). The reaction was stirred at rt for 15 h and was then filtered and stirred in $4 \% \mathrm{NaOH}-\mathrm{MeOH}$ for 1 h . The mixture was then concentrated under reduced pressure and the residue partitioned between EtOAc (50 ml) and $\mathrm{HCl}(2 \mathrm{M} ; 50 \mathrm{ml})$. The aqueous phase was then extracted with EtOAc ($2 \times 50 \mathrm{ml}$) and the combined
organic extracts washed with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave $\quad(+)-(R)-(E)-5-(4-m e t h o x y p h e n y l)-4-\{(4-$ methylbenzyl)[(toluene-4-sulfonyl)acetyl]amino\}pent-2-enol ($370 \mathrm{mg}, 91 \%$) as a colourless oil; R_{f} $0.84\left(10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}+27.2\left(c 2.5, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) 3443,1642,1318 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ MHz) 7.71 (1.4 H, d, J 8.0 Hz , ortho Ts rotamer 1) $7.70(0.88 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts rotamer 2), 7.28 (1.12H, d, J 8.0 Hz, meta Ts rotamer 1), 7.28 (0.6 H , d, J 8.0 Hz , meta Ts rotamer 2), 7.26-7.09 $(2.88 \mathrm{H}, \mathrm{m}$, ortho ArMe rotamer 1 and rotamer 2 and meta ArOMe rotamer 2), 7.05-7.01 ($2 \mathrm{H}, \mathrm{m}$, ortho ArOMe rotamer 1 and rotamer 2), 6.95 (1.12 H , d, J 8.0 Hz , ortho ArMe), 6.82 ($0.88 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.0 Hz , meta ArOMe rotamer 2), $6.79(1.12 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}$, meta ArOMe, rotamer 1$) 5.85(0.44 \mathrm{H}$, dt, J 16.0, $4.5 \mathrm{~Hz} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$ rotamer 2), $5.74-5.69\left(1.56 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}\right.$ rotamer 1 and $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$ rotamer 1 and rotamer 2), 4.95-4.96 ($0.56 \mathrm{H}, \mathrm{CHN}$ rotamer 1), 4.80-4.83 (0.44 H , CHN rotamer 2), 4.55-4.66 ($1.56 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ts}$ rotamer 1 and CHHTs rotamer 2), $4.41(0.44 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0$ $\mathrm{Hz}, \mathrm{CH} H \mathrm{Ts}$ rotamer 2), 4.07-3.99 (3.12H, m, $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1 and $\mathrm{CH}_{2} \mathrm{OH}$), $3.87(0.44 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $14.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HArMe}$ rotamer 2), $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ of ArOMe), $3.71(0.44 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}$, CHHArMe rotamer 2), 3.00-2.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArOMe}$), 2.45 (1.68 H , s, Me of Ts rotamer 1), 2.42 $\left(1.32 \mathrm{H}, \mathrm{s}\right.$, Me of Ts rotamer 2), $2.33\left(1.32 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 2), $2.32(1.68 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$); 162.4, 158.7, 158.3, 145.2, 137.5, 136.6, 136.1, 135.2, 133.6, 133.6, 132.9, 130.4, 130.3, 129.7, 129.6, 129.3, 129.1, 128.9, 128.6, 127.8, 126.3, 114.3, 113.9, $62.9,62.8,61.6,60.9,59.8,59.5,55.3,49.5,46.1,37.7,21.8,21.1,21.0 ; m / z(C I) 525\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}$, $508[\mathrm{M}+\mathrm{H}]^{+}, 354,238$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 508.2152 . \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 508.2158$).
$(+)-(R)-(E)$-Carbonic acid 5-(4-methoxyphenyl)-4-[(4-methylbenzyl)-2-(toluene-4-sulfonyl)acetylaminolpent-2-enyl ester methyl ester (2)
To a solution of $\quad(+)-(R)-(E)-5-(4-m e t h o x y p h e n y l)-4-\{(4-m e t h y l b e n z y l)[$ (toluene-4sulfonyl)acetyl]amino $\}$ pent-2-enol ($600 \mathrm{mg}, 1.18 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine ($130 \mu \mathrm{l}, 2.40 \mathrm{mmol}, 2.0$ equiv), methyl chloroformate ($290 \mu \mathrm{l}, 2.40 \mathrm{mmol}, 2.0$ equiv) and DMAP ($14.4 \mathrm{mg}, 0.118 \mathrm{mmol}, 0.1$ equiv). The reaction was brought to rt for 1 h and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$. The organic phase washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ brine $(10 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography $(40 \%$ EtOAc-petrol) gave the carbonate $2(650 \mathrm{mg}, 96 \%)$ as a colourless oil; $\mathrm{R}_{f} 0.72$ (60% EtOAc-petrol); $[\alpha]_{\mathrm{D}}^{22}+24.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 1747,1647,1514,1443,1265,1155,793$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.69(1.32 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts rotamer 1), $7.65(0.68 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts rotamer 2), $7.29(1.32 \mathrm{H}$, d, J 8.0 Hz , meta Ts rotamer 1), $7.21(0.68 \mathrm{H}$, d, J 8.0 Hz , meta Ts rotamer 2), $7.10\left(0.68 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 2$)$, $7.05\left(2 \mathrm{H}\right.$, m, meta $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 2 and ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1) 7.00-6.96 (2H, m, meta ArOMe rotamer 1 and rotamer 2),
6.91 (1.32H, d, J 8.0 Hz, meta $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1), 6.78-6.73 (2 H , m, ortho ArOMe), 5.85-5.76 $\left(1.34 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$ rotamer 2), $5.59\left(0.66 \mathrm{H}\right.$, dt, J $16.0,6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$ rotamer 1), $4.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 4.61(0.66 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 1), 4.53-4.44 (3H, m, $\mathrm{CH}_{2} \mathrm{OCO}_{2} \mathrm{Me}, \mathrm{CH} H \mathrm{Ts}$ rotamer 1 and $\mathrm{C} H \mathrm{HTs}$ rotamer 2), $4.39(0.34 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 2), 4.10-4.02 ($1.32 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1$)$, 3.87 (0.34 H , d, J $14.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ rotamer 2), 3.71-3.64 (6.34H, m, OMe of ArOMe, $\mathrm{OCO}_{2} \mathrm{CH}_{3}$ and CHHArMe rotamer 2), 2.92-2.75 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArOMe}\right), 2.38(1.98 \mathrm{H}, \mathrm{s}$, Me of Ts rotamer 1$), 2.35(1.02 \mathrm{H}, \mathrm{s}$, Me of Ts rotamer 2), $2.29\left(1.02 \mathrm{H}, \mathrm{s}\right.$, Me of $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 2), 2.28 (1.98 H , s, Me of $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1); δ_{C} (100 $\mathrm{MHz}) 162.4\left(\mathrm{OCO}_{2} \mathrm{Me}\right.$ rotamer 1), $162.3\left(\mathrm{OCO}_{2} \mathrm{Me}\right.$ rotamer 2), $158.6\left(\mathrm{NCOCH}_{2}\right.$ rotamer 2), 158.3 $\left(\mathrm{NCOCH}_{2}\right.$ rotamer 1), $[145.1,145.0,137.3,136.4,136.0,135.7,134.9,133.4$, (q Ar)], 132.8 $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right.$ rotamer 2), $132.1\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right.$ rotamer 1), 130.5, 130.2, 129.7, 129.6, $129.5(\mathrm{ArH})$, 129.4 (q Ar$),[128.9,128.6,128.4,127.9(\mathrm{ArH})], 126.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right.$ rotamer 1), 126.6 $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right.$ rotamer 2), [126.3, 114.1, $\left.113.8(\mathrm{ArH})\right], 67.4\left(\mathrm{CH}_{2} \mathrm{OCO}_{2} \mathrm{Me}\right.$ rotamer 1), 67.3 $\left(\mathrm{CH}_{2} \mathrm{OCO}_{2} \mathrm{Me}\right.$ rotamer 2), $61.5\left(\mathrm{CHN}\right.$ rotamer 1), $60.7\left(\mathrm{CH}_{2} \mathrm{ArMe}\right.$ rotamer 1), 59.8 (CHN rotamer 2), $59.6\left(\mathrm{CH}_{2} \mathrm{ArMe}\right.$ rotamer 2), [55.1 and 54.8 , (OMe of ArOMe and $\left.\mathrm{OCO}_{2} \mathrm{CH}_{3}\right)$], $49.8\left(\mathrm{CH}_{2} \mathrm{Ts}\right.$ rotamer 1), $46.0\left(\mathrm{CH}_{2} \mathrm{Ts}\right.$ rotamer 2), $37.5\left(\mathrm{CH}_{2} \mathrm{ArOMe}\right), 21.7\left(\mathrm{Me}\right.$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1$), 21.6$ (Me of $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 2), 21.1 (Me of Ts rotamer 2), 21.0 (Me of Ts rotamer 2); m / z (CI) 583 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 566[\mathrm{M}+\mathrm{H}]^{+}, 490,447,412,284,240,196,133,124$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 583.2479$. $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 583.2478) (Found: C, 65.71; H, 6.32; N, 2.40. $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}$ requires C, 65.82; H, 6.24; N, 2.48\%).
($3 R, 4 S, 5 R$)-5-(4-Methoxybenzyl)-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (1) and ($3 S, 4 R, 5 R$)-5-(4-methoxybenzyl)-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (5)
To carbonate 2 ($500 \mathrm{mg}, 0.890 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(42 \mathrm{mg}, 0.046 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) and $\operatorname{tris}(2,4,6-$ trimethoxyphenyl)phosphine ($244 \mathrm{mg}, 0.458 \mathrm{mmol}, 0.5$ equiv) was added $\mathrm{MeCN}(10 \mathrm{ml})$ and the mixture stirred rapidly at rt . After 30 min the reaction mixture was concentrated under reduced pressure. Chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-petrol) gave an inseparable 5.6:1 mixture of γ lactam 1 and γ-lactam 5 ($380 \mathrm{mg}, 90 \%$) as a colourless oil; $\mathrm{R}_{f} 0.33$; $\mathrm{v}_{\max }$ (film) 2925, 1697, 1612, 1513, 1439, 1303, 1148, 813, $660 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts of 5), 7.84 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts of $\mathbf{1}$), $7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts of $\mathbf{1}), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ of $\mathbf{1}$), $7.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho ArMe of $\mathbf{5}$), $7.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}$, ortho Ar OMe of 5), $7.04\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, meta $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right)$, $6.94\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ of $\left.\mathbf{1}\right), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.0 Hz , meta ArOMe of $\mathbf{1}), 6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}$, meta ArOMe of $\mathbf{5}$), 6.78 (2H, d, J 9.0 Hz, ortho ArOMe of 1), 5.83 (1 H , ddd, J 17.0, 10.0, $9.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$ of $\mathbf{1}$), 5.41 (1 H , ddd, J 17.0, 11.0, 7.0
$\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$ of 5), $5.26\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0 \mathrm{~Hz}\right.$, trans $\mathrm{CH}_{2}=\mathrm{CH}$ of $\left.\mathbf{1}\right), 5.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}$, cis $\mathrm{CH}_{2}=\mathrm{CH}$ of $\mathbf{1}$), $4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HN}$ of $\mathbf{5}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HN}$ of $\mathbf{1}), 4.86(1 \mathrm{H}$, d J 17.0, trans $\mathrm{CH}=\mathrm{CH}_{2}$ of 5), $4.72\left(1 \mathrm{H}, \mathrm{d}, 10.0 \mathrm{~Hz}\right.$, cis $\mathrm{CH}=\mathrm{CH}_{2}$ of $\mathbf{5}$), 4.01-4.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ of 1), $4.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{~N}$ of 5), $3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.0 \mathrm{~Hz}$, CHTs of $\mathbf{5}), 3.81(3 \mathrm{H}, \mathrm{s}$, OMe of ArOMe of 5), $3.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.5 \mathrm{~Hz}$, CHTs of 1), 3.77 ($3 \mathrm{H}, \mathrm{s}$, OMe of ArOMe of 1), 3.70 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{~N}$ of $\mathbf{1}$) $3.53-3.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right.$ of 1$), 3.39-3.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right.$ and CHN of 5), 3.17 (1 H , dd, J 14.0 , 5.0 Hz , CHHArOMe of 5), $2.80(1 \mathrm{H}$, dd, J $14.0,10.0 \mathrm{~Hz}$, CHHArOMe of 5), 2.79 (1 H , dd, J 14.0, 6.0 Hz CHHArOMe of $\mathbf{1}$), 2.72 (1 H , dd, J $14.0,8.0 \mathrm{~Hz}$, CHHArOMe of $\mathbf{1}$), $2.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts of $\mathbf{5}), 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts of $\mathbf{1}), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of $\mathbf{5}$), $2.33\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\mathrm{CH}_{2} \mathrm{ArMe}$ of $\left.\mathbf{1}\right)$; $\delta_{\mathrm{c}}(75 \mathrm{MHz}) 165.6(\mathrm{C}=\mathrm{O}$, of $\mathbf{5})$, $164.7(\mathrm{C}=\mathrm{O}$, of $\mathbf{1}$), [158.5, 158.4, 145.2 (2 signals) (q Ar of $\mathbf{1}$ and 5)], [137.6 137.3 (q Ar of $\mathbf{1}$ and 5)], 137.0 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of $\left.\mathbf{5}\right)$, 135.0 (2 signals) (q Ar of $\mathbf{1}$ and $\mathbf{5}$), $133.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of $\left.\mathbf{1}\right)$, [132.5, 132.2, 130.4, 130.3 (q Ar of 1 and 5)], [129.7, 129.6, 129.5 (2 signals), 129.4, 129.3, 128.9, 128.2, 128.0, 127.7 (ArH of $\mathbf{1}$ and 5)], $119.8\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of $\left.\mathbf{1}\right), 116.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of $\left.\mathbf{5}\right)$, [114.1, $114.0(\mathrm{ArH}$ of $\mathbf{1}$ and $\mathbf{5})$], 70.4 (CHTs of $\mathbf{1}$), 71.3 (CHTs of 5), 62.4 (CHN of 5), 59.5 (CHN of $\mathbf{1}$), $55.3\left(\mathrm{OMe}^{2} \mathrm{CH}_{2} \mathrm{ArOMe}\right.$ of $\mathbf{1}$ and $\mathbf{5}), 44.9\left(\mathrm{CH}_{2} \mathrm{~N}\right.$ of $\mathbf{1}$ and 5), $42.1\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right.$ of $\left.\mathbf{1}\right), 40.3\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right.$ of $\left.\mathbf{5}\right), 38.0$ $\left(\mathrm{CH}_{2} \mathrm{ArOMe}\right.$ of $\left.\mathbf{5}\right)$, $34.2\left(\mathrm{CH}_{2} \mathrm{ArOMe}\right.$ of $\mathbf{1}$), 21.8 (Me of Ts of $\mathbf{1}$ and $\mathbf{5}$), $21.1\left(\mathrm{Me}\right.$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of $\mathbf{1}$ and 5); $m / z(\mathrm{CI}) 507\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 490[\mathrm{M}+\mathrm{H}]^{+}, 436,353,336,59,53,35$ (Found: $[\mathrm{MH}]^{+}, 490.2071$. $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{NS}$ requires $[\mathrm{MH}]^{+}, 490.2052$).

(S)-2-(Toluene-4-sulfonamido)propionic acid

To a rapidly stirred solution of L-alanine ($15.0 \mathrm{~g}, 170 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{TsCl}(42.0 \mathrm{~g}, 220 \mathrm{mmol}$, 1.3 equiv) in EtOAc (400 ml) and $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{ml})$ was added $\mathrm{NaOH}(230 \mathrm{ml}$ of a 2 M aqueous solution, $460 \mathrm{mmol}, 2.7$ equiv) dropwise over 3 h . After a further 1 h the aqueous phase was separated, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{ml})$, acidified to pH 1 with concentrated $\mathrm{HCl}(20 \mathrm{ml})$ and extracted with EtOAc ($3 \times 250 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to yield (S)-2-(toluene-4-sulfonamido)propionic acid (30.0 g, 73%) as a colourless solid; mp $129-131{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), 7.32 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), 5.32 ($1 \mathrm{H}, \mathrm{d}$, J $10.0 \mathrm{~Hz}, \mathrm{NH}$), 4.05-4.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHNHTs}$), 2.43 (3H, s, Me of Ts), $1.43\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ; m / z(\mathrm{CI}) 303,261\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 240,189,174,132$, 86. In agreement with published data. ${ }^{2}$

(S)-3-Methyl-2-(toluene-4-sulfonamido)butyric acid

To a rapidly stirred solution of L-valine ($15.0 \mathrm{~g}, 130 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{TsCl}(32.0 \mathrm{~g}, 170 \mathrm{mmol}$, 1.3 equiv) in EtOAc (276 ml) and $\mathrm{H}_{2} \mathrm{O}(82 \mathrm{ml})$ was added $\mathrm{NaOH}(175 \mathrm{ml}$ of a 2 M aqueous solution,

350 mmol , 2.7 equiv) dropwise over 3 h . After a further 1 h the aqueous phase was separated, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{ml})$, acidified to pH 1 with concentrated $\mathrm{HCl}(20 \mathrm{ml})$ and extracted with EtOAc ($3 \times 250 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to yield (S)-3-methyl-2-(toluene-4-sulfonamido)butyric acid ($15.0 \mathrm{~g}, 38 \%$) as a white solid; mp 149-151 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), $7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.0 Hz , meta Ts), 5.14 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, \mathrm{NH}$), 3.81 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{CHNHTs}$), 2.43 ($3 \mathrm{H}, \mathrm{s}$, Me of Ts), 2.15-2.09 (1H, m, CH(CH3 $)_{2}$), $0.98\left(3 H, d, J 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $m / z(\mathrm{CI}) 271\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 189,1174,118,106,72$. In agreement with published data. ${ }^{3}$

(S)-4-Methyl-2-(toluene-4-sulfonamido)pentanoic acid

To a rapidly stirred solution of L-leucine ($20.0 \mathrm{~g}, 150 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{TsCl}(36.4 \mathrm{~g}, 0.19 \mathrm{~mol}$, 1.3 equiv) in $\mathrm{EtOAc}(300 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ was added $\mathrm{NaOH}(205 \mathrm{ml}$ of a 2 M aqueous solution, $410 \mathrm{mmol}, 2.7$ equiv) dropwise over 3 h . After a further 1 h the aqueous phase was separated, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{ml})$, acidified to pH 1 with concentrated $\mathrm{HCl}(20 \mathrm{ml})$ and extracted with EtOAc ($3 \times 250 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to yield (S)-4-methyl-2-(toluene-4-sulfonamido)pentanoic acid ($32.0 \mathrm{~g}, 73 \%$) as an odorous, off-white solid; mp $115-116^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.0 Hz , ortho Ts), 7.31 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), 5.07 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, \mathrm{NH}$), 3.96-3.91 ($1 \mathrm{H}, \mathrm{m}$, CHNHTs), 2.44 ($3 \mathrm{H}, \mathrm{s}$, Me of Ts), 1.81-1.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 1.56-1.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{i} \mathrm{Pr}$), 0.92 ($\left.3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; m / z(\mathrm{CI}) 303\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 189$, 86. In agreement with published data. ${ }^{4}$

2-(Toluene-4-sulfonamido)hexanoic acid

To a rapidly stirred solution of DL-norleucine ($15.0 \mathrm{~g}, 110 \mathrm{~mol}, 1.0$ equiv) and $\mathrm{TsCl}(27.3 \mathrm{~g}, 140$ mol, 1.3 equiv) in EtOAc (400 ml) and $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{ml})$ was added $\mathrm{NaOH}(230 \mathrm{ml}$ of a 2 M aqueous solution, $460 \mathrm{mmol}, 2.7$ equiv) dropwise over 3 h . After a further 1 h the aqueous phase was separated, washed with $\mathrm{Et}_{2} \mathrm{O}$, acidified to pH 1 with concentrated $\mathrm{HCl}(20 \mathrm{ml})$ and extracted with EtOAc ($3 \times 250 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to yield acid 2-(toluene-4-sulfonamido)hexanoic acid ($30.2 \mathrm{~g}, 73 \%$) as a colourless solid; mp $124^{\circ} \mathrm{C}$ (EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$ DMSO) $12.57\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 8.03(1 \mathrm{H}, \mathrm{d}$, J 9.0 Hz , NH), 7.66 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), 7.36 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), 3.68-3.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHNHTs}$), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts), 1.54-1.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}$), 1.13-1.08 ($\left.4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right), 0.75-0.71(3 \mathrm{H}, \mathrm{m}$, Me of $n \mathrm{Bu}) ; m / z(\mathrm{CI}) 303\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 206,149,103$, 86. In agreement with published data. ${ }^{5}$

(S)-2-(Toluene-4-sulfonamido)propan-1-ol

To a solution of (S)-2-(toluene-4-sulfonamido)propionic acid ($12.0 \mathrm{~g}, 49.0 \mathrm{mmol}, 1.0$ equiv) in THF $(192 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(147 \mathrm{ml}$ of a 1 M solution in THF, $147 \mathrm{mmol}, 3.0$ equiv), the reaction brought slowly to rt and then heated to reflux. After 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a $50 \% \mathrm{sat}$. aq. solution) and stirred for 1 h . The solution was extracted with EtOAc ($3 \times 300 \mathrm{ml}$) and the combined organic extracts washed with brine $(500 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure yielded (S)-2-(toluene-4-sulfonamido)propan-1-ol (10.9 g, 97\%) as a colourless solid; mp $128-130{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{f}$ $0.85\left(50 \%\right.$ EtOAc-petrol); $\delta_{H}(300 \mathrm{MHz}) 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), $7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), $4.92(1 \mathrm{H}, \mathrm{d} \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{NH}), 3.60-3.36\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right.$ and CHNHTs$), 2.45(3 \mathrm{H}, \mathrm{s}$, Me of $\mathrm{Ts}), 2.16(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CHCH}_{3}\right) ; m / z(\mathrm{CI}) 247\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 230[\mathrm{M}+\mathrm{H}]^{+}, 189,108,76,44$. In agreement with published data. ${ }^{6}$

(S)-3-Methyl-2-(toluene-4-sulfonamido)butan-1-ol

To a solution of (S)-3-methyl-2-(toluene-4-sulfonamido)butyric acid ($12.0 \mathrm{~g}, 44.0 \mathrm{mmol}, 1.0$ equiv) in THF (192 ml) at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(132 \mathrm{ml}$ of a 1 M solution in THF, $132 \mathrm{mmol}, 3.0$ equiv), the reaction brought slowly to rt and then heated to reflux. After 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a $50 \% \mathrm{sat}$. aq. solution) and stirred for 1 h . The solution was extracted with EtOAc ($3 \times 300 \mathrm{ml}$) and the combined organic extracts washed with brine $(500 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure yielded (S)-3-methyl-2-(toluene-4-sulfonamido)butan-1-ol (11.5 g, 99\%) as a colourless solid; mp $74-75{ }^{\circ} \mathrm{C}$ $\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{f} 0.70(50 \% \mathrm{EtOAc}-\mathrm{petrol}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho TS$), 7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.0 Hz , meta Ts), $4.81(1 \mathrm{H}$, d J $8.0 \mathrm{~Hz}, \mathrm{NH}), 3.59-3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.08-3.02(1 \mathrm{H}, \mathrm{m}$, CHNHTs), 2.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts), 2.06-2.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), 1.83-1.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 0.81 $\left(3 \mathrm{H}, \mathrm{d}\right.$ J $\left.3.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}\right.$ J $\left.3.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) . m / z(\mathrm{CI}) 275\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 258[\mathrm{M}+\mathrm{H}]^{+}$, 243. In agreement with published data. ${ }^{7}$

(S)-4-Methyl-2-(4-methyl benzenesulfonamido)pentan-1-ol

To a solution of (S)-4-methyl-2-(toluene-4-sulfonamido)pentanoic acid $12.0 \mathrm{~g}, 31.0 \mathrm{mmol}, 1.0$ equiv) in THF (192 ml) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(93 \mathrm{ml}$ of a 1 M solution in THF, $93.0 \mathrm{mmol}, 3.0$ equiv), the reaction brought slowly to rt and then heated to reflux. After 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and stirred for 1 h . The solution was extracted with EtOAc ($3 \times 300 \mathrm{ml}$) and the combined organic extracts washed with brine (500 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure yielded alcohol $\mathbf{2 1 4 c}(11.0 \mathrm{~g}, 95 \%)$ as a colourless solid; mp $98-100{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{f} 0.74$ (50% EtOAc-petrol); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho TS$), 7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta

2-(Toluene-4-sulfonamido)hexan-1-ol

A solution of 2-(toluene-4-sulfonamido)hexanoic acid ($10.0 \mathrm{~g}, 35.1 \mathrm{mmol}, 1.0$ equiv) in THF (50 $\mathrm{ml})$ was added to a suspension of $\mathrm{LiAlH}_{4}\left(4.00 \mathrm{~g}, 105 \mathrm{mmol}, 3.0\right.$ equiv) in THF $(200 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was warmed slowly to rt and then heated to reflux. After 12 h the reaction was quenched with EtOAc (50 ml) and poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and stirred for 1 h . The solution was extracted with EtOAc ($3 \times 300 \mathrm{ml}$) and the combined organic extracts washed with brine (500 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure yielded 2-(toluene-4-sulfonamido)hexan-1-ol ($9.50 \mathrm{~g}, 99 \%$) as a colourless crystalline solid; mp $61-62{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ petrol $) ; \mathrm{R}_{f} 0.35$ ($50 \% \mathrm{EtOAc}$-petrol); $v_{\text {max }}$ (film) 3498 , 3278, 2954, 2872, 1452, 1323, 1159, 1092, 816, $665 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), $7.32\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, meta Ts), 5.13-5.06 (1H, m, NH), 3.60-3.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 3.24-3.22 (1 H , $\mathrm{m}, \mathrm{C} H \mathrm{NHTs}), 2.44(4 \mathrm{H}, \mathrm{br} \mathrm{s}$, Me of Ts and OH$), 1.44-1.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.17-1.02(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 0.76\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 143.6,137.6,129.7,127.2$, 64.9, 55.7, 31.4, 27.7, 22.3, 21.6, 13.8; m/z (CI) $289\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 272[\mathrm{M}+\mathrm{H}]^{+}, 240,189,118,86$ (Found: C, 57.52; H, 7.59; N, 5.19. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 57.54 ; \mathrm{H}, 7.80 ; \mathrm{N}, 5.16 \%$).

(-)-(S)-(E)-Ethyl 4-(toluene-4-sulfonamido)pent-2-enoate

To a solution of oxalyl chloride (4.50 ml , 52.1 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($7.40 \mathrm{ml}, 104 \mathrm{mmol}$, 2.4 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml). After 5 min a solution of (S)-2-(toluene-4-sulfonamido)propan-1-ol ($10.0 \mathrm{~g}, 43.4 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 ml) was added dropwise with stirring. After a further $45 \mathrm{~min} \mathrm{Et}_{3} \mathrm{~N}$ ($30.2 \mathrm{ml}, 217 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) was added dropwise and the solution brought slowly to rt. After a further 30 minutes the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(400$ $\mathrm{ml})$ and the aqueous layer re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The combined organic extracts were then washed with acetic acid $(1 \mathrm{M} ; 100 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$, brine $(400 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ and $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(53.9 \mathrm{~g}, 154.8 \mathrm{mmol}$, 4 equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ to remove triphenylphosphine oxide. Chromatography ($30 \% \mathrm{EtOAc}$-petrol) gave (-)-(S)-(E)-ethyl 4-(toluene-4-sulfonamido)pent-2-enoate (8.73 g, 67\%) as a colourless oil; R_{f} $0.33\left(30 \% \mathrm{EtOAc}\right.$-petrol); $[\alpha]_{\mathrm{D}}{ }^{16}-60.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (film) 1716, 1659, 1369, 1305, 1156, 1093, $977,815,666 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho TS$), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), $6.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.0,6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0 \mathrm{~Hz} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 4.89$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}, \mathrm{NH}$), $4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.06(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{NHTs}), 2.43(3 \mathrm{H}$, s , Me of Ts), $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 172.5$, $[\mathrm{M}+\mathrm{H}]^{+}, 189,144[\mathrm{MH}-\mathrm{Ts}]^{+}$, 52 (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 298.1118. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 298.1113) (Found: C, 56.72; H, 6.31; N, 4.75. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 56.55,6.44,4.71 \%$).

(-)-(S)-(E)-Ethyl 5-methyl-4-(toluene-4-sulfonamido)hex-2-enoate

To a solution of oxalyl chloride (4.10 ml , 46.4 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($6.60 \mathrm{ml}, 92.9 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. After 5 min a solution of (S)-3-methyl-2-(toluene-4-sulfonamido)butan-1-ol ($10.0 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 ml) was added dropwise with stirring. After a further $45 \mathrm{~min} \mathrm{Et}_{3} \mathrm{~N}\left(27.0 \mathrm{ml}\right.$, $193 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{ml})$ was added dropwise and the solution brought slowly to rt . After a further 30 minutes the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(400$ $\mathrm{ml})$ and the aqueous layer re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The combined organic extracts were then washed with acetic acid $(1 \mathrm{M} ; 100 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$, brine $(400 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ and $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(53.9 \mathrm{~g}, 154 \mathrm{mmol}, 4.0$ equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ to remove triphenylphosphine oxide. Chromatography ($30 \% \mathrm{EtOAc}$-petrol) gave (-)-(S)-(E)-ethyl 5-methyl-4-(toluene-4-sulfonamido)hex-2-enoate (11.2 g, 88\%) as a colourless crystalline solid; $\mathrm{mp} 88-90^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{f} 0.50\left(30 \% \mathrm{EtOAc}-\right.$ petrol); $[\alpha]_{\mathrm{D}}{ }^{22}-24.1$ (c 1.0, CHCl_{3}); $v_{\max }$ (film) 3279, 2966, 1719, 1657, 1465, 1326, 1183, 1093, 1039, 984, $667 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300$ MHz) 7.74 (2H, d, J 8.0 Hz , ortho Ts), 7.28 (2H, d, J 8.0 Hz , meta Ts), 6.59 (1H, dd, J 16.0, 7.0 Hz , $\mathrm{C}=\mathrm{CHCH}), 5.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0 \mathrm{~Hz}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 5.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{NH}), 4.13(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHNHTs}), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts), $1.84-1.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ $1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.86\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 165.7,145.2,143.5$, 137.7, 129.6, 127.2, 122.8, 60.5, 60.2, 32.7, 21.5, 18.5, 18.1, 14.2; m/z (CI) $343\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, 189$ (Found: C, 59.23; H, 7.25; N, 4.34. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 59.05 ; \mathrm{H}, 7.12 ; \mathrm{N}, 4.30 \%$).

(-)-(S)-(E)-Ethyl 6-methyl-4-(toluene-4-sulfonamido)hept-2-enoate

To a solution of oxalyl chloride (2.50 ml , 29.0 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($4.10 \mathrm{ml}, 58.1 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{ml})$. After 5 min a solution of (S)-4-methyl-2-(toluene-4-sulfonamido)pentan-1-ol $\left(9.00 \mathrm{~g}, 24.2 \mathrm{mmol}\right.$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(47 \mathrm{ml})$ was added dropwise with stirring. After a further $45 \mathrm{~min} \mathrm{Et}_{3} \mathrm{~N}(16.9 \mathrm{ml}, 121 \mathrm{mmol}, 5.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(19 \mathrm{ml})$ was added dropwise and the solution brought slowly to rt . After a further 30 minutes the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(400$ $\mathrm{ml})$ and the aqueous layer re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The combined organic extracts were
then washed with acetic acid $(1 \mathrm{M} ; 100 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$, brine $(400 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ and $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(33.7 \mathrm{~g}, 96.8 \mathrm{mmol}, 4.0$ equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ to remove triphenylphosphine oxide. Chromatography ($30 \% \mathrm{EtOAc}-\mathrm{petrol}$) gave (-)-(S)-(E)-ethyl 6-methyl-4-(toluene-4-sulfonamido)hept-2-enoate ($8.40 \mathrm{~g}, 70 \%$) as a colourless oil; $\mathrm{R}_{f} 0.52$ ($30 \% \mathrm{EtOAc}$-petrol); $[\alpha]_{\mathrm{D}}{ }^{22}-44.0$ (c 1.0, CHCl_{3}); $v_{\text {max }}$ (film) 3279, 2958, $1713,1659,1369,1284,1094,813,666 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), 7.27 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts), 6.55 (1 H , dd J, $16.0,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}$), 5.71 (1 H , d, J 16.0 Hz , $\mathrm{CH}=\mathrm{CHCH}), 5.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}, \mathrm{NH}), 4.11\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.91(1 \mathrm{H}$, quintet, J 7.5 $\mathrm{Hz}, \mathrm{C} H \mathrm{NHTs}), 2.39\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of Ts), $1.57\left(1 \mathrm{H}\right.$, sextet, J $\left.7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ 1.39-1.21 ($5 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}{ }^{i} \mathrm{Pr}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.75\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz}) 165.9,146.9,143.4,137.7,129.6,127.2,121.6,60.4,53.0,44.0,24.2,22.4,21.9,21.5,14.2$; $m / z(\mathrm{CI}) 357\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 340[\mathrm{M}+\mathrm{H}]^{+}, 189$ (Found: C, $60.22 ; \mathrm{H}, 7.19 ; \mathrm{N}, 4.14 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 60.15; H, 7.42; N, 4.14\%).

(E)-Ethyl (toluene-4-sulfonamido)oct-2-enoate

To a solution of oxalyl chloride (1.94 ml , 22.2 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DMSO ($3.15 \mathrm{ml}, 44.4 \mathrm{mmol}$, 2.4 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$. After 5 min a solution of 2-(toluene-4-sulfonamido)hexan-1-ol ($5.00 \mathrm{~g}, 18.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ was added dropwise with stirring. After a further $45 \mathrm{~min} \mathrm{Et}_{3} \mathrm{~N}\left(12.9 \mathrm{ml}, 92.5 \mathrm{mmol}, 5.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml) was added dropwise and the solution brought slowly to rt. After a further 30 minutes the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(200$ $\mathrm{ml})$ and the aqueous layer re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. The combined organic extracts are then washed with acetic acid $(1 \mathrm{M} ; 50 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$, brine $(200 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the crude aldehyde as an orange oil that was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ and $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(25.8 \mathrm{~g}, 74.0 \mathrm{mmol}, 4.0$ equiv) added at rt with stirring. After 12 h the mixture was concentrated under reduced pressure and triturated with $\mathrm{Et}_{2} \mathrm{O}(125 \mathrm{ml})$ to remove triphenylphosphine oxide. Chromatography ($30 \% \mathrm{EtOAc}$-petrol) gave (E)-ethyl (toluene-4-sulfonamido)oct-2-enoate ($5.00 \mathrm{~g}, 80 \%$) a colourless oil; $\mathrm{R}_{f} 0.30$ (30% EtOAc-petrol); $v_{\max }($ film $) 2958,1699,1657,1456,1325,1159 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.0 Hz, ortho Ts), 7.23 (2 H , d, J 8.0 Hz , meta Ts), 6.57 (1 H , dd J $16.0,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}$), 5.74-5.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}$ and NH), $4.08\left(1 \mathrm{H}\right.$, q J $\left.7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.83(1 \mathrm{H}, \mathrm{t} \mathrm{J} 7.0 \mathrm{~Hz}$, CHNHTs), $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts), $1.45-1.43(2 \mathrm{H}, \mathrm{m} \mathrm{CHCH} 2) 1.23-1.12\left(7 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.80-0.73\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 166.0,147.0,143.3,137.8,129.6,128.3$,

(-)-(S)-(E)-4-(Toluene-4-sulfonamide)pent-2-en-1-ol

DIBAL-H (91.4 ml of a 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 91.4 \mathrm{mmol}$, 3.6 equiv) was added dropwise to a solution of (-)-(S)-(E)-ethyl 4-(toluene-4-sulfonamido)pent-2-enoate ($8.00 \mathrm{~g}, 25.4 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ with vigorous stirring. After 15 min the mixture was allowed to warm to rt . After a further 2 h the reaction was quenched with EtOAc (20 ml) and poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc ($2 \times 300 \mathrm{ml}$) and the combined organic extracts washed with brine (500 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave alcohol $(-)-(S)-(E)$-4-(toluene-4-sulfonamido)pent-2-en-ol ($6.01 \mathrm{~g}, 86 \%$) as an off-white crystalline solid; $\mathrm{mp} 64-65^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{f} 0.25(50 \% \mathrm{EtOAc}-$ petrol $) ;[\alpha]_{\mathrm{D}}{ }^{23}-40.0(c 1.0$, CHCl_{3}); $v_{\text {max }}$ (film) $3479,3273,1450,1313,1147,1093,974,816,665 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.77$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts$), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts$)$, $5.66(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5,5.0 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.51\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 4.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{NH}), 4.00(\mathrm{br}$ s, $\mathrm{CH}_{2} \mathrm{OH}$), 3.91 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{NHTs}$), 2.44 ($3 \mathrm{H}, \mathrm{s}$, Me of Ts), 1.18 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 143.4,138.0,132.1,130.1,129.6$, 127.3, 62.7, 50.9, 21.7, 21.5; m/z (CI) 273 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 189,52$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 273.1297 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 273.1273$) (Found: C, 56.41; H, 6.57; N, 5.47. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 56.45 ; \mathrm{H}, 6.71 ; \mathrm{N}, 5.49 \%$).

(-)-(S)-(E)-5-Methyl-4-(toluene-4-sulfonamido)hex-2-en-1-ol

DIBAL-H (94.3 ml of a 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94.3 \mathrm{mmol}$, 3.6 equiv) was added dropwise to a solution of (-)-(S)-(E)-ethyl 5-methyl-4-(toluene-4-sulfonamido)hex-2-enoate ($8.50 \mathrm{~g}, 26.2 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ with vigorous stirring. After 15 min the mixture was allowed to warm to rt . After a further 2 h the reaction was quenched with $\operatorname{EtOAc}(20 \mathrm{ml})$, poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc (2 x 300 ml) and the combined organic extracts washed with brine $(500 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave alcohol (-)-(S)-(E)-5-methyl-4-(toluene-4-sulfonamido)hex-2-en-1-ol ($6.20 \mathrm{~g}, 96 \%$) as a colourless oil; $\mathrm{R}_{f} 0.30\left(50 \%\right.$ EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{22}$ -28.0 (c 1.0, CHCl_{3}); $v_{\text {max }}$ (film) 3569, 3126, 2964, 2873, 2360, 1452, 1396, 1317, 1153, 1092, 999 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts$), 7.30-7.28(2 \mathrm{H}, \mathrm{m}$, meta Ts$)$, $5.49(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $15.5,5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2}$), $5.38\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}, \mathrm{NH})$,
3.94-3.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $3.59(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHNHTs}), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts), 1.76-1.70(1H, $\left.\mathrm{m}, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 143.3$, 138.1, 131.8, 129.5, 128.9, 127.4, 62.7, 61.0, 32.8, 21.5, 18.3 (2 signals); $m / z(\mathrm{CI}) 301\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 283,266,264,202,189,112$, 110, 72 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 301.1589. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 301.1588) (Found: C , 59.57; H, 7.36; N, 4.70. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, $59.34 ; \mathrm{H}, 7.47$; $\mathrm{N}, 4.94 \%$).

(-)-(S)-(E)-6-Methyl-4-(toluene-4-sulfonamido)hept-2-en-1-ol

DIBAL-H (74.6 ml of a 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 74.6 \mathrm{mmol}$, 3.6 equiv) was added dropwise to a solution of $(-)-(S)-(E)$-ethyl 6-methyl-4-(toluene-4-sulfonamido)hept-2-enoate ($7.40 \mathrm{~g}, 20.7 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ with vigorous stirring. After 15 min the mixture was allowed to warm to rt. After a further 2 h the reaction was quenched with EtOAc (20 ml), poured into Rochelle's salt (500 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc (2 x 300 ml) and the combined organic extracts washed with brine (500 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave (-)-(S)-(E)-6-methyl-4-(toluene-4-sulfonamido)hept-2enol ($7.3 \mathrm{~g}, 98 \%$) as a colourless crystalline solid; mp 101-102 ${ }^{\circ} \mathrm{C}$ (EtOAc); $\mathrm{R}_{f} 0.45$ (50\% EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{22}-8.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(f i l m) 3460,3180,2954,2362,1319,1146,1090$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts$), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts $)$, 5.53-5.61 (1 H , dt, J 15.0, $5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2}$); $5.35(1 \mathrm{H}$, dd, J $15.0,7.0 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{CH}), 4.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, NH), 3.93-3.89 ($2 \mathrm{H}, \mathrm{m} \mathrm{CH} 2 \mathrm{OH}$), 3.84 (1 H , t, J $8.0 \mathrm{~Hz}, \mathrm{CHNHTs}$), 2.44 ($3 \mathrm{H}, \mathrm{s}$, Me of Ts), 1.64-1.56 $\left(1 \mathrm{H}, \mathrm{m} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.54-1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{i} \mathrm{Pr}\right), 0.79\left(6 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz})$; $142.9,137.9,131.2,130.7,129.2,127.4,62.6,53.9,44.9,24.2,22.6,22.4,20.9 ; m / z$ (CI) 315 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 189,126,124,86$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 315.1749 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 315.1742) (Found: C, $60.58 ; \mathrm{H}, 7.87$; N, 4.68. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $60.58 ; \mathrm{H}, 7.79 ; \mathrm{N}, 4.71 \%$).

(E)-4-(Toluene-4-sulfonamido)oct-2-en-1-ol

DIBAL-H (39.2 ml of a 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, 39.2 mmol , 3.6 equiv) was added dropwise to a solution of (E)-ethyl 4-(toluene-4-sulfonamido)oct-2-enoate ($3.70 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ with vigorous stirring. After 15 h the mixture was allowed to warm to rt . After a further 2 h the reaction was quenched with $\operatorname{EtOAc}(10 \mathrm{ml})$ and poured into Rochelle's salt (250 ml of a 50% saturated aqueous solution) and the resulting two phase mixture stirred until both layers became clear (1 h). The aqueous layer was extracted with EtOAc ($2 \times 150 \mathrm{ml}$) and the combined organic extracts washed with brine (200 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave (E)-4-(toluene-4-sulfonamido)oct-2-enol ($3.21 \mathrm{~g}, 99 \%$) as an oil, which upon trituation with $\mathrm{Et}_{2} \mathrm{O}$ yielded a white powder; mp $55-59{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{f} 0.20(50 \% \mathrm{EtOAc}-$ petrol $)$;
$v_{\text {max }}$ (film) 3055, 1987, 2306, 1421, 1265, 1160, $897,737 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), $7.31\left(2 \mathrm{H}, \mathrm{d}, 8.0 \mathrm{~Hz}\right.$, meta Ts), $5.58\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 16.0,5.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $16.0,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}$), $4.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.96\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0$ $\mathrm{Hz}, \mathrm{C} H \mathrm{NHTs}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts), $1.48-1.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHH}\right), 1.22(5 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHH}\right), 0.85-0.83\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 143.3,138.2,131.0,130.9,129.5,127.4$, 62.7, 55.5, 35.4, 27.5, 22.3, 21.5, 13.9; m / z (CI) $315\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 315.1735$. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 315.1742) (Found: C , $60.60 ; \mathrm{H}, 7.82 ; \mathrm{N}, 4.52 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 60.58 ; $\mathrm{H}, 7.82$; $\mathrm{N}, 4.71 \%$).

$(+)-(S)-(E)-4-(4-M e t h y l b e n z y l a m i n o) p e n t-2-e n-1-o l(6 a)$

Onto a solution of $(-)-(S)-(E)-4$-(toluene-4-sulfonamide)pent-2-en-1-ol ($1.77 \mathrm{~g}, 6.94 \mathrm{mmol}, 1.0$ equiv), in THF (2 ml) at $-78^{\circ} \mathrm{C}$ was condensed $\mathrm{NH}_{3}(\mathrm{l})(\sim 50 \mathrm{ml})$ and freshly-cut sodium metal (1.11 $\mathrm{g}, 48.3 \mathrm{mmol}, 7.0$ equiv) added. After the sodium had dissolved (10 min) the reaction was quenched with $\mathrm{MeOH}(10 \mathrm{ml})$ until decolourisation was observed. $\mathrm{The}^{\mathrm{NH}_{3}(1)}$ was then allowed to evaporate and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the aqueous phase extracted with $10: 8: 1 \mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}(3 \mathrm{x}$ $10 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude amine (540 mg); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.67-5.55(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 4.04-3.94$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 3.43-3.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{NH}_{2}$), $1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 136.8$, 128.6, $62.5,48.6,24.8$. A portion of the resulting yellow solid ($185 \mathrm{mg}, 1.83 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeOH}(7 \mathrm{ml})$ containing activated $4 \AA \mathrm{MS}$. Tolualdehyde ($240 \mu \mathrm{l}, 2.01 \mathrm{mmol}, 1.1$ equiv) was then added and the mixture stirred at rt . After 12 h the reaction was cooled to $0^{\circ} \mathrm{C}$ and NaBH_{4} ($84.0 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.2$ equiv) added and the mixture warmed slowly to rt. After a further 1 h , the reaction was filtered and concentrated under reduced pressure. Chromatography (50% $\mathrm{MeOH}-\mathrm{EtOAc})$ gave the amine 6a as a pale yellow oil (298 mg, 80\%); $\mathrm{R}_{f} 0.50$ (50% MeOH-EtOAc $) ;[\alpha]_{\mathrm{D}}{ }^{22}+20.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); $v_{\text {max }}(f i l m) \mathrm{cm}^{-1} 3275,2970,2924,1516,1452,1371$, $1095,1014,974,804 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.20-7.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArMe}\right), 5.73(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0,5.0 \mathrm{~Hz}$, $\left.\mathrm{C}=\mathrm{CHCH}_{2}\right), 5.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,7.0 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{C}), 4.10-4.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{OH}\right.$) $3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $13.0 \mathrm{~Hz}, \mathrm{NCHH}), 3.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0 \mathrm{~Hz}, \mathrm{NCH} H), 3.29-3.24(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}), 2.72(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{NH}$ and OH), $2.34\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 1.19\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 136.9,136.6$, 134.7, 130.7, 129.2, 128.2, 62.6, 54.7, 51.0, 21.6, 21.1; m/z (CI) $206[\mathrm{M}+\mathrm{H}]^{+}, 190,122,105$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 206.1547. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 206.1545). Elemental analysis failed twice due to the hygroscopic nature of the compound.

(-)-(S)-(E)-5-Methyl-4-(4-methylbenzylamino)hex-2-en-1-ol (6b)

Onto a solution of (-)-(S)-(E)-5-methyl-4-(toluene-4-sulfonamide)hex-2-en-1-ol (3.50 g, 12.3 mmol , 1.0 equiv) in THF $(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was condensed $\mathrm{NH}_{3}(1)(\sim 150 \mathrm{ml})$ and freshly cut sodium metal ($1.70 \mathrm{~g}, 74.0 \mathrm{mmol}, 7.0$ equiv) then added. After the sodium had dissolved (10 min) the reaction was quenched with $\mathrm{MeOH}(50 \mathrm{ml})$ until the solution decolourised. The $\mathrm{NH}_{3}(1)$ was then allowed to evaporate and the residue partitioned between $2: 1 \mathrm{CHCl}_{3}: \mathrm{EtOH}(20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The aqueous phase was further extracted with $2: 1 \mathrm{CHCl}_{3}: \mathrm{EtOH}(5 \times 25 \mathrm{ml})$ and the combined organic extracts washed with brine $(50 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration under reduced pressure the resulting residue was passed through a short pad of silica (10:8:1 $\left.\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{3}\right)$ and concentrated under reduced pressure to give the crude amine $(1.05 \mathrm{~g}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.66-5.49(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 3.99\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.00\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{NH}_{2}\right), 2.65\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right)$, 1.59-1.49 (1H, m, CH(CH3 $\left.)_{2}\right), 0.81\left(3 H, d, J 7.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.79\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 131.1,130.6,62.2,59.0,33.7,18.6,18.5$. A portion of this ($240 \mathrm{mg}, 1.86 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeOH}(7 \mathrm{ml})$ containing activated $4 \AA \mathrm{MS}$. Tolualdehyde ($440 \mu \mathrm{l}, 3.70$ mmol, 2.0 equiv) was then added and the mixture stirred at rt . After 12 h the reaction was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(170 \mathrm{mg}, 4.50 \mathrm{mmol}, 2.4$ equiv) added and the mixture warmed slowly to rt . After a further 1 h , the reaction was filtered, $\mathrm{NaOH}(2 \mathrm{M} ; 10 \mathrm{ml})$ added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine (20 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography ($5-10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the amine 6b ($330 \mathrm{mg}, 53 \%$); $\mathrm{R}_{f} 0.53$ (50\% MeOH-EtOAc); [$\alpha]_{\mathrm{D}}{ }^{28}-32.0$ (c 0.5, CHCl_{3}); $v_{\text {max }}($ film $) 3307,2956,2870,1513,1452,1367$, $1088,976,806 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.21\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, ortho $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 5.72\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5,5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 5.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,8.0 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{C})$, 4.15 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$, $) 3.82$ ($1 \mathrm{H}, \mathrm{d}$, J $13.0 \mathrm{~Hz}, \mathrm{NCHH}$), 3.60 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0 \mathrm{~Hz}$, NCHH), 2.85-2.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}$ and NH), $2.35\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 1.77-1.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 137.2,136.5$, $132.9131 .8,129.1,128.2,65.5,62.7,51.0,32.2,21.2,19.5,18.5 ; ~ m / z(C I) 234[\mathrm{M}+\mathrm{H}]^{+}, 216,190$, 122, 105 (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 234.1860 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 234.1858$). Elemental analysis failed twice due to the hygroscopic nature of the compound.

(+)-(S)-(E)-6-Methyl-4-(4-methylbenzylamino)hept-2-en-1-ol (6c)

Onto a solution of $(-)-(S)-(E)$-6-methyl-4-(toluene-4-sulfonamido)hept-2-en-1-ol (3.00 g, 10.1 mmol, 1.0 equiv) in THF (5 ml) at $-78^{\circ} \mathrm{C}$ was condensed $\mathrm{NH}_{3}(1)(\sim 75 \mathrm{ml})$ and freshly cut sodium metal ($1.39 \mathrm{~g}, 60.6 \mathrm{mmol}, 7.0$ equiv) added. After the sodium had dissolved (10 min) the reaction was quenched with solid NaOAc until the solution decolourised. The $\mathrm{NH}_{3}(1)$ was then allowed to evaporate and the residue partitioned between $2: 1 \mathrm{CHCl}_{3}: \mathrm{EtOH}(20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The
aqueous phase was extracted with $2: 1 \mathrm{CHCl}_{3}: \mathrm{EtOH}(5 \times 25 \mathrm{ml})$ and the combined organic extracts washed with brine $(50 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration under reduced pressure the resulting residue was passed through a short pad of silica ($10: 8: 1 \mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{3}$) and concentrated under reduced pressure to give the crude amine $(1.05 \mathrm{~g}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.76(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $15.5,5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2}$), $5.64\left(1 \mathrm{H}\right.$, dd, J $\left.15.5,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 4.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.41\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHNH}_{2}\right), 1.71-1.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}\right.$ and $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{Pr}\right), 1.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right),\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 137.2,128.3,63.2$, 51.3, 47.1, 24.9, 22.7 (2 signals). A portion of this ($250 \mathrm{mg}, 1.75 \mathrm{mmol}, 1.0$ equiv) was dissolved in MeOH (7 ml) containing activated $4 \AA$ MS. Tolualdehyde ($230 \mu 1,1.93 \mathrm{mmol}, 1.1$ equiv) was then added and the mixture stirred at rt. After 12 h the reaction was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(106 \mathrm{mg}, 2.80 \mathrm{mmol}, 1.6$ equiv) added and the mixture warmed slowly to rt . After a further 1 h , the reaction was filtered, $\mathrm{NaOH}(1 \mathrm{M} ; 10 \mathrm{ml})$ added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine (20 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography (10% $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the amine 6c ($453 \mathrm{mg}, 72 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.57(10 \%$ $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]_{\mathrm{D}}{ }^{26}+4.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) 3255,1951,2912,1566,1516,1254,1319$, $1089,1025,972,804 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.19\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, ortho $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$ Hz , meta $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right)$, $5.73\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0,5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2}\right)$, $5.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,8.0 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHCH}_{2}$), $4.13\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0 \mathrm{~Hz}, \mathrm{NCHH}), 3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0$ $\mathrm{Hz}, \mathrm{NCHH}), 3.14(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 8.0,8.0 \mathrm{~Hz}, \mathrm{CHN}), 2.34\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 1.65-1.58(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38-1.33(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{Pr}), 0.86\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 137.0$, $136.6,133.8,131.8,129.1,128.2,62.7,57.9,50.9,44.9,24.7,23.9,23.1,21.1 ; m / z$ (CI) 248 $[\mathrm{M}+\mathrm{H}]^{+}, 190,122$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 248.2007 . \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$ requires $[\mathrm{M}+\mathrm{NH}]^{+}, 248.2014$). Elemental analysis failed twice due to the hygroscopic nature of the compound.

(E)-4-(4-Methylbenzylamino)oct-2-en-1-ol (6d)

Onto a solution of (E)-4-(toluene-4-sulfonamido)oct-2-en-1-ol ($90.0 \mathrm{mg}, 0.231 \mathrm{mmol}, 1.0$ equiv) in THF (2 ml) at $-78^{\circ} \mathrm{C}$ was condensed $\mathrm{NH}_{3}(1)(\sim 15 \mathrm{ml})$ and freshly cut sodium metal ($37.0 \mathrm{mg}, 1.61$ mmol, 7.0 equiv) then added. After the sodium had dissolved (10 min) the reaction was quenched with $\mathrm{MeOH}(0.5 \mathrm{ml})$ until the solution decolourised. The $\mathrm{NH}_{3}(1)$ was then allowed to evaporate and the residue extracted with $\mathrm{CHCl}_{3}(5 \times 5 \mathrm{ml})$, filtered through celite and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation under reduced pressure gave the crude amine (30.1 mg); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.74-5.67(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$, $4.14\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.32\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CHNH}_{2}\right), 1.76-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.47-$ $1.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 0.91-0.83\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 135.6,127.4,62.6,53.7,35.7$, 28.6, 23.0, 14.4. This was then dissolved in $\mathrm{MeOH}(1 \mathrm{ml})$ containing activated $4 \AA \mathrm{MS}$. Tolualdehyde ($30.0 \mu \mathrm{l}, 0.230 \mathrm{mmol}, 1.1$ equiv) was then added and the mixture stirred at rt . After

12 h the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(18.1 \mathrm{mg}, 0.460 \mathrm{mmol}, 2.0$ equiv added and the mixture warmed slowly to rt . After a further 1 h , the reaction was filtered, $\mathrm{NaOH}(2 \mathrm{M} ; 5 \mathrm{ml})$ added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{ml})$. The combined organic extracts were washed with brine (20 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography $\left(5-10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the amine $\mathbf{6 d}$ ($40.0 \mathrm{mg}, 0.162 \mathrm{mmol}, 70 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.50$ ($50 \% \mathrm{MeOH}-\mathrm{EtOAc}$); $\mathrm{v}_{\max }(\mathrm{film}) 2954$, 2927, 2858, 1514, 1456, 1375, 1090, 974, $806 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho $\mathrm{CH}_{2} \mathrm{ArMe}$), $7.14\left(2 \mathrm{H}\right.$, d, J 8.0 Hz , meta $\mathrm{CH}_{2} \mathrm{ArMe}$), $5.74\left(1 \mathrm{H}\right.$, dt, J $\left.15.5,5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 5.54$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5,8.0 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{C}), 4.15\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right.$, $) 3.79$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0 \mathrm{~Hz}, \mathrm{NCHH}$), $3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0 \mathrm{~Hz}, \mathrm{NCHH}), 3.11-3.04(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH})$, $2.35\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right)$, 1.54$1.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 1.28-1.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) ; 137.0,136.6,134.0,131.7,129.1,128.5,63.0,59.9,50.9,35.3,28.1$, 22.7, 21.2, $14.1 \mathrm{~m} / \mathrm{z}$ (CI) $248[\mathrm{M}+\mathrm{H}]^{+}, 190$, 122, 105, 52 (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 248.2013. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 234.2014\right)$. Elemental analysis failed twice due to the hygroscopic nature of the compound.

(-)-(S)-(E)-4-\{(4-Methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino\}pent-2-enol

PyBOP ($177 \mathrm{mg}, 0.340 \mathrm{mmol}, 1.0$ equiv) was added to a solution of amine $\mathbf{6 a}(58.0 \mathrm{mg}, 0.280$ mmol, 1.0 equiv), $\mathrm{TsCH}_{2} \mathrm{CO}_{2} \mathrm{H}(72.8 \mathrm{mg}, 0.340 \mathrm{mmol}, 1.0$ equiv) and Hünig's base ($16.0 \mu \mathrm{l}, 0.920$ mmol, 3.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. After 12 h the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 5 \mathrm{ml})$. The combined organic extracts were concentrated under reduced pressure and dissolved in THF (1 ml) and $\mathrm{NaOH}(2 \mathrm{M} ; 1 \mathrm{ml})$. After stirring at rt for 1 h the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 5 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography $\left(5 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $(-)-(S)-$ (E)-4-\{(4-methylbenzyl)-[2-(toluene-4-sulfonyl)acetyl]amino\}pent-2-enol (103 $\mathrm{mg}, 92 \%$) as a colourless oil; $\mathrm{R}_{f} 0.50\left(5 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}-53.3$ (c 1.0, CHCl_{3}); $v_{\text {max }}$ (film) 3435, 1643, $1439,1321,1153,1001 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.83-7.77(2 \mathrm{H}, \mathrm{m}$, ortho Ts$), 7.37-7.28(2 \mathrm{H}, \mathrm{m}$, meta Ts), 7.14 (2 H , d, J 8.0 Hz , ortho $\mathrm{CH}_{2} \mathrm{ArMe}$), $7.04\left(2 \mathrm{H}\right.$, d, J 8.0 Hz , meta $\mathrm{CH}_{2} \mathrm{ArMe}$), 5.83-5.63 (2 H , $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.20(0.67 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CHN}$ rotamer 1), 4.81-4.79 ($0.33 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ rotamer 2), 4.69 ($0.67 \mathrm{H}, \mathrm{d}$, J $18.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 1), 4.57 ($1 \mathrm{H}, \mathrm{d}$, J 18.0 Hz , CHHTs rotamer 1and CHHTs rotamer 2), $4.43(0.33 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ rotamer 2), $4.50(0.33 \mathrm{H}$, d, J $15.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ts}$ rotamer 2), $4.28(0.33 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}, \mathrm{CH} H A r M e$ rotamer 2$), 4.01-4.13\left(3.34 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right.$ and $\mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 1), $2.45\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of Ts), $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 1.32(0.99 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}$, CHCH_{3} rotamer 1), $1.22\left(2.01 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$ rotamer 1); $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 162.5,162.1,145.3$, $137.4,136.5,136.1,136.0,135.2,134.2,131.5,131.2,130.8,130.4,129.8,129.7,129.4,129.0$, 128.6, 127.5, 62.9, 62.6, 60.8, 60.4, 51.4, 47.3, 46.1, 44.2, 21.8, 21.2, 19.0, 17.1; m/z (CI) 419
$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 402[\mathrm{M}+\mathrm{H}]^{+}, 190$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 419.2000 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 419.2005) (Found: C, 65.72; H, 6.49; N, 3.22. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $65.81 ; \mathrm{H}, 6.78 ; \mathrm{N}, 3.49 \%$).

(-)-(S)-(E)-5-Methyl-4-\{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino\}hex-2-enol

PyBOP ($146 \mathrm{mg}, 0.274 \mathrm{mmol}, 1.2$ equiv) was added to a solution of amine $\mathbf{6 b}(53.0 \mathrm{mg}, 0.228$ mmol, 1.0 equiv), $\mathrm{TsCH}_{2} \mathrm{CO}_{2} \mathrm{H}(58.6 \mathrm{mg}, 0.274 \mathrm{mmol}, 1.2$ equiv) and Hünig's base ($131 \mu \mathrm{l}, 0.752$ mmol, 3.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. After 12 h the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic extracts were concentrated under reduced pressure and dissolved in THF (2 ml) and $\mathrm{NaOH}(2 \mathrm{M} ; 2 \mathrm{ml}$). After stirring at rt for 1 h the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 5 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography ($80 \% \mathrm{Et}_{2} \mathrm{O}$-petrol) yielded (-)-(S)-(E)-5-methyl-4-\{(4-methylbenzy)[2-(toluene-4-sulfonyl)acetyl]amino\}hex-2-enol (75.0 mg, 76\%) as a colourless oil; $\mathrm{R}_{f} 0.57$ ($50 \% \mathrm{EtOAc}-$ petrol); $[\alpha]_{\mathrm{D}}{ }^{24}-22.2$ (c 1.0, CHCl_{3}); $v_{\text {max }}$ (film) 3431, 2960, 1643, 1429, 1321, 1155, 1086, 1018, 974, $800 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.73-7.66(2 \mathrm{H}, \mathrm{m}$, ortho Ts$)$, 7.19-7.18 ($2 \mathrm{H}, \mathrm{m}$, meta Ts), 7.06-6.93 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArMe}$), $5.80(0.2 \mathrm{H}$, dt, J $16.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHCH}_{2}$ rotamer 2), $5.68\left(0.8 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0,5.0 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{CH}=\mathrm{CHCH}_{2}\right.$ rotamer 1), 5.51-5.43 $(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2}$), $4.82(0.8 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HTs}$ rotamer 1), 4.67 ($0.2 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 2), 4.49 ($0.8 \mathrm{H}, \mathrm{d}, \mathrm{J}, 18.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 1), 4.46-4.39 ($0.4 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{Ts}$ rotamer 2 and CHHArMe rotamer 2), 4.17 ($0.2 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ rotamer 2), 4.07 ($0.8 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$ $\mathrm{Hz}, \mathrm{CHHArMe}$ rotamer 1), 3.89-3.85 (2.8H, m, CHHArMe rotamer 1 and CHN), $2.36(3 \mathrm{H}, \mathrm{s}$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts), 2.15-1.90(2H, m, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 1.24-1.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94$ ($2.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ rotamer 1), $0.88\left(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ rotamer 2), $0.81(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}, 6.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ rotamer 1 and rotamer 2$) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 162.3,145.1,137.5,136.0,134.4$, 134.0, 129.7, 129.5, 128.8, 128.6, 128.5, 128.1, 127.9, 126.3, 64.0, 62.8, 60.9, 48.8, 30.3, 21.7, 21.0, 20.0, 19.4; $m / z(\mathrm{CI}) 447\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 430[\mathrm{M}+\mathrm{H}]^{+}, 412,276,188,174$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 430.2049$. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 430.2052$).

(E)-4-\{(4-methylbenzyl)[(2-toluene-4-sulfonyl)acetyl]amino\}oct-2-enol

PyBOP ($146 \mathrm{mg}, 0.280 \mathrm{mmol}, 2.0$ equiv) was added to a solution of amine $\mathbf{6 d}(34.0 \mathrm{mg}, 0.140$ mmol, 1.0 equiv), $\mathrm{TsCH}_{2} \mathrm{CO}_{2} \mathrm{H}(59.9 \mathrm{mg}, 0.280 \mathrm{mmol}, 2.0$ equiv) and Hünig's base ($120 \mu \mathrm{l}, 0.770$ mmol, 5.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$. After 12 h the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 5 \mathrm{ml})$. The combined organic extracts were concentrated under reduced pressure and dissolved in THF (1 ml) and $\mathrm{NaOH}(2 \mathrm{M} ; 1 \mathrm{ml})$. After stirring at rt for 1 h the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 5 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography (50\% EtOAc-petrol) yielded (E)-4-\{(4-
methylbenzyl)[(2-toluene-4-sulfonyl)acetyl]amino\}oct-2-enol (45.2 mg, 72%) as a colourless oil; R_{f} 0.25 (50\% EtOAc-petrol); $v_{\max }$ (film) 3458, 2953, 2929, 2249, 1641, 1429, 1321, 1155, 1086, 1018, $976,910,810,731 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts$), 7.36-7.34(2 \mathrm{H}, \mathrm{m}$, meta Ts), $7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho ArMe), $7.04(2 \mathrm{H}$, d, J 8.0 Hz , meta ArMe$)$, $5.82-5.77(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 4.95-4.93(0.7 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ rotamer 1$)$, 4.73 ($0.7 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.0 \mathrm{~Hz}$, CHHTs rotamer 1), 4.61 ($0.7 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 1), 4.55$4.02\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ts}\right.$ rotamer $2,2 \mathrm{H} \mathrm{CH} \mathrm{H}_{2} \mathrm{ArMe}, 2 \mathrm{H} \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}$ and CHN rotamer 2), $2.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of Ts), 1.61-0.84 (9H, m, $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}) 162.4,145.2$, $137.4,136.6,136.0,135.2,134.1,132.8,132.2,129.6,129.3,128.9,128.6,126.1,62.9,62.7,60.9$, $60.4,60.1,56.7,48.0,46.3,32.6,31.6,28.6,28.3,22.5,21.8,21.3,14.0 ; m / z(\mathrm{CI}) 444[\mathrm{M}+\mathrm{H}]^{+}, 290$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 444.2201 . \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 444.2209) (Found: C, 67.55; H, 7.29; N, 3.07. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.69 ; \mathrm{H}, 7.50$; $\left.\mathrm{N}, 3.16 \%\right)$.

(-)-(S)-(E)-Carbonic acid methyl ester 4-\{(4-methylbenzyl)-[2-(toluene-4-sulfonyl)-acetyl]amino\}pent-2-enyl (7a)

To a solution of $(-)-(S)-(E)-4-\{(4-m e t h y l b e n z y)[2-($ toluene-4-sulfonyl)acetyl]amino $\}$ pent-2-enol ($87.0 \mathrm{mg}, 0.220 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added pyridine ($34.5 \mu \mathrm{l}, 0.660 \mathrm{mmol}$, 3.0 equiv), methyl chloroformate ($50.1 \mu \mathrm{l}, 0.660 \mathrm{mmol}, 3.0$ equiv) and DMAP ($1.3 \mathrm{mg}, 0.011 \mathrm{mmol}$, 0.05 equiv). The reaction mixture was warmed to rt. and after 1 h was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$. The organic layer was washed with brine (5 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography $(30 \%$ EtOAc-petrol) gave the carbonate 7 a ($95.4 \mathrm{mg}, 95 \%$) as a colourless oil; $\mathrm{R}_{f} 0.83(5 \%$ $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]_{\mathrm{D}}{ }^{22}-72.0$ (c 0.5, CHCl_{3}); $v_{\text {max }}$ (film) 2958, 1750, 1645, 1441, 1265, 1160, 794 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.81-7.76(2 \mathrm{H}, \mathrm{m}$, ortho Ts$)$, 7.38-7.32 ($2 \mathrm{H}, \mathrm{m}$, meta Ts), 7.17-7.03 ($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right)$, 5.77-5.71 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 5.22.5.20 ($0.86 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ rotamer 1), 4.74-4.72 (0.14 H , m, CHN rotamer 2), $4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.5 \mathrm{~Hz}, \mathrm{CHHTs}), 4.59-4.51\left(2.86 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right.$ and $\mathrm{CH} H \mathrm{Ts}$ rotamer 1), $4.38(0.14 \mathrm{H}, \mathrm{d}$, J 14.0 Hz , CHHArMe rotamer 2$)$, $4.27(0.14 \mathrm{H}$, d, J 14.0 Hz , CHHArMe rotamer 2), $4.24(0.14 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CH} H$ Ts rotamer 2), $4.10(0.86 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}$, CHHArMe rotamer 1), $4.03(0.86 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz} \mathrm{CH} H A r M e ~ r o t a m e r ~ 1), ~ 3.81\left(0.42 \mathrm{H}, \mathrm{s}, \mathrm{OCO}_{2} \mathrm{CH}_{3}\right.$ rotamer 2), $3.78\left(2.58 \mathrm{H}, \mathrm{s}, \mathrm{OCO}_{2} \mathrm{CH}_{3}\right.$ rotamer 1$), 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts$), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 1.33\left(0.42 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$ rotamer 2$), 1.22\left(2.58 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$ rotamer $1) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 162.5,162.0,155.5,145.2,137.4,136.5,136.0,135.8,135.0,134.6,134.4,134.0$, $129.8,129.0,128.6,127.4,125.8,125.5,67.6,67.3,60.8,60.4,55.1,54.9,51.3,45.9,21.8,21.1$, 18.6, 16.9; $m / z(\mathrm{CI}) 477\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 460[\mathrm{M}+\mathrm{H}]^{+}, 384,306,230,174$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 460.1792$.
(-)-(S)-(E)-Carbonic acid methyl ester 5-methyl-4-\{(4-methylbenzyl)-[2-(toluene-4-sulfonyl)-acetyl]amino\}hex-2-enyl ester (7b)

To a solution of $(-)-(S)-(E)$-5-methyl-4-\{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino\}hex-2-enol ($50.0 \mathrm{mg}, 0.117 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine ($30.6 \mu \mathrm{l}$, 0.585 mmol , 5.0 equiv), methyl chloroformate ($36.1 \mu \mathrm{l}, 0.468 \mathrm{mmol}, 4.0$ equiv) and DMAP (1.4 mg , $0.012 \mathrm{mmol}, 0.1$ equiv). The reaction mixture was warmed to rt . and after 1 h was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$. The organic layer was washed with brine $(5 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography (30% EtOAc-petrol) gave the carbonate $7 \mathbf{7 b}$ ($54.1 \mathrm{mg}, 95 \%$) as a colourless oil; R_{f} $0.80\left(50 \%\right.$ EtOAc-petrol); $[\alpha]_{\mathrm{D}}{ }^{22}-3.0\left(c 4.0, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 2958,1749,1647,1443,1323$, $1269,1155,1086,951,914,795,731 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.83(0.24 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts rotamer 2), $7.76(1.76 \mathrm{H}$, d, J 8.0 Hz , ortho Ts rotamer 1), 7.28-7.40 $(2 \mathrm{H}$, meta Ts rotamer 1 and rotamer 2), 7.13 (2 H , d, J 8.0 Hz , ortho $\mathrm{CH}_{2} \mathrm{ArMe}$), 7.02 ($2 \mathrm{H}, \mathrm{d}$, J 8.0 Hz meta $\mathrm{CH}_{2} \mathrm{ArMe}$), 5.90 $\left(0.12 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0,6.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{2}\right.$ rotamer 2$)$, $5.72-5.62(1.88 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ rotamer 1 and $\mathrm{CH}=\mathrm{CHCH}_{2}$ rotamer 2), $4.89(0.88 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.0 \mathrm{~Hz}, \mathrm{CHHTs}$ rotamer 1), $4.66(0.12 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.0 \mathrm{~Hz}$, CHHTs rotamer 2), $4.60\left(0.88 \mathrm{H}, \mathrm{CH} H \mathrm{Ts}\right.$ rotamer 1), 4.51-4.43 (3.12H, m, $\mathrm{CH}_{2} \mathrm{OCO}_{2} \mathrm{Me} \mathrm{CHN}$ and $\mathrm{CH} H$ Ts rotamer 2), $4.28(0.12 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HArMe}$ rotamer 2$), 4.23(0.12 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0 \mathrm{~Hz}$, CHHArMe rotamer 2), $4.14(0.88 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ rotamer 1), 3.93 ($0.88 \mathrm{H} . \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}$, CHHArMe rotamer 1), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCO}_{2} \mathrm{OCH}_{3}\right), 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts$), 2.34(3 \mathrm{H}, \mathrm{s}$, Me of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 2.06-2.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.04\left(2.64 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ rotamer 1$), 0.96$ ($0.36 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ rotamer 2), $0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 162.4$, $155.4,145.2,237.4,135.9,135.7,133.6,132.2,131.6,130.2,129.9,129.7,128.6,127.8,126.2$, $67.4,66.7,64.2,60.9,60.8,54.8,48.9,31.0,29.9,22.9,22.2,20.2,19.7,19.4 ; \mathrm{m} / \mathrm{z}$ (CI) 505 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 488[\mathrm{M}+\mathrm{H}]^{+}, 412,334,258,189$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 505.2367 . \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 505.2372$) (Found: C, 63.84; H, 6.62; N, 2.71. $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{6}$ S requires C, 64.04; H, 6.82; N, 2.87\%).

(-)-(S)-(E)-Carbonic acid methyl ester 6-methyl-4-\{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino\}hept-2-enyl ester (7c)

To a solution of $\mathrm{TsCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ ($501 \mathrm{mg}, 2.34 \mathrm{mmol}, 2.0$ equiv), DCC ($532 \mathrm{mg}, 2.58 \mathrm{mmol}, 2.2$ equiv) and HOBt ($348 \mathrm{mg}, 2.58 \mathrm{mmol}$, 2.2 equiv) at $0^{\circ} \mathrm{C}$ was added aminoalcohol $\mathbf{6 c}(290 \mathrm{mg}, 1.17 \mathrm{mmol}$ 1.0 equiv) and the mixture warmed to rt . After 12 h the reaction was concentrated under reduced
pressure and the residue stirred in $10 \% \mathrm{NaOH}: \mathrm{MeOH}$. After 12 h the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 40 \mathrm{ml})$, the combined organic extracts washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, brine (20 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the crude amide (487 mg). A portion of this ($430 \mathrm{mg}, 0.970 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and methylchloroformate ($150 \mu \mathrm{l}, 1.94 \mathrm{mmol}, 2.0$ equiv), pyridine ($101 \mu \mathrm{l}, 1.94 \mathrm{mmol}, 2.0$ equiv) and DMAP ($1.2 \mathrm{mg}, 0.091$ mmol, 0.1 equiv) added. The reaction was warmed to room temperature and after 12 h quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$ and the combined organic extracts washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, brine $(20 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation under reduced pressure and chromatography ($70 \% \mathrm{Et}_{2} \mathrm{O}$-petrol) gave the carbonate $7 \mathbf{c}$ $(455 \mathrm{mg}, 80 \%)$ as a colourless oil; $\mathrm{R}_{f} 0.32(30 \% \mathrm{EtOAc}-$ petrol $) ;[\alpha]_{\mathrm{D}}{ }^{23}-12.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (film) 2929, 1749, 1649, 1443, 1267, 1155, 1086, 949, $793 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.81-7.74(2 \mathrm{H}, \mathrm{m}$, ortho Ts), 7.36-7.30 ($2 \mathrm{H}, \mathrm{m}$, meta Ts), $5.75-5.68(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.03-5.02(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 4.65-$ 4.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ts}$), 4.56-4.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ArMe}$), 4.12-4.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCO}_{2} \mathrm{CH}_{3}$), 3.82-3.73 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCO}_{2} \mathrm{CH}_{3}\right), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts), $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 1.59-1.43(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} i \mathrm{Pr}$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)(75$ MHz) 162.4, 162.2, 155.5, 145.2, 137.4, 136.5, 135.9, 135.0, 133.9, 133.4, 133.0, 129.7, 129.6, $129.0,128.6,127.6,127.2,126.7,67.6,67.3,60.9,60.4,58.054 .8,48.1,46.2,41.8,40.8,24.7,23.2$, 22.8, 21.8, 21.0; $m / z(\mathrm{CI}) 519\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 502[\mathrm{M}+\mathrm{H}]^{+}, 426,348,272$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 519.2508$. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 519.2523) (Found: C, 64.83; H, 6.95; N, 2.66. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}$ requires C, 64.65; H, 7.03; N, 2.79\%).

(E)-Carbonic acid methyl ester 4-\{(4-methylbenzyl)[2-(toluene-4-sulfonyl)acetyl]amino\}oct-2enyl ester (7d)

To a solution of (E)-4-\{(4-methylbenzyl)[(2-toluene-4-sulfonyl)acetyl]amino\}oct-2-enol (43.0 mg, 0.0971 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine ($15.2 \mu \mathrm{l}, 0.291 \mathrm{mmol}, 3.0$ equiv), methyl chloroformate ($22.4 \mu \mathrm{l}, 0.291 \mathrm{mmol}, 3.0$ equiv) and DMAP ($1.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv). The reaction was warmed to rt and after 1 h was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$. The organic layer was washed with brine (5 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure and chromatography ($30 \% \mathrm{EtOAc}-$ petrol) gave the carbonate $7 \mathbf{d}$ ($43.3 \mathrm{mg}, 96 \%$) as a colourless oil; $\mathrm{R}_{f} 0.80$ ($50 \% \mathrm{EtOAc}-\mathrm{petrol}$); $\mathrm{v}_{\text {max }}$ (film) 2956, 1749, 1649, 1443, 1267, 1155, 949, $793 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.81-7.76(2 \mathrm{H}, \mathrm{m}$, ortho Ts) 7.38-7.33 ($2 \mathrm{H}, \mathrm{m}$, meta Ts), 7.17-7.02 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ar} \mathrm{Me}$), 5.76-5.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 4.92-4.91 ($0.74 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ rotamer 1), 4.74-4.32 (4.26 H, m, $\mathrm{CH}_{2} \mathrm{Ts}, \mathrm{CH}_{2} \mathrm{ArMe}$ rotamer 2 and $\mathrm{CH}_{2} \mathrm{OCO}_{2} \mathrm{Me}$), $4.10(0.74 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}$, CHHArMe rotamer 1), $4.03(0.74 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0 \mathrm{~Hz}$, CHHArMe rotamer 1), $3.81\left(0.78 \mathrm{H}, \mathrm{s}, \mathrm{OCO}_{2} \mathrm{CH}_{3}\right.$ rotamer 2), $3.77\left(2.22 \mathrm{H}, \mathrm{s}, \mathrm{OCO}_{2} \mathrm{CH}_{3}\right.$ rotamer 1), $2.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts), $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 0.89-0.83\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}) 162.5,162.3,155.5,145.2,137.4$, 136.6, 135.9, 133.8, 133.3, 133.1, 129.7, 128.9, 128.6, 127.9, 126.4, 126.1, 67.6, 67.4, 60.9, 60.4, $60.1,56.8,54.9,48.1,46.1,32.5,31.5,28.5,28.3,22.5,21.8,21.1,14.0,13.9 ; \mathrm{m} / \mathrm{z}$ (CI) 519 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 502[\mathrm{M}+\mathrm{H}]^{+}, 376,365,348,272,225,289,174$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 519.2528$. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 519.2529) (Found: C, 64.52; H, 7.15; N, 2.76. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}$ requires C, 64.65; H, 7.03; N, 2.79\%).
(3S, 4R, 5S)-5-Methyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3R, 4S, 5S)-5-Methyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (cisand trans-8a)
A solution of carbonate $7 \mathrm{a}\left(40.0 \mathrm{mg}, 8.72 \times 10^{-2} \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{MeCN}(1 \mathrm{ml})$ was added to a flask charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.1 \mathrm{mg}, 0.004 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ and TTMPP ($23.4 \mathrm{mg}, 0.044 \mathrm{mmol}$, 0.5 equiv) at rt . After stirring for 2 h the reaction was concentrated under reduced pressure. Chromatography (30\% EtOAc-petrol) gave an inseparable 86:14 mixture of cis- and trans- γ lactams 8a ($30.0 \mathrm{mg}, 90 \%$) as a colourless oil; $\mathrm{R}_{f} 0.43$ (30% EtOAc-petrol); $v_{\text {max }}$ (film) 1693, 1431, $1315,1147,1086,1011,935,814,737 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.89-7.82(4 \mathrm{H}, \mathrm{m}$, ortho Ts of cis and trans), $7.37\left(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, meta Ts of cis and trans), $7.14\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), $7.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, meta $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), $7.09-7.08\left(2 \mathrm{H}\right.$, m, ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ trans), 7.05 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta $\mathrm{CH}_{2} \mathrm{ArMe}$ trans), $5.71\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 17.0,10.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ of cis and trans), $5.24\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0 \mathrm{~Hz}\right.$, trans $\mathrm{CH}=\mathrm{CH}_{2}$ of cis and trans), $5.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}\right.$, cis $\mathrm{CH}=\mathrm{CH}_{2}$ of cis $)$, $5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}$ cis CH=CH2 trans), $4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ of cis), 4.88 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.0 Hz, CHHArMe trans), 3.97 (1H, d, J 15.0 Hz , CHHArMe trans), 3.91 (1H, d, J 15.0 Hz , CHHArMe of cis), 3.89-3.82 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ of cis and CHTs, of cis and trans), $3.60(1 \mathrm{H}$, ddd, J 5.0, $7.5,4.5 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{CH}_{2}$ of cis), 3.23-3.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ trans), $2.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis and trans), $2.34(3 \mathrm{H}, \mathrm{s}$, Me of Ts of cis), $2.31(3 \mathrm{H}, \mathrm{s}$, Me of Ts trans), $1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 \mathrm{~Hz}$, NCHMe trans), 1.03 (3H, d, J 7.0 Hz, NCHMe of cis); $\delta_{\mathrm{C}}(100 \mathrm{MHz})^{8} 165.1$ (C=O), 145.2 (q Ar), 137.4 ($\mathrm{q} A \mathrm{Ar}$), 135.0 (q Ar), $133.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$), 132.3 (q Ar), 129.6 (meta Ts), 129.6 (ArH of $\mathrm{CH}_{2} \mathrm{ArMe}$), 129.4 (ortho Ts), 127.7 (ArH of $\mathrm{CH}_{2} \mathrm{ArMe}$), $119.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 70.6$ (CHTs), 54.1 (NCHMe), $44.2\left(\mathrm{CH}_{2} \mathrm{ArMe}\right)$, 21.8 (Me of $\mathrm{CH}_{2} \mathrm{ArMe}$), 21.1 (Me of Ts), 15.3 (NCHMe); m / z (CI) $401\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 384[\mathrm{M}+\mathrm{H}]^{+}, 230$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 384.1647 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 384.1633)

(3S, 4R, 5S)-5-Isopropyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one

 and (3R, 4S, 5S)-5-isopropyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2one (cis- and trans-8b)A solution of carbonate $7 \mathbf{7 b}(50.0 \mathrm{mg}, 0.103 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}(1 \mathrm{ml})$ was added to a flask charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ and TTMPP $(26.6 \mathrm{mg}, 0.052 \mathrm{mmol}, 0.5$ equiv) at rt . After stirring for 12 h the reaction was concentrated under reduced pressure. Chromatography (30\% EtOAc-petrol) gave an inseparable 67:33 mixture of cis- and trans- $\gamma-$ lactams $\mathbf{8 b}$ ($31.9 \mathrm{mg}, 78 \%$) as a colourless oil; $\mathrm{R}_{f} 0.40$ ($30 \% \mathrm{EtOAc}-$ petrol); $v_{\max } 1695,1435,1319$, $1147,1086,812($ film $) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.90(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts of cis and trans), 7.38 ($4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts of cis and trans), $7.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$ ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), $7.09(2 \mathrm{H}$, d, J 8.0 Hz , ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ trans $), 7.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}\right.$, meta $\mathrm{CH}_{2} \mathrm{ArMe}$ trans), $6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$ Hz , meta $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), $5.85\left(1 \mathrm{H}\right.$, ddd, J $17.0,10.0,9.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$ of cis), $5.72(1 \mathrm{H}$, ddd, J $17.0,10.0,8.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$ trans $), 5.27\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0 \mathrm{~Hz}\right.$, trans $\mathrm{CH}=\mathrm{CH}_{2}$ of cis and trans), 5.23 (1 H , d, J 10.0 Hz , cis $\mathrm{CH}=\mathrm{CH}_{2}$ of cis), $5.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ of cis), $5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 10.0 Hz cis CH=CH2 trans), $5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ trans $), 4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{CHTs}$ of cis), $3.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}$, CHTs trans), $3.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ of cis), $3.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15.0 \mathrm{~Hz}, \mathrm{CHHArMe}$ trans $), 3.59\left(1 \mathrm{H}\right.$, ddd, J $8.0,8.0,8.0 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{CH}_{2}$ of cis), $3.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $8.0,3.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of cis), $3.40\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.0,7.0,7.0 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{CH}_{2}\right.$ trans $), 3.19-3.17(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHiPr}$ trans $), 2.47(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts of cis), $2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts trans), $2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), $2.31\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of $\mathrm{CH}_{2} \mathrm{ArMe}$ trans $), 2.26-2.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $), 2.05$ (1 H , d quintet, J 7.0, $3.0 \mathrm{~Hz} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of cis), $0.98\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of 1$), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ trans $), 0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $), 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of cis); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 165.9(\mathrm{C}=\mathrm{O}$ of cis), $165.4(\mathrm{C}=\mathrm{O}$ trans), 145.1 (ipso Ts of cis and trans), 138.5 ($\mathrm{CH}=\mathrm{CH}_{2}$ trans), 137.6 (q Ar trans), 137.4 (q Ar of cis), 135.5 (q Ar trans), 134.8 (q Ar of cis), $134.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of cis), 132.2 (q Ar trans), 132.1 (q Ar of cis), 129.9 (ortho Ts of cis and trans), 129.6 (meta Ts of cis and trans), 129.4 (ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), 129.5 (ortho $\mathrm{CH}_{2} \mathrm{ArMe}$ trans), 128.1 (meta $\mathrm{CH}_{2} \mathrm{ArMe}$ trans), 127.7 (meta $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis), $119.8\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of cis), 117.8 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ trans), 70.8 (CHTs trans), 69.7 (CHTs of cis), 63.6 (CHiPr of cis), 62.6 (CHiPr trans), $45.7\left(\mathrm{CH}_{2} \mathrm{ArMe}\right.$ of cis $)$, $44.5\left(\mathrm{CH}_{2} \mathrm{ArMe}\right.$ trans $)$, $42.7\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right.$, of cis $), 36.0\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right.$ trans), $29.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of cis), $28.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $), 21.8$ (Me of Ts of cis and trans), $21.1(\mathrm{Me}$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis and trans), $20.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of cis $)$, $18.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $)$, $17.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans), $14.7\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of cis); m/z (CI) $429\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 412[\mathrm{M}+\mathrm{H}]^{+}, 255[\mathrm{M}-\mathrm{Ts}]^{+}$(Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 412.1942 . \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 412.1940\right)$.
(3S, 4R, 5S)-5-Isobutyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3R, 4S, 5S)-5-isobutyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (cisand trans-8c)
A solution of carbonate $7 \mathbf{c}\left(45.0 \mathrm{mg}, 8.98 \times 10^{-2} \mathrm{mmol}, 1.0\right.$ equiv $)$ in $\mathrm{MeCN}(1 \mathrm{ml})$ was added to a flask charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ and TTMPP $(26.6 \mathrm{mg}, 0.045 \mathrm{mmol}$, 0.5 equiv) at rt . After stirring for 12 h the reaction was concentrated under reduced pressure. Chromatography (50\% EtOAc-petrol) gave a inseparable 90:10 mixture of cis- and trans- γ lactams 8c ($33.0 \mathrm{mg}, 85 \%$) as a colourless oil; $\mathrm{R}_{f} 0.40$ (50% EtOAc-petrol); $v_{\text {max }}$ (film) 2926, 1697, 1448, 1304, 1149, 1086, $924,812 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.87-7.82(4 \mathrm{H}, \mathrm{m}$, ortho Ts of cis and trans), 7.37-7.35 ($4 \mathrm{H}, \mathrm{m}$, meta Ts of cis and trans), 7.15-7.04 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ar} \mathrm{Me}$ of cis and trans), 5.72 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 17.0,10.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$ of cis), $5.70-5.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ trans $), 5.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0$ Hz , trans $\mathrm{CH}=\mathrm{CH}_{2}$ of cis $), 5.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}\right.$, cis $\mathrm{CH}=\mathrm{CH}_{2}$ of cis $), 5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0 \mathrm{~Hz}$, trans $\mathrm{CH}=\mathrm{CH}_{2}$ trans $), 5.09\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}\right.$ cis $\mathrm{CH}=\mathrm{CH}_{2}$ trans $), 4.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}$, CHHArMe of cis and trans), 3.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{CH} H A r M e ~ o f ~ c i s ~), ~ 3.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}$, CHHArMe trans), 3.88-3.81 (3H, m, CHTs of cis and CHN of cis and trans), 3.66 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0$, $6.5 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{CH}_{2}$ of cis $), 3.35-3.31(1 \mathrm{H}, \mathrm{m}, \mathrm{CHTs}$, trans $), 3.22-3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right.$ trans $)$, $2.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of Ts of cis and trans), $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis $), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ trans $)$, $1.75-1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $), 1.61-1.52\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of cis and $\mathrm{CH}_{2} i \operatorname{Pr}$ trans $), 1.33\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.0,7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Pr}\right.$ of cis $), 0.94\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $)$, $0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of cis $), 0.76\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ trans $), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0$ $\mathrm{Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of cis $) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})^{8} 165.6(\mathrm{C}=\mathrm{O}), 145.3$ (ipso Ts), 137.2 (q Ar), 135.1 (q Ar), $133.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 132.4(\mathrm{q} \mathrm{Ar}), 129.6$ (meta Ts), 129.3 (ortho Ts and $\mathrm{CH}_{2} \mathrm{ArMe}$), $127.7\left(\mathrm{CH}_{2} \mathrm{ArMe}\right)$, $119.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 71.5(\mathrm{CHTs}), 56.8(\mathrm{CHN}), 44.4\left(\mathrm{CH}_{2} \mathrm{ArMe}\right), 41.8\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2} i \mathrm{Pr}\right)$, $23.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.7\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.8(\mathrm{Me}$ of Ts$)$, $21.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.1\left(\mathrm{Me}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right) ; ~ m / z$ (CI) $443\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 426[\mathrm{M}+\mathrm{H}]^{+}, 279,272$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 426.2109 . \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 426.2103\right)$
(3S, 4R, 5S)-5-Butyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one and (3R, 4S, 5S)-5-butyl-1-(4-methylbenzyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (cisand trans-8d)
A solution of carbonate $7 \mathbf{d}\left(50.0 \mathrm{mg}, 99.8 \times 10^{-3} \mathrm{mmol}, 1.0\right.$ equiv $)$ in $\mathrm{MeCN}(1 \mathrm{ml})$ was added to a flask charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(4.61 \mathrm{mg}, 5.04 \times 10^{-3} \mathrm{mmol}, 5.0 \mathrm{~mol} \%\right.$) and TTMPP ($23.4 \mathrm{mg}, 4.40 \mathrm{x}$ $10^{-2} \mathrm{mmol}, 0.5$ equiv) at rt . After stirring for 6 h the reaction was concentrated under reduced pressure. Chromatography (30% EtOAc-petrol) gave an inseparable $83: 17$ mixture of cis- and trans- γ-lactams 8d (30mg, 79\%) as a colourless oil; $\mathrm{R}_{f} 0.46$ (30% EtOAc-petrol); $\mathrm{v}_{\max }$ (film) 2929,
$1697(\mathrm{C}=\mathrm{O}), 1423,1319\left(\mathrm{SO}_{2}\right), 1149\left(\mathrm{SO}_{2}\right), 1086,812 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.85(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$ ortho Ts of cis and trans), $7.37(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, meta Ts of cis and trans), 7.19-7.04 (4H, m, meta $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis and trans), $5.75\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 17.0,10.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ of cis $)$, 5.70-5.66 $(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}_{2}$ trans $), 5.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0 \mathrm{~Hz}\right.$, trans $\mathrm{CH}=\mathrm{CH}_{2}$ of cis $), 5.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}\right.$, cis $\mathrm{CH}=\mathrm{CH}_{2}$ of cis), $5.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.0 \mathrm{~Hz}\right.$, trans $\mathrm{CH}=\mathrm{CH}_{2}$ trans), $5.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}\right.$, cis $\mathrm{CH}=\mathrm{CH}_{2}$ trans $)$, 4.95 (2H, d, J 15.0 Hz , CHHArMe of cis), 4.92 (2H, d, J 15.0 Hz , CHHArMe trans), 3.97 (2H, d, J 15.0 Hz, CHHArMe of cis), 3.91 (2H, d, J 15.0 Hz , CHHArMe trans), 3.79-3.74 (3H, m, CHnBu of cis and CHTs of cis and trans), 3.66-3.65 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right.$ of cis $), 3.34-3.30(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}=\mathrm{CH}_{2}$ trans $), 3.14-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{CHnBu} \min), 2.45\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis and trans $)$, 2.33 ($3 \mathrm{H}, \mathrm{s}$, Me of Ts of cis), $2.31\left(3 \mathrm{H}, \mathrm{s}\right.$, Me of Ts trans), 1.77-1.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ trans), 1.64-1.51 ($2 \mathrm{H} \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ of cis), 1.34-1.04 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ of cis and trans), 0.87 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ trans), $0.81\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right.$ of cis $)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$) $165.6\left(\mathrm{C}=\mathrm{O}\right.$ of cis), $164.8\left(\mathrm{C}=\mathrm{O}\right.$ trans), 145.2 (q Ar of cis and trans), $137.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ trans $), 135.1$ (q Ar of cis), 135.0 (q Ar trans), 133.2 ($C \mathrm{H}=\mathrm{CH}_{2}$ of cis), 132.4 (q Ar of cis and min), 129.6 (meta Ts of cis), 129.5 (meta Ts min), 129.4 (q Ar of cis and trans), 129.3 (ortho Ts and ArMe of cis and trans) 128.0 (ArMe trans) 127.6 (ArMe of cis), $119.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ of cis $), 117.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right.$ trans $)$, 71.3 (CHTs of cis), 71.1 (CHTs trans), 60.1 ($\mathrm{CH} n \mathrm{Bu}$ trans), 58.4 ($\mathrm{CH} n \mathrm{Bu}$ of cis), $44.6\left(\mathrm{CH}_{2} \mathrm{ArMe}\right.$ trans $)$, $44.4\left(\mathrm{CH}_{2} \mathrm{ArMe}\right.$ of cis $)$, $41.6\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right.$ of cis $) 41.0\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right.$ trans $), 31.2$ $\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right.$ trans $)$, $29.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ trans $)$, $27.7\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right.$ of cis), 26.4 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of cis), $26.1\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ trans $), 22.5\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of cis), 21.8 (Me of Ts of cis and trans), 21.1 (Me of $\mathrm{CH}_{2} \mathrm{ArMe}$ of cis and trans), 13.9 (Me of $n \mathrm{Bu}$ trans), 13.8 (Me of $n \mathrm{Bu}$ of cis); $m / z(\mathrm{CI}) 443\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 426[\mathrm{M}+\mathrm{H}]^{+}, 272$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 426.2106 . \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 426.2103$)
(+)-(3S, 4S, 5R)-5-(4-Methoxybenzyl)-1-(4-methylbenzyl)-3-(3-methylbut-2-enyl)-3-(toluene-4-sulfonyl)-4-vinylpyrrolidin-2-one (10)

A solution of lactams cis-1 and trans-1 (5.6:1 mixture; $332 \mathrm{mg}, 0.680 \mathrm{mmol}, 1.0$ equiv) in DMF (5 $\mathrm{ml})$ was added to $\mathrm{KH}(94.0 \mathrm{mg}$ of a 35% wt dispersion in mineral oil washed with pentane, 0.820 mmol, 1.2 equiv) at $0{ }^{\circ} \mathrm{C}$ under argon. After 15 min prenyl bromide ($780 \mu \mathrm{l}, 6.80 \mathrm{mmol}, 10$ equiv) was added and the mixture warmed to rt. After 20 min the reaction was quenched by dropwise addition of MeOH until the solution decolourised. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ was then added and the mixture extracted with EtOAc ($5 \times 10 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography ($20 \% \mathrm{EtOAc}$-petrol) gave the lactam 10 ($265 \mathrm{mg}, 70 \%$; 83\% from cis-1) as a colourless oil; $\mathrm{R}_{f} 0.60$ ($30 \% \mathrm{EtOAc}$-petrol); $[\alpha]_{\mathrm{D}}{ }^{24}$ $+72.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) 1691,1512,1441,1315,1248,1140 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.72(2 \mathrm{H}$, (2H, d, J 8.0 Hz , ortho ArOMe), $6.80\left(2 \mathrm{H}\right.$, d, J 8.5 Hz , meta $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 6.60(2 \mathrm{H}$, d, J 8.0 Hz , meta ArOMe), $6.50\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}, 17.0,10.0, \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.18\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0,2.0 \mathrm{~Hz}\right.$, trans $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.00\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.0,2.0 \mathrm{~Hz}\right.$, cis $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{NCHH}), 4.72(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{C}(\mathrm{Me})_{2}\right), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ of ArOMe$), 3.59(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.0,9.0,5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.39(1 \mathrm{H}, \mathrm{dd}$, J 14.0, $9.0 \mathrm{~Hz}, \mathrm{CHHArOMe}), 3.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 3.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0 \mathrm{~Hz}, \mathrm{NCHH}), 3.11(1 \mathrm{H}$, dd, J 14.0, $5.0 \mathrm{~Hz}, \mathrm{CH} H A \mathrm{OMe})$, $2.69\left(1 \mathrm{H}, \mathrm{dd}\right.$, J $\left.14.0,11.0 \mathrm{~Hz}, \mathrm{CHHCH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.44-2.41 (1 H , $\left.\mathrm{m}, \mathrm{CHHCH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of Ts$), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right), 1.58(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{Me})_{2}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) ; 167.7(\mathrm{C}=\mathrm{O})$, [158.3, $145.1(\mathrm{q}$
 Ts), 130.4 (ortho $\mathrm{CH}_{2} \mathrm{ArMe}$), 129.1 (meta Ts), 128.9 (meta ArOMe), 128.3 (ortho ArOMe), 120.1 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, $117.1\left(\mathrm{CH}=\mathrm{C}(\mathrm{Me})_{2}\right)$, 114.0 (meta $\mathrm{CH}_{2} \mathrm{ArMe}$), $75.8(\mathrm{CTs})$, $59.8(\mathrm{CHN})$, 55.3 (OMe of $\left.\mathrm{CH}_{2} \mathrm{ArOMe}\right)$, $47.7\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right)$, $45.7\left(\mathrm{CH}_{2} \mathrm{ArMe}\right)$, $36.4\left(\mathrm{CH}_{2} \mathrm{ArOMe}\right)$, $31.2\left(\mathrm{CH}_{2} \mathrm{CH}=(\mathrm{CMe})_{2}\right)$, $25.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 21.8 (Me of Ts), $21.1\left(\mathrm{Me}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{ArMe}\right)$, $18.4\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; m / z$ (CI) $558[\mathrm{M}+\mathrm{H}]^{+}, 410,404,376,174$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 558.2682 . \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 558.2678) (Found: C, 73.03; H, 6.78; N, 2.50. $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{~S}$ requires C, $73.22 ; \mathrm{H}, 7.05 ; \mathrm{N}, 2.51 \%$).

References

[^0]
[^0]: ${ }^{1}$ J. J. Caldwell, D. Craig, and S. P. East, Synlett, 2001, 1602.
 ${ }^{2}$ Wang, J.; Hou, Y.; J. Chem. Soc. Perkin Trans. 1 1998, 12, 1919.
 ${ }^{3}$ Kozikowski, Alan. P.; Ma, D.; Pang, Y. P.; Shum, P.; Likic, V. J. Amer. Chem. Soc. 1993, 115, 3957.
 ${ }^{4}$ McChesney, E. W.; Swann, W. K. J. Am. Chem. Soc. 1937, 59, 1116.
 ${ }^{5}$ Burgess, K.; Liu, L. T.; Pal, B. J. Org. Chem. 1993, 58, 4758.
 ${ }^{6}$ Bergmeier, S. C.; Seth, P. P. J. Org. Chem. 1997, 62, 2671.
 ${ }^{7}$ (a) Berry, M. B. Ph.D Thesis, Imperial College, 1993 (b) Hoppe, I.; Hoffmann, H.; Gaertner, I.; Krettek, T.; Hoppe, D. Synthesis 1991, 12, 1157.
 ${ }^{8}$ Data given for major, cis- diastereomer. ${ }^{13} \mathrm{C}$ Data for minor, trans- diastereoisomer are not listed due to low intensity.

