Stable Spirocyclic Neutral Radicals: Aluminum and Gallium Boraamidinates**

Tristram Chivers,* Dana J. Eisler, Chantall Fedorchuk, Gabriele Schatte, Heikki M. Tuononen and René T. Boeré

Supplementary Information

Experimental Section

All reactions and the manipulations of products were carried out under anaerobic and anhydrous conditions using Schlenk techniques and an inert-atmosphere (argon) glove box. The reagents AlCl₃ and I₂ were sublimed prior to use. Filtrations were performed using a PTFE filter disk (Acrodisc syringe filter; diameter: 25 mm; pore size: 0.45 μ m). The compounds Li₂[PhB(μ -N'Bu)₂] and { μ -Li(OEt₂)[PhB(μ -N'Bu)₂]₂Ga} (**4b**) were prepared by literature procedures.^[1, 2] X-band EPR spectra were recorded on a Bruker EMX 113 spectrometer equipped with a variable-temperature accessory. NMR spectra were obtained on C₆D₆ solutions at 298 K using a Bruker DRX 400 spectrometer. ¹H, ²⁷Al, ¹¹B, ¹³C, ⁷¹Ga, and ⁷Li NMR spectra were referenced to the external standards Me₄Si in CDCl₃, Al(NO₃)₃ in D₂O, BF₃·OEt₂ in C₆D₆, Me₄Si in CDCl₃, Ga(NO₃)₃ in D₂O, and 1.0 M LiCl in D₂O, respectively. EPR spectral simulations were carried out by using the XEMR v. 0.7^[3a] and WINEPR SimFonia v. 1.25^[3b] programs.

{[PhB(μ -N^tBu)₂]AlCl(OEt₂)}, 3: A colourless solution of Li₂[PhB(μ -N^tBu)₂] (0.46 g, 1.86 mmol) in Et₂O (50 mL) was added to solid AlCl₃ (0.25 g, 1.86 mmol) # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

cooled to 195 K producing a bright purple reaction mixture. After 15 min., the reaction mixture was allowed to reach 295 K affording a clear colourless solution. After 15 min. at 295 K, a cloudy pale yellow reaction mixture was produced that was stirred for 18 h. The resulting mixture was filtered to remove LiCl. Removal of solvent in vacuo and addition of cold *n*-hexane afforded a pale yellow precipitate of **3** (0.41 g, 1.11 mmol, 60 %) that was washed twice with cold *n*-hexane. Elemental analysis calcd (%) for C₁₄H₂₃AlClBN₂: C 58.95, H 9.07, N 7.64; found: C 58.42, H 9.25, N 7.72; ¹H NMR: δ = 7.63 (d, 2H; -C₆H₅), 7.24 (m, 3H; -C₆H₅), 3.76 [q, 4H; (CH₃C<u>H</u>₂)₂O], 1.22 [s, 18H; -C(C<u>H</u>₃)₃], 0.81 ppm [t, 6H; (C<u>H</u>₃CH₂)₂O]; ¹¹B NMR: δ = 36 ppm (br s); ¹³C NMR: δ = 155.0 (-C₆H₅), 132.7 (-C₆H₅), 127.4 (-C₆H₅), 126.3 (-C₆H₅), 66.4 [(CH₃CH₂)₂O], 49.7 [-<u>C</u>(CH₃)₃], 35.6 [-C(<u>C</u>H₃)₃], 15.8 ppm [(<u>C</u>H₃CH₂)₂O].

{*μ*-Li(OEt₂)[PhB(*μ*-N^{*t*}Bu)₂]₂Al}, 4a: A colourless solution of Li₂[PhB(*μ*-N^{*t*}Bu)₂] (0.10 g, 0.43 mmol) in benzene (50 mL) was added to solid **3** (0.16 g, 0.43 mmol) cooled to 273 K. The reaction mixture was allowed to reach 295 K affording a clear colourless solution to which Et₂O (2 mL) was added. The mixture was heated at reflux for 18 h and then filtered to remove LiCl. After removal of solvent in vacuo, the residue was taken up in *n*-hexane affording colourless crystals of **4a** (0.08 g, 0.14 mmol, 33 %) at 258 K (4 d). Elemental analysis calcd (%) for C₃₂H₅₆AlB₂N₄LiO: C 67.62, H 9.93, N 9.86; found: C 67.31, H 10.12, N 10.01; ¹H NMR: δ = 7.60 (d, 4H; -C₆H₅), 7.33 (t, 4H; -C₆H₅), 7.21 (m, 2H; -C₆H₅), 3.16 [q, 4H; (CH₃C<u>H₂)₂O</u>], 1.36 [s, 36H; -C(C<u>H₃)₃], 0.92 ppm [t, 6H; (C<u>H</u>₃CH₂)₂O]; ²⁷Al NMR: δ = 488.2 ppm (s); ¹¹B NMR: δ = 39 ppm (br s); ¹³C NMR: δ = 157.4 (-C₆H₅), 132.7 (-C₆H₅), 127.7 (-C₆H₅), 126.6 (-C₆H₅), 66.0 [(CH₃<u>C</u>H₂)₂O], 50.9 [-<u>C</u>(CH₃)₃], 35.7 [-C(<u>C</u>H₃)₃], 14.7 ppm [(<u>C</u>H₃CH₂)₂O]; ⁷Li NMR: δ = 0.89 ppm (s).</u> # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

{[PhB(μ -N^{*t*}Bu)₂]₂Al}[•], 2a: A solution of I₂ in Et₂O (0.81 ml, 0.024 M, 0.019 mmol) was added to a colourless solution of 4a (0.022 g, 0.039 mmol) in Et₂O (15 ml) at 295 K instantly producing a dark red solution. After concentration followed by cooling (258 K, 24 h), the radical 2a was isolated as dark red crystals (0.016 g, 0.033 mmol, 84 %). Elemental analysis calcd (%) for C₂₈H₄₆AlB₂N₄: C 69.01, H 9.51, N 11.50; found: C 68.78, H 9.48, N 11.56; UV/Vis (Et₂O): $\lambda_{max} = 364$ (br), 461 (br), 551 nm (br); ²⁷Al NMR: $\delta = 262.1$ ppm (s).

{[**PhB**(μ -**N**^{*t*}**Bu**)₂]₂**Ga**}[•], **2b**: A solution of I₂ in Et₂O (1.10 ml, 0.0432 M, 0.048 mmol) was added to a colourless solution of **4b** (0.058 g, 0.095 mmol) in Et₂O (15 ml) at 295 K instantly producing a dark green solution. The reaction mixture was filtered to remove LiI and after removal of solvent in vacuo from the filtrate, the radical **2b** was isolated as a dark green powder (0.035 g, 0.066 mmol, 70 %). Dark green crystals of **2b** were isolated from a concentrated solution in Et₂O (258 K, 1 d). Elemental analysis calcd (%) for C₂₈H₄₆B₂GaN₄: C 63.45, H 8.75, N 10.57; found: C 63.95, H 8.73, N 10.32; UV/Vis (Et₂O): $\lambda_{max} = 355$ (br), 604 nm (br); ⁷¹Ga NMR: $\delta = -443.9$ ppm (s).

- [1] T. Chivers, C. Fedorchuk, G. Schatte, M. Parvez, *Inorg. Chem.* 2003, 42, 2084–2093.
- [2] T. Chivers, C. Fedorchuk, G. Schatte, J. K. Brask, Can. J. Chem. 2002, 80, 821–831.
- [3] a) J. Eloranta, University of Jyväskylä, Finland, XEMR version 0.7, **2004**; b) Bruker Analytische Messtechnik GmbH, *WINEPR SimFonia* version 1.25, **1996**.

Computational Details

The structures of diamagnetic monoanions { $[PhB(\mu-NMe)_2]_2M$ }⁻ and paramagnetic radicals { $[PhB(\mu-NMe)_2]_2M$ }[•] (M = Al, Ga) were optimized in their ground states using density functional theory. Hybrid PBE0 exchange-correlation functional^[1] and Ahlrichs' triple-zeta valence basis set augmented by one set of polarization functions (TZVP)^[2] were used in all optimizations. Hyperfine coupling constants were then calculated by single point calculations employing the optimized geometries, PBE0 functional, and unrestricted Kohn-Sham formalism. For B, N and Al, the single point calculations utilized the IGLO-III basis set^[3] in its completely uncontracted form and augmented with one additional steep s-function as well as f-polarization functions from the cc-pVTZ basis set.^[3] For C, H and Ga, the calculations utilized the cc-pVTZ basis^[3] in its standard form. A pruned (99,590) integration grid was used in all single point calculations to ensure numerical convergence of calculated hfc constants. All geometry optimizations were done with the Turbomole 5.7^[4] program package whereas Gaussian 03^[5] was used in all single point calculations.

- [1] a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865–3868; *ibid.* **1997**, 78, 1396; b) J. P. Perdew, K. Burke, M. Ernzerhof, *J. Chem. Phys.* **1996**, 105, 9982–9985; c) M. Ernzerhof, G. E. Scuseria, *J. Chem. Phys.* **1999**, 110, 5029–5036.
- [2] The TZVP basis set was used as referenced in the Turbomole 5.7^[4] internal basis set library.
- [3] The basis set was taken from EMSL basis set library: http://www.emsl.pnl.gov/forms/basisform.html. Site accessed December 2004.

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

- [4] TURBOMOLE, Program Package for *ab initio* Electronic Structure Calculations, Version 5.7. R. Ahlrichs, *et al.* Theoretical Chemistry Group, University of Karlsruhe, Karlsruhe, Germany, 2004.
- [5] Gaussian 03, Revision C.02, M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2004.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Figure S1. Schematic frontier KS-orbital diagrams of a) $\{[PhB(\mu-NMe)_2]_2Al\}^-$ and b) $\{[PhB(\mu-NMe)_2]_2Al\}^-$.