Supplementary Information

Intramolecular Charge-Transfer Fluorescence of 1-Phenyltridecamethylbicyclo[2.2.2]octasilane

Wataru Setaka, Natsuki Hamada, Chizuko Kabuto and Mitsuo Kira*

Department of Chemistry, Graduate School of Science, Tohoku University, Aobaku, Sendai 980-8578, Japan. Fax: +81-22-795-6589; Tel: +81-22-795-6585; Email: mkira@si.chem.tohoku.ac.jp

(Total 10 pages including this cover page)

Table of Contents

- 1. X-ray Structural Analysis of 1-Phenylbicyclo[2.2.2]octasilane (1)
 - 1. Experimental data
 - 2. ORTEP drawing of **1**
 - 3. Crystal packing of **1**
 - 4. Atomic parameters
- 2. Fluorescence Spectra of Phenyl[tris(trimethylsilyl)]silane (4) in Various Solvents

1. X-ray Structural analysis of 1-phenylbicyclo[2.2.2]octasilane (1)

Table S1. Crystal data and structure refinement for 1-phenylbicyclo[2.2.2]octasilane (1).

Identification code	PhBCOS	
Empirical formula	C ₁₉ H ₄₄ Si ₈	
Formula weight	497.26	
Temperature	173(2) K	
Wavelength	0.71070 Å	
Crystal system	Monoclinic	
Space group	$P 2_1/n$	
Unit cell dimensions	a = 9.9526(5) Å	$\alpha = 90^{\circ}$.
	b = 16.4089(9) Å	$\beta = 92.026(3)^{\circ}$.
	c = 18.5655(11) Å	$\gamma = 90^{\circ}$.
Volume	3030.1(3) Å ³	
Z	4	
Density (calculated)	1.090 Mg/m ³	
Absorption coefficient	0.360 mm ⁻¹	
F(000)	1080	
Crystal size	0.30 x 0.20 x 0.10 mm ³	
Theta range for data collection	3.20 to 27.48°.	
Index ranges	0<=h<=12, 0<=k<=21, -24<=l<=24	
Reflections collected	6868	
Independent reflections	6868 [R(int) = 0.0000]	
Completeness to theta = 27.48°	99.1 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.9649 and 0.8997	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6868 / 0 / 244	
Goodness-of-fit on F ²	1.064	
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.1082	
R indices (all data)	R1 = 0.0607, wR2 = 0.1168	
Largest diff. peak and hole	0.885 and -0.421 e.Å ⁻³	

Figure S1. ORTEP drawing of 1-phenylbicyclo[2.2.2]octasilane. Hydrogen atoms are omitted for clarity. (30% thermal ellipsoide)

Figure S2. Packing of 1-phenylbicyclo[2.2.2]octasilane.

	Х	у	Z	U(eq)
Si(1)	8030(1)	1889(1)	4855(1)	22(1)
Si(2)	10255(1)	1992(1)	5325(1)	27(1)
Si(3)	10333(1)	2912(1)	6302(1)	28(1)
Si(4)	8165(1)	3140(1)	6707(1)	29(1)
Si(5)	7186(1)	1860(1)	6871(1)	31(1)
Si(6)	6707(1)	1281(1)	5736(1)	28(1)
Si(7)	7186(1)	3202(1)	4647(1)	30(1)
Si(8)	6980(1)	3873(1)	5782(1)	39(1)
C(1)	7937(2)	1255(1)	3994(1)	28(1)
C(2)	9039(3)	1172(2)	3564(1)	49(1)
C(3)	9003(3)	692(2)	2948(2)	61(1)
C(4)	7854(3)	284(2)	2751(1)	54(1)
C(5)	6742(3)	350(2)	3166(1)	51(1)
C(6)	6785(3)	832(2)	3782(1)	43(1)
C(7)	10821(3)	953(1)	5639(2)	44(1)
C(8)	11499(2)	2368(2)	4650(1)	47(1)
C(9)	11499(3)	2504(2)	7039(1)	46(1)
C(10)	11075(3)	3903(2)	5993(2)	49(1)
C(11)	8213(3)	3736(2)	7583(1)	48(1)
C(12)	8365(3)	1167(2)	7406(1)	50(1)
C(13)	5590(3)	1951(2)	7389(2)	59(1)
C(14)	7011(3)	151(1)	5773(1)	45(1)
C(15)	4854(2)	1463(2)	5530(1)	48(1)
C(16)	5503(3)	3163(2)	4153(1)	51(1)
C(17)	8351(3)	3788(2)	4059(2)	52(1)
C(18)	7659(4)	4944(2)	5733(2)	61(1)
C(19)	5137(3)	3974(2)	5976(2)	67(1)

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for 1-phenylbicyclo[2.2.2]octasilane (1). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Si(1)-C(1)	1.906(2)	C(10)-Si(3)-Si(4)	109.63(9)
Si(1)-Si(7)	2.3404(8)	C(9)-Si(3)-Si(4)	112.01(9)
Si(1)-Si(6)	2.3568(8)	C(10)-Si(3)-Si(2)	108.68(9)
Si(1)-Si(2)	2.3573(8)	C(9)-Si(3)-Si(2)	109.49(9)
Si(2)-C(7)	1.882(2)	Si(4)-Si(3)-Si(2)	110.12(3)
Si(2)-C(8)	1.895(2)	C(11)-Si(4)-Si(5)	110.42(9)
Si(2)-Si(3)	2.3591(8)	C(11)-Si(4)-Si(3)	111.25(9)
Si(3)-C(10)	1.884(2)	Si(5)-Si(4)-Si(3)	106.90(3)
Si(3)-C(9)	1.886(2)	C(11)-Si(4)-Si(8)	110.87(9)
Si(3)-Si(4)	2.3402(8)	Si(5)-Si(4)-Si(8)	110.50(3)
Si(4)-C(11)	1.897(2)	Si(3)-Si(4)-Si(8)	106.77(3)
Si(4)-Si(5)	2.3395(8)	C(12)-Si(5)-C(13)	107.27(14)
Si(4)-Si(8)	2.3753(9)	C(12)-Si(5)-Si(4)	110.81(8)
Si(5)-C(12)	1.891(3)	C(13)-Si(5)-Si(4)	110.88(10)
Si(5)-C(13)	1.892(3)	C(12)-Si(5)-Si(6)	109.32(9)
Si(5)-Si(6)	2.3442(8)	C(13)-Si(5)-Si(6)	109.91(9)
Si(6)-C(14)	1.880(2)	Si(4)-Si(5)-Si(6)	108.63(3)
Si(6)-C(15)	1.894(2)	C(14)-Si(6)-C(15)	108.49(13)
Si(7)-C(16)	1.882(3)	C(14)-Si(6)-Si(5)	109.90(8)
Si(7)-C(17)	1.883(3)	C(15)-Si(6)-Si(5)	106.47(9)
Si(7)-Si(8)	2.3930(9)	C(14)-Si(6)-Si(1)	110.43(9)
Si(8)-C(18)	1.887(3)	C(15)-Si(6)-Si(1)	110.88(9)
Si(8)-C(19)	1.888(3)	Si(5)-Si(6)-Si(1)	110.57(3)
C(1)-C(6)	1.386(3)	C(16)-Si(7)-C(17)	106.91(13)
C(1)-C(2)	1.386(3)	C(16)-Si(7)-Si(1)	110.94(9)
C(2)-C(3)	1.388(4)	C(17)-Si(7)-Si(1)	109.97(9)
C(3)-C(4)	1.364(4)	C(16)-Si(7)-Si(8)	109.99(9)
C(4)-C(5)	1.375(4)	C(17)-Si(7)-Si(8)	110.40(9)
C(5)-C(6)	1.391(3)	Si(1)-Si(7)-Si(8)	108.63(3)
		C(18)-Si(8)-C(19)	106.20(16)
C(1)-Si(1)-Si(7)	110.93(6)	C(18)-Si(8)-Si(4)	109.68(10)
C(1)-Si(1)-Si(6)	109.87(7)	C(19)-Si(8)-Si(4)	111.55(10)
Si(7)-Si(1)-Si(6)	107.36(3)	C(18)-Si(8)-Si(7)	110.15(10)
C(1)-Si(1)-Si(2)	111.48(7)	C(19)-Si(8)-Si(7)	108.81(10)
Si(7)-Si(1)-Si(2)	108.76(3)	Si(4)-Si(8)-Si(7)	110.37(3)
Si(6)-Si(1)-Si(2)	108.32(3)	C(6)-C(1)-C(2)	116.8(2)
C(7)-Si(2)-C(8)	107.70(12)	C(6)-C(1)-Si(1)	121.74(17)
C(7)-Si(2)-Si(1)	108.45(8)	C(2)-C(1)-Si(1)	121.42(17)
C(8)-Si(2)-Si(1)	114.00(8)	C(1)-C(2)-C(3)	122.2(3)
C(7)-Si(2)-Si(3)	109.84(9)	C(4)-C(3)-C(2)	119.8(3)
C(8)-Si(2)-Si(3)	107.20(9)	C(3)-C(4)-C(5)	119.6(2)
Si(1)-Si(2)-Si(3)	109.59(3)	C(4)-C(5)-C(6)	120.3(3)
C(10)-Si(3)-C(9)	106.81(12)	C(1)-C(6)-C(5)	121.3(2)

Table S3.	Bond lengths [Å]	and angles [°] for	1-phenylbicyclo[2.2.2]octasilane (1)
-----------	------------------	--------------------	-----------------------	-----------------

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{\text{Si}(1)}$	22(1)	24(1)	21(1)	0(1)	1(1)	-2(1)
Si(2)	20(1)	31(1)	29(1)	0(1)	2(1)	1(1)
Si(3)	24(1)	30(1)	31(1)	0(1)	-2(1)	-5(1)
Si(4)	29(1)	30(1)	29(1)	-5(1)	1(1)	-1(1)
Si(5)	30(1)	40(1)	22(1)	-1(1)	3(1)	-10(1)
Si(6)	26(1)	34(1)	23(1)	0(1)	0(1)	-11(1)
Si(7)	31(1)	30(1)	29(1)	2(1)	-1(1)	5(1)
Si(8)	40(1)	47(1)	30(1)	2(1)	2(1)	11(1)
C(1)	37(1)	24(1)	23(1)	2(1)	-1(1)	2(1)
C(2)	50(2)	62(2)	34(1)	-8(1)	6(1)	-6(1)
C(3)	68(2)	81(2)	35(1)	-16(1)	10(1)	8(2)
C(4)	81(2)	50(2)	30(1)	-10(1)	-10(1)	17(1)
C(5)	60(2)	50(2)	42(1)	-10(1)	-16(1)	-1(1)
C(6)	44(1)	47(1)	37(1)	-7(1)	-2(1)	-3(1)
C(7)	41(1)	38(1)	53(2)	1(1)	-5(1)	13(1)
C(8)	30(1)	67(2)	43(1)	5(1)	10(1)	-4(1)
C(9)	38(1)	58(2)	42(1)	-1(1)	-14(1)	-3(1)
C(10)	47(2)	44(1)	55(2)	3(1)	3(1)	-19(1)
C(11)	55(2)	50(2)	40(1)	-18(1)	1(1)	0(1)
C(12)	65(2)	46(1)	39(1)	13(1)	-17(1)	-16(1)
C(13)	49(2)	87(2)	42(2)	-16(1)	23(1)	-19(2)
C(14)	64(2)	33(1)	40(1)	0(1)	5(1)	-16(1)
C(15)	29(1)	77(2)	39(1)	0(1)	-1(1)	-16(1)
C(16)	46(2)	65(2)	40(1)	-1(1)	-16(1)	16(1)
C(17)	69(2)	38(1)	50(2)	14(1)	15(1)	-1(1)
C(18)	90(2)	42(2)	51(2)	2(1)	1(2)	14(2)
C(19)	47(2)	111(3)	43(2)	0(2)	7(1)	32(2)

Table S4. Anisotropic displacement parameters (Å²x 10³) for 1-phenylbicyclo[2.2.2]octasilane (1). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table S5.	Hydroge	n coor	dinates (x 10 ⁴)	and isotropic	displa	cement	parameters	$(Å^2x)$	10 3)
for 1-pheny	ylbicyclo[2.2.2]	octasilane	(1).						

	Х	У	Z	U(eq)
H(2)	9846	1453	3695	58
H(3)	9776	648	2665	73
H(4)	7823	-45	2329	65
H(5)	5941	66	3031	61
H(6)	6008	872	4064	51
H(7A)	10196	745	5992	66
H(7B)	11725	992	5864	66
H(7C)	10837	582	5226	66
H(8A)	11228	2909	4477	70
H(8B)	11516	1989	4243	70
H(8C)	12397	2399	4883	70
H(9A)	11152	1984	7213	69
H(9B)	11556	2895	7438	69
H(9C)	12395	2421	6849	69
H(10A)	10496	4137	5608	73
H(10R)	11972	3803	5810	73
H(10C)	11144	4284	6399	73
H(11A)	8624	4270	7506	73
H(11R)	8744	3435	7950	72
H(11C)	7295	3810	7746	72
H(12A)	9205	1105	7151	76
H(12R)	7943	632	7461	76
H(12D)	8558	1405	7883	76
H(12C) $H(13\Delta)$	4953	2307	7125	89
H(13R)	5800	2183	7866	89
H(13C)	5189	1410	7443	89
$H(14\Delta)$	7967	47	5879	68
H(14R)	6748	-03	5307	68
H(14C)	6/77	-93	6151	68
H(14C)	/670	2051	5510	72
H(15R)	4079	1217	5908	72
H(15D) H(15C)	4500	1217	5064	72
H(15C)	4399	2864	3004 4443	72
H(16R)	4804	2804	3680	70
H(16C)	5172	2007	3089 4070	70
H(10C)	0242	2022	4070	70
$\Pi(1/\mathbf{A})$ $\Pi(17\mathbf{D})$	9242 7004	3023	4299	70
H(1/D) H(17C)	/ 774 0/1	4339	37/0	/ 0 70
H(1/C) H(18A)	0421	1076	5622	/0
11(10A) 11(19D)	0019	4720 5001	5055	91 01
П(10D) Ц(19C)	/333	JZZI 5242	0194 5277	91 01
$\Pi(10C)$ $\Pi(10A)$	/1/0	J∠43 2421	<i>3347</i>	91 100
$\Pi(19A)$ $\Pi(10D)$	4/33	5451 1701	5502	100
П(19 D) Ц(10 C)	4080	4281	2280 6422	100
n(19C)	5041	4204	0433	100

Si(2)-Si(1)-C(1)-C(2)	-24.5(2)
Si(6)-Si(1)-C(1)-C(2)	-144.58(18)
Si(7)-Si(1)-C(1)-C(2)	96.87(19)
Si(1)-Si(2)-Si(3)-Si(4)	16.10(4)
Si(1)-Si(6)-Si(5)-Si(4)	21.15(4)
Si(1)-Si(7)-Si(8)-Si(4)	13.73(5)

 Table S6.
 Torsion angles [°] for 1-phenylbicyclo[2.2.2]octasilane (1).

2. Fluorescence Spectra of Phenyl[tris(trimethylsilyl)]silane (4) in Various Solvents

Phenyl[tris(trimethylsilyl)]silane (4) shows no ICT fluorescence in non-polar hexane as described in text; 4 shows only a weak LE fluorescence at 290 nm. Compound 4 however shows a very week ICT fluorescence band at 340 and 360 nm in polar CH_2Cl_2 and CH_3CN solvents, respectively, together with the LE fluorescence (Figure S3). The weak ICT fluorescence of 4 in polar solvents is in accord with the existence of a mechanism to stabilize the ICT state in polar solvents different from the OICT mechanism, as shown in our previous papers.^{*1}

Figure S3. Fluorescence spectra of phenyltris(trimethylsilyl)silane (4); (a) in hexane (solid line);(b) in dichloromethane (dashed line); (c) in acetonitrile (right, dotted line).

*1. (a) H. Sakurai, H. Sugiyama and M. Kira, *J. Phys. Chem.*, 1990, **94**, 1837. (b) M. Kira, T. Miyazawa, H. Sugiyama, M. Yamaguchi and H. Sakurai, *J. Am. Chem. Soc.*, 1993, **115**, 3116.