SUPORTING INFORMATION FOR Mono-Functionalization of Resorcinarenes

Experimental Section

General

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were obtained using a Bruker DRX-600 or a Bruker AM-300 spectrometer. MALDI-FTMS experiments were performed on an lonSpec FTMS mass spectrometer. Electrospray MS experiments were performed on a single-quadrapole PerkinElmer API-100 Sciex mass spectrometer. All reagents were used as purchased from Aldrich unless otherwise indicated.

Monohydroxy Resorcinarene (1):

To a stirred solution of resorcinol ($20.00 \mathrm{~g}, 181.6$ mmol) in $\mathrm{MeOH}(150 \mathrm{ml})$ cooled to $0^{\circ} \mathrm{C}$ was added 2,3-dehydro furan ($3.44 \mathrm{ml}, 45.41 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and hexanal ($16.76 \mathrm{ml}, 136.2 \mathrm{mmol}, 3.0 \mathrm{eq}$.). HCl (conc.) (36 ml) was then added dropwise over 10 minutes. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ and stirred for 7 days. The red solution was poured into distilled water (1 I), stirred for 1 hour and the precipitate was collected by vacuum filtration. The solid was dissolved in acetone (200 ml), dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of monohydroxy resorcinarene 1 was achieved by flash chromatography (silica) using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone 8:2 to 6:4 gradient.

- Yield: 8.45 g (24.6 \%)
- Symmetry: $\boldsymbol{C}_{\mathrm{V}}$
- ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ Acetone $\left.-\boldsymbol{d}_{6}, \mathbf{6 0 0} \mathrm{MHz}\right): \delta=8.45(\mathrm{~s}, 8 \mathrm{H}, \mathbf{1}), 7.58(\mathrm{~s}, 4 \mathrm{H}, \mathbf{5}), 6.24(\mathrm{~s}, 4 \mathrm{H}, 3), 4.31(t, 4 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, \mathbf{6}\right), 3.60\left(\mathrm{~d} t, 2 \mathrm{H},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, \mathbf{9}\right), 3.45\left(t, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}, 10\right), 2.3(m, 8 \mathrm{H}$, 7,11), 1.52 ($m, 2 \mathrm{H}, 8$), 1.34 ($m, 18 \mathrm{H}, \mathbf{1 2 - 1 4}$), 0.90 ($m, 9 \mathrm{H}, 15$) ppm
- ${ }^{13}$ C-NMR (Acetone- $d_{6}, 150.9 \mathrm{MHz}$): $\delta=153.58 / 153.54$ (8 C, 2), 126.41/126.37/126.19/126.17/ 126.05 (12 C, 4.5), 104.59 (4 C, 3), 63.33 (1 C, 9), 35.34, 35.27, 35.19, 35.11, 34.99, 33.69, 33.66, $33.591,33.04,31.57,31.28,29.67,29.65,29.60,24.41,24.39,15.44(3 \mathrm{C}, 15) \mathrm{ppm}$
- MS (ESI-high acc.): $m / z=779.41[\mathrm{MNa}]^{+}$

Octabenzylated Resorcinarene (2):

To a stirred solution of $1(2.0 \mathrm{~g}, 2.64 \mathrm{mmol})$ in acetone (80 ml) under N_{2} atmosphere was added $\mathrm{K}_{2} \mathrm{CO}_{3}(5.4 \mathrm{~g}, 39.1 \mathrm{mmol})$ and $\mathrm{NaI}(3.0$ $\mathrm{g}, 20.0 \mathrm{mmol})$. The mixture was stirred for 2 hours at room temperature. Benzyl bromide ($4.52 \mathrm{~g}, 3.12 \mathrm{ml}, 26.4 \mathrm{mmol}, 10 \mathrm{eq}$.) was added over 5 minutes and the reaction mixture was heated to reflux for 7 days.

To the cooled crude reaction mixture was added ethyl acetate (100 ml) and the precipitate was removed by vacuum filtration. The filtrate was concentrated in vacuo. Purification of benzylated monohydroxy resorcinarene 2 was achieved by flash chromatography (silica) using a hexanes/ethyl acetate 6:1 to 4:1 gradient.

- Yield: 2.0 g (51 \%)
- Symmetry: \boldsymbol{C}_{1}
- ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.20$ (br. $\left.\mathrm{s}, 28 \mathrm{H}, 1 / 2 / 3 / 9\right), 6.81\left(, \mathrm{~d}^{\prime}, 4 \mathrm{H}, 7\right.$), 5.0/4.8(m,20 H, 5/10), $3.54(m, 2 \mathrm{H}, 13), 3.29\left(t, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 14\right), 1.95(m, 8 \mathrm{H}, 11 / 15), 1.61(m, 2 \mathrm{H}, 12), 1.38$ ($m, 18 \mathrm{H}, 16-18$), $0.80(\mathrm{~m}, 9 \mathrm{H}, 19) \mathrm{ppm}$
- ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150.9 \mathrm{MHz}\right): \delta=155.47,141.41,138.09,137.90,129.02,128.69,128.61$, 128.09, 128.00, 127.89, 127.81, 127.64, 127.44, 126.85, 99.44, 71.25, 71.03, 65.79, 63.16, 36.77, $35.71,35.04,32.74,32.70,31.41,30.64,28.71,26.17,23.23,14.65 \mathrm{ppm}$
- MS (ESI): ${ }^{m} / z=1478.81[M H]^{+}, 1499.79[M N a]^{+}$

To a solution of $1(3.0 \mathrm{~g}, 3.96 \mathrm{mmol})$ and tertbutyldimethylsilyl chloride (10.75 g, 71.34 mmol) in anhydrous DMF (100 ml) under N_{2} atmosphere was added imidazole (9.71 g , 142.70 mmol). The solution changed from red to yellow immediately. The reaction mixture was heated to $75^{\circ} \mathrm{C}$ for 7 days. The solution was cooled to room temperature and poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{ml})$ and NaHCO_{3} (saturated aqueous) (500 ml). The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 150 \mathrm{ml}$). The combined organic layers were washed with NaHCO_{3} (saturated aqueous) ($2 \times 250 \mathrm{ml}$) and NaCl (saturated aqueous) (300 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

Purification of the globally protected TBDMS resorcinarene 3 was achieved by flash chromatography (silica) using a hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 0$ to $20: 1$ gradient.

- Yield: 3.6 g (50 \%)
- Symmetry: \boldsymbol{C}_{1}
 ($\mathrm{s}, 2 \mathrm{H}, 7$), $4.38(\mathrm{~m}, 4 \mathrm{H}, 8$), $3.52(\mathrm{~m}, 2 \mathrm{H}, \mathbf{1 1}), 2.00 / 1.93(\mathrm{~m}, 4 \mathrm{H}, 9 / 16), 1.74(\mathrm{~m}, 4 \mathrm{H}, 16), 1.46(\mathrm{~m}$, $2 \mathrm{H}, \mathbf{1 0}$), 1.22 ($\mathrm{m}, 18 \mathrm{H}, \mathbf{1 7 - 1 9}$), 1.09 ($\mathrm{s}, 36 \mathrm{H}, \mathbf{1}$), 0.86 ($\mathrm{s}, 36 \mathrm{H}, \mathbf{1}$), 0.85 ($\mathrm{s}, 9 \mathrm{H}, 15$), 0.83 ($\mathrm{m}, 9 \mathrm{H}$, 20), $0.37(\mathrm{~s}, 24 \mathrm{H}, 3), 0,06(\mathrm{~s}, 12 \mathrm{H}, 3),-0.01(\mathrm{~s}, 6 \mathrm{H}, 13),-0.14(\mathrm{~s}, 12 \mathrm{H}, 3) \mathrm{ppm}$
- ${ }^{13}$ C-NMR (CDCl $_{3}, \mathbf{1 5 0 . 9} \mathrm{MHz}$): $\delta=152.28,152.23,150.63,150.61,150.57,129.16,129.13$, 129.11, 129.07, 129.04, 128.84, 126.28, 126.14, 123.82, 123.71, 123.49, 110.09, 110.02, 107.48, 107.38, 63.92, 37.62, 37.59, 36.97, 35.76, 32.59, 32.50, 28.78, 28.71, 26.25, 26.04, 22.92, 22.86, $18.49,18.43,18.39,18.28,14.25,-3.74,-3.85,-3.92,-4.01,-5.32 \mathrm{ppm}$
- MS (ESI-high acc.): $m / z=1784.20[M]^{+}, 1806.22[M N a]^{+}$

To a solution of 3 (2.21 g, 1.23 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and $\mathrm{MeOH}(50 \mathrm{ml})$ was added a solution of $\mathrm{I}_{2}(60 \mathrm{mg}, 0.24 \mathrm{mmol})$ in MeOH (6 ml). The reaction mixture was stirred for 5 hours at room temperature, after which $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (300 mg) was added resulting in a colorless solution. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was added, the mixture was filtered and the filtrate was concentrated in vacuo.

Purification of the mono hydroxy TBDMS resorcinarene 4 was achieved by flash chromatography (silica) using a hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:0 to 2:1 gradient.

- Yield: 1.41 g (69 \%)
- Symmetry: \boldsymbol{C}_{1}
- ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=7.13 / 7.12\left(„ \mathrm{~d}^{\prime}, 2 \mathrm{H}, 7\right), 6.34 / 6.33$ („, $\mathrm{d}^{\prime}, 2 \mathrm{H}, 7$), 6.24/6.22 („d", 2 H , 5), 6.11/6.10 ("d", $2 \mathrm{H}, 5$), 4.40 ($m, 4 \mathrm{H}, 8$), 3.56 ($m, 2 \mathrm{H}, 11$), 2.04 (,t $t^{\prime \prime}, 1 \mathrm{H}, 12$), 1.93 ($m, 4 \mathrm{H}, 10$), 1.73 ($m, 4 \mathrm{H}, 9 / 13$), 1.50 ($m, 4 \mathrm{H}, 9 / 13$), 1.21 ($m, 18 \mathrm{H}, 14-16$), $1.09(\mathrm{~s}, 36 \mathrm{H}, 1), 0.83(m, 9 \mathrm{H}, 17)$, 0.37 (s, $24 \mathrm{H}, 3$), 0,06 (s, $12 \mathrm{H}, 3$), -0.14 (s, $12 \mathrm{H}, 3$) ppm
- ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150.9 \mathrm{MHz}\right): \delta=152.89,152.73,152.70,151.22,151.10,151.04,129.81$, $129.56,129.54,129.43,129.40,128.98,126.66,126.55,124.34,124.15,124.12,123.58,110.62$, $110.50,107.90,107.86,64.03,53.83,38.10,38.02,37.56,36.21,36.11,33.04,32.99,32.50$, $31.89,29.23,26.55,23.40,23.36,18.91,18.89,18.87,18.73,14.69,-3.27,-3.28,-3.31,-3.46,-$ 3.48, -3.55, -3.57 ppm
- MS (ESI-high acc.): ${ }^{m} / z=1670.12\left[\mathrm{MH}^{+}, 1692.10[\mathrm{MNa}]^{+}\right.$

