Facile insertion reaction of arynes into carbon-carbon σ-bonds

Hiroto Yoshida,* Masahiko Watanabe, Joji Ohshita, and Atsutaka Kunai*
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.

Supplementary Information

General Remarks.
All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on a JEOL EX-270 $\left({ }^{1} \mathrm{H}, 270\right.$ $\left.\mathrm{MHz},{ }^{13} \mathrm{C}, 67.8 \mathrm{MHz}\right)$ spectrometer or a JEOL Lambda-400 (${ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 99.5 \mathrm{MHz}$) spectrometer using residual chloroform (${ }^{1} \mathrm{H}$) or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}\right)$ as an internal standard. Highresolution mass spectra were obtained with a Hitachi M-80B spectrometer. The preparative recycling gel permeation chromatography was performed with GL Science PU 614 equipped with Shodex GPC H-2001L and -2002L columns (chloroform as an eluent). Column chromatography was carried out using Merck Kieselgel 60. Unless otherwise noted, commercially available reagents were used without purification. THF was distilled from sodium/benzophenone ketyl. 18-Crown-6 was recrystallized from distilled MeCN. KF (spray-dried) was vacuum dried at $100^{\circ} \mathrm{C}$ for 12 h .

Aryne Precursors. 2-(Trimethylsilyl)phenyl triflate (1a), ${ }^{1}$ 3-(trimethylsilyl)-2-naphthyl triflate (1b), ${ }^{2}$ 4,5-dimethyl-2-(trimethylsilyl)phenyl triflate (1c), ${ }^{3}$ 6-(trimethylsilyl)-5-indanyl triflate (1d), ${ }^{3}$ and 3,6-dimethoxy-2-(trimethylsilyl)phenyl triflate (1e), ${ }^{3}$ 3-methoxy-2-(trimethylsilyl)phenyl triflate (1f) ${ }^{4}$ and 4-methyl-2-(trimethylsilyl)phenyl triflate ($\mathbf{1 g})^{5}$ were prepared according to literature procedures.
β-Dicarbonyl Compounds. All β-dicarbonyl compounds were commercially available, except for $2 \mathbf{e}$ and $\mathbf{2 f}$, which were synthesized from the corresponding diols and malonyl dichloride by a literature method. ${ }^{6}$

Reaction of Arynes with β-Dicarbonyl Compounds. A General Procedure. To a THF solution (4.0 mL) of 18 -crown- $6(0.127 \mathrm{~g}, 0.48 \mathrm{mmol}), \mathbf{1}(0.24 \mathrm{mmol})$ and $2(0.20$ $\mathrm{mmol})$ was added $\mathrm{KF}(0.028 \mathrm{~g}, 0.48 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature for the time specified in Schemes 1 and 2. The mixture was diluted with ethyl acetate, filtered through a Celite plug, washed three times with brine and dried over MgSO_{4}. Evaporation of the solvent followed by silica-gel column chromatography or gel permeation chromatography gave the corresponding product.

Ethyl 2-(ethoxycarbonyl)phenylacetate (3aa). ${ }^{7}$ Isolated in 71% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 2$ H), $4.16(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 14.1$, 14.2, 40.7, 60.7, 60.9, 127.3, 130.1, 130.9, 132.1, 135.8, 167.1, 171.5.

Butyl 2-(butoxycarbonyl)phenylacetate (3ab). ${ }^{7} \quad$ Isolated in 70% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \oint 0.84-1.08(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.81(\mathrm{~m}, 8 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.57(\mathrm{~m}, 3 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \oint 13.65,13.72,19.0,19.3,30.6,30.7,40.6,64.6,64.8,127.2,130.9,132.10,132.13$, 136.0, 167.2, 171.5.

2-(Benzoylmethyl)benzophenone (3ac). ${ }^{8} \quad$ Isolated in 68% yield as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \oint 4.62(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.62(\mathrm{~m}, 10 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \$ 43.1,126.2,128.2,128.5,130.2,130.4,130.9,132.0,132.7$, 133.0, 134.7, 136.8, 137.9, 138.3, 197.0, 198.3.

2-(Acetylmethyl)acetophenone (3ad). ${ }^{9}$ Isolated in 56% yield as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \oint 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=0.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (dt, $J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=1.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \oint 28.6,30.0,127.3,130.2,132.2,132.9,135.1,136.4,201.0,205.7$.

$\mathbf{7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 - O c t a h y d r o - 1 7 H - 6 , 1 5 - d i o x a - b e n z o c y c l o p e n t a d e c e n e - 5 , 1 6 - d i o n e}$

 (3ae). Isolated in 61% yield as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \oint 1.17-1.81(\mathrm{~m}, 12 \mathrm{H}), 4.00$ (s, 2 H), $4.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \$ 25.8,25.89,25.92,28.5,28.56,28.58,28.64$, 29.07, 29.11, 29.19, 29.21, 41.0, 64.76, 64.83, 65.08, 65.12, 127.3, 130.2, 130.3, 131.0, $132.16,132.21,132.22,135.65,135.74,167.3,167.4,171.4$.
7,8,9,10,11,12,13,14,15,16,17,18-Dodecahydro-21H-6,19-dioxa-

benzocyclononadecene-5,20-dione (3af). Isolated in 49% yield as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \oint 1.15-1.83(\mathrm{~m}, 20 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2$ H), $7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \oint 25.8,25.9,25.96,26.00,28.56,28.58,28.60$,
28.63, 29.3, 29.4, 29.5, 29.58, 29.61, 29.65, 29.70, 41.0, 64.9, 65.2, 127.3, 130.16, 130.20, 131.0, 132.16, 132.22, 135.68, 135.73, 167.3, 171.5.

3-(Benzoylmethyl)-2-naphthyl phenyl ketone (3bc). Isolated in 71% yield as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \oint 4.85(\mathrm{~s}, 2 \mathrm{H}), 7.41-8.04(\mathrm{~m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ §43.5, 126.5, 127.4, 128.0, 128.2, 128.5, 128.8, 128.9, 130.5, 131.0, 131.1, 131.2, 131.46, 131.53, 132.7, 133.0, 134.3, 136.2, 136.9, 138.1, 197.5, 198.2.

2-(Benzoylmethyl)-4,5-dimethylbenzophenone (3cc). Isolated in 61% yield as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \oint 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.23$ (s, 1 H), 7.37-7.58 (m, 6 H), $7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \$ 19.3,19.8,42.8,128.1,128.2,128.4,130.2,131.9,132.4,132.8,133.4,134.5$, 135.6, 136.9, 138.4, 140.1, 197.5, 198.3.

2-(Benzoylmethyl)-4,5-trimethylenebenzophenone (3dc). Isolated in 82% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) ~ \oint 2.12$ (quint, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.97 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.58 ($\mathrm{s}, 2 \mathrm{H}$), 7.20 ($\mathrm{s}, 1 \mathrm{H}$), 7.30 ($\mathrm{s}, 1 \mathrm{H}), 7.35-7.65$ (m, 6 H), 7.81 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 25.3,32.4,32.9,43.2,126.6$, 128.1, 128.2, 128.4, 128.6, 130.2, 132.4, 132.87, 132.92, 136.1, 136.9, 138.5, 142.3, 147.9, 197.6, 198.6.

2-(Benzoylmethyl)-3,6-dimethoxybenzophenone (3ec). Isolated in 82% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ §37.1, 56.0, 56.1, 110.5, 111.8, 123.2, 127.9, 128.3, 129.6, 131.0, 132.7, 133.3, 136.8, 137.4, 150.6, 152.1, 196.4, 197.4.

2-(Benzoylmethyl)-6-methoxybenzophenone (3fc). Isolated in 66% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.59(\mathrm{~m}, 7 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 42.2,55.6,109.7,123.1,128.28,128.32,128.4,129.5,130.4,133.0,133.2$, 133.8, 136.4, 137.6, 157.1, 196.8, 197.7.

Structure Determination of 3fc
The structure of $\mathbf{3 f c}$ was determined by NOE in ${ }^{1} \mathrm{H}$ NMR. As shown below, irradiation of the methylene proton of $\mathbf{3 f c}$ enhanced H_{a}.

A mixture of 2-(Benzoylmethyl)-4-methylbenzophenone (3gc) and 2-
(Benzoylmethyl)-5-methylbenzophenone (3'gc). Isolated in 76% yield as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \$ 2.36$ (s, major), 2.42 (s, minor) 4.56 (s, major), 4.62 (s, minor), 7.12-7.60 (m), 7.77-7.87 (m), 7.92-8.03 (m); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \oint 21.0,21.4,42.7,43.2$, 126.9, 128.1, 128.2, 128.4, 128.7, 128.8, 129.65, 129.70, 130.2, 130.3, 130.7, 130.9, 131.5, $131.6,131.9,132.5,132.7,132.9,133.4,135.0,135.2,136.0,136.8,137.9,138.2,138.3$, 141.5, 197.3, 198.2, 198.5.
${ }^{1}$ H NMR integration ratio
2.36 (s) : 2.42 (s) : 4.56 (s) : $4.62(\mathrm{~s}): 7.12-7.60(\mathrm{~m}): 7.77-7.87(\mathrm{~m}): 7.92-8.03(\mathrm{~m})=3.40:$
$2.49: 2.00: 1.59: 19.49: 3.62: 4.55$.

References

[1] Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett., 1983, 1211.
[2] H. Yoshida, T. Terayama, J. Ohshita and A. Kunai, Chem. Commun., 2004, 1980.
[3] H. Yoshida, S. Sugiura and A. Kunai, Org. Lett., 2002, 4, 2767.
[4] D. Peña, D. Pérez, E. Guitián and L. Castedo, J. Am. Chem. Soc., 1999, 121, 5827.
[5] E. Yoshikawa, K. V. Radhakrishnan and Y. Yamamoto, J. Am. Chem. Soc., 2000, 122, 7280.
[6] E. M. Arnett and J. A. Harrelson, Jr., J. Am. Chem. Soc., 1987, 109, 809.
[7] S. C. Shim, C. H. Doh, D. Y. Lee, Y. Z. Youn, S. Y. Lee, S. A. Chae, D. H. Oh and H. Oh, Bull. Korean Chem. Soc., 1992, 13, 45.
[8] T. Sugimoto, K. Teshima, N. Nakamura, M. Nojima, S. Kusabayashi and K. J. McCullough, J. Org. Chem., 1993, 58, 135.
[9] Y. L. Chow and X. Ouyang, Can. J. Chem., 1991, 69, 423.

