Supplementary data

Reversible caterpillar-motion-like isomerization in a N, N^{\prime}-dimethyl hexaphyrin(1.1.1.1.1.1) induced by two-electron oxidation or reduction
 Masaaki Suzuki and Atsuhiro Osuka*

Department of Chemistry, Graduate School of Science, Kyoto University, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sakyo-ku, Kyoto 606-8502 (Japan)

E-mail: osuka@kuchem.kyoto-u.ac.jp

Contents

1. Compound Data.
2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra.
3. UV-visible Absorption Spectra.
4. ESI-TOF Mass Spectra.
5. Isomerization Diagrams.
6. Mean Plane Deviation Diagrams.

7. Bond lengths.

1. Compound Data

. 15,30-bis(2,4,6-trifluorophenyl)-5,10,20,25-tetrakis(pentafluorophenyl)[26]hexaphyrin 3

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-2.55(\mathrm{~s}, 4 \mathrm{H}$, inner $\beta \mathrm{CH}$), -2.16 (br, NH), $7.80(\mathrm{~m}, 4 \mathrm{H}$, phenyl), $9.15(\mathrm{~d}, \mathrm{~J} 4.6$ $\mathrm{Hz}, 4 \mathrm{H}$, outer $\beta \mathrm{CH}$), and $9.41(\mathrm{~d}, \mathrm{~J} 4.4 \mathrm{~Hz}, 4 \mathrm{H}$, outer $\beta \mathrm{CH}) \mathrm{ppm} ; \mathrm{UV} / \mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }=1022,894,772$, 715, and 568 nm; ESI-TOF-MS (positive-mode) (\%intensity) : $\mathrm{C}_{66} \mathrm{H}_{19} \mathrm{~F}_{26} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]$: calcd.: 1389.13, found : 1389.11 (100).

. 5,20-bis(2,4,6-trifluorophenyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26]hexaphyrin 4

4 was not obtained as a pure form. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-2.60(\mathrm{~d}, J 4.1 \mathrm{~Hz}, 2 \mathrm{H}$, inner $\beta \mathrm{CH})$, $-2.54(\mathrm{~d}, \mathrm{~J} 3.8 \mathrm{~Hz}, 2 \mathrm{H}$, inner $\beta \mathrm{CH}$), -2.16 (br, NH), 7.20-7.90 (phenyl), $9.08(\mathrm{~d}, \mathrm{~J} 4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}$), 9.11 $(\mathrm{d}, J 5.0 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}), 9.42($ not clear, outer $\beta \mathrm{CH})$, and $9.52(\mathrm{~d}, J 4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}) \mathrm{ppm}$.

. 5,20-bis(2,4,6-trifluorophenyl)-10,15,25,30-tetrakis(pentafluoropheny)[28]hexaphyrin 6

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.31(\mathrm{~s}, 2 \mathrm{H}$, inner $\beta \mathrm{CH}), 2.44(\mathrm{~s}, 2 \mathrm{H}$, inner $\beta \mathrm{CH}), 3.98(\mathrm{~s}, 2 \mathrm{H}$, outer NH$)$, $6.71(\mathrm{t}, J 7.8 \mathrm{~Hz}$, phenyl), $7.65(\mathrm{~d}, J 4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}), 7.68(\mathrm{~d}, J 5.0 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}), 7.70(\mathrm{~d}, J 4.6$ $\mathrm{Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}$), and $7.80(\mathrm{~d}, \mathrm{~J} 4.6 \mathrm{~Hz}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}) \mathrm{ppm}$; $\mathrm{UV} / \mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }=763,591,445$, and 389 nm ; ESI-TOF-MS (positive-mode) (\%intensity) : $\mathrm{C}_{66} \mathrm{H}_{19} \mathrm{~F}_{26} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]$: calcd. : 1391.14, found : 1391.17 (100).

- meso-pentafluorophenyl N-methyl[26]hexaphyrin 7

Hexaphyrin 1 ($50 \mathrm{mg}, 0.0342 \mathrm{mmol}$) was added to a solution of TBAF $3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}$, large excess) and $\mathrm{CH}_{3} \mathrm{I}(11 \mu \mathrm{l}, 0.171 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{ml})$ and the resulting mixture was refluxed overnight. The solution was washed with water and evaporated. The reaction mixture was separated by silica gel
column chromatography with a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane as an eluent. After recrystallization from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane, N -methyl hexaphyrin 7 was obtained as green solids $(21.5 \mathrm{mg}$, $43 \%)$ together with the recovery of $1(19 \mathrm{mg}, 38 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-3.31(\mathrm{~s}, 3 \mathrm{H}$, methyl), $-1.70(\mathrm{~d}, \mathrm{~J} 4.1 \mathrm{~Hz}, 1 \mathrm{H}$, inner $\beta \mathrm{CH}),-1.08(\mathrm{~d}, \mathrm{~J} 4.1 \mathrm{~Hz}, 1 \mathrm{H}$, inner $\beta \mathrm{CH}),-0.96(\mathrm{~d}, \mathrm{~J} 4.5 \mathrm{~Hz}, 1 \mathrm{H}$, inner $\beta \mathrm{CH})$, $-0.78(\mathrm{br}, \mathrm{NH}),-0.61(\mathrm{~d}, J 4.5 \mathrm{~Hz}, 1 \mathrm{H}$, inner $\beta \mathrm{CH}), 7.80(\mathrm{~d}, J 4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH}), 8.15(\mathrm{~d}, J 4.6 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH}$), $8.62(\mathrm{~d}, \mathrm{~J} 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH}$), $8.71(\mathrm{~d}, \mathrm{~J} 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH}), 8.72(\mathrm{~d}, \mathrm{~J} 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH}), 8.77(\mathrm{~d}, \mathrm{~J} 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH}), 9.06(\mathrm{~d}, J 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta \mathrm{CH})$, and $9.14(\mathrm{~d}, \mathrm{~J} 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, outer $\beta C H) \mathrm{ppm} ; \mathrm{UV} / \operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\varepsilon)=1041(1800), 896(4100), 774(11000), 717(19000), 570(190000)$, and 406 (23000) nm; ESI-TOF-MS (positive-mode) (\%intensity) : $\mathrm{C}_{67} \mathrm{H}_{17} \mathrm{~F}_{30} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]$: calcd. : 1475.1030, found : 1475.0851 (100).

- meso-pentafluorophenyl N, N^{\prime}-dimethyl [26]hexaphyrin 8

A solution of TBAF in THF ($10 \mathrm{mM}, 11 \mathrm{ml}, 0.00684 \mathrm{mmol}$) was added into a solution of $\mathbf{1}(50 \mathrm{mg} 0.0342$ mmol) and $\mathrm{CH}_{3} \mathrm{I}(2 \mathrm{ml}$, large excess) in THF (60 ml) and ther resulting mixture was refluxed for 1 day under nitrogen. The solution was washed with water and evaporated. The reaction mixture was separated by silica gel column chromatography with a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to give N, N^{\prime}-dimethyl hexaphyrin 8 as green solids ($24 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-2.93(\mathrm{~s}, 6 \mathrm{H}$, methyl), $-0.95(\mathrm{~s}, 2 \mathrm{H}$, inner $\beta \mathrm{CH}),-0.07(\mathrm{~s}, 2 \mathrm{H}$, inner $\beta \mathrm{CH}), 7.68(\mathrm{~s}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}), 8.03(\mathrm{~s}, 2 \mathrm{H}$, outer $\beta \mathrm{CH})$, $8.38(\mathrm{~s}, 2 \mathrm{H}$, outer $\beta \mathrm{CH})$, and $8.57(\mathrm{~s}, 2 \mathrm{H}$, outer $\beta \mathrm{CH}) \mathrm{ppm} ; \mathrm{UV} / \operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=919(1900)$, 872 (1600), 787 (12000), 722 (14000), 578 (160000), and 406 (22000) nm; ESI-TOF-MS (positive-mode) (\%intensity) : $\mathrm{C}_{68} \mathrm{H}_{19} \mathrm{~F}_{30} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]$: calcd. : 1489.1197, found : 1489.1170 (100).

- N, N^{\prime}-dimethyl [28]hexaphyrin 9

N, N^{\prime}-Dimethyl [26]hexaphyrin 8 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to which NaBH_{4} and methanol were added carefully. The resulting mixture was stirred for 1 h and quenched with water. N, N^{\prime}-Dimethyl [28]hexaphyrin 9 was obtained as green solids by recrystallization from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005
methanol. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.49(\mathrm{~s}, 6 \mathrm{H}$, methyl), $4.37(\mathrm{~s}, 4 \mathrm{H}$, inner $\beta \mathrm{CH})$, $7.17(\mathrm{~s}, 8 \mathrm{H}$, outer $\beta C H)$ and $7.48\left(\mathrm{br}\right.$, inner NH) ppm; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=769$ (9800), 606 (140000), and 434 (32000) nm.; ESI-TOF-MS (negative-mode) (\%intensity) : $\mathrm{C}_{68} \mathrm{H}_{19} \mathrm{~F}_{30} \mathrm{~N}_{6}[\mathrm{M}-\mathrm{H}]$: calcd.: 1489.1198, found : 1489.0729 (100).

. meso-hexakis(pentafluorophenyl) [26]hexaphyrin dianion

Dianion of 1 was prepared by addition of excess amounts of TBAF or TBAT. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-4.33(\mathrm{~s}, 4 \mathrm{H}$, inner $\beta \mathrm{CH}), 9.21(\mathrm{~s}, 4 \mathrm{H}$, outer $\beta \mathrm{CH})$ and $9.51(\mathrm{~s}, 4 \mathrm{H}$, outer $\beta \mathrm{CH}) \mathrm{ppm}$; $\mathrm{UV} / \operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): ~ \lambda \max (\varepsilon)=975(16000), 880(22000), 823(20000), 617$ (370000), and 601 (570000) nm.

2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra.

Fig. $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ and 4 in equilibrium state in CDCl_{3}.

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Fig. $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of 5 and $\mathbf{6}$ in equilibrium state in CDCl_{3}. The ethyl quartet at 4.12 ppm was due to contaminated ethyl acetate

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in CDCl_{3}.

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in CDCl_{3}.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$ in CDCl_{3}.

Fig. $57^{1} \mathrm{H}$ NMR spectrum of dianion of $\mathbf{1}$ in CDCl_{3}.

3. UV-visible Absorption Spectra.

Fig. S8 UV/visible absorption spectrum of 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S9 UV/visible absorption spectrum of 5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S10 UV/visible absorption spectrum of 7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. S11 UV/visible absorption spectrum of $\mathbf{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. $12 \mathrm{UV} /$ visible absorption spectrum of 9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

4. ESI-TOF Mass Spectra.

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Fig. S13 ESI-TOF mass spectrum of 3 (4). Upper: observed; lower: calculated.

Fig. S14 ESI-TOF mass spectrum of 5 (6). Upper: observed; lower: calculated.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. S15 ESI-TOF mass spectrum of 7. Upper: observed; lower: calculated.

Fig. S16 ESI-TOF mass spectrum of 8. Upper: observed; lower: calculated.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. 517 ESI-TOF mass spectrum of 9. Upper: observed; lower: calculated.

5. Determination of the activation barrier for isomerization.

Fig. S18 Arrehenius plot of isomerization between 3 and 4. Activation energy value $\left(\mathrm{E}_{\mathrm{a}}\right)$ was calculated by the following formula.

$$
\begin{gathered}
-\mathrm{E}_{\mathrm{a}} / \mathrm{R}=-11789 \\
\mathrm{Ea}=11789 / 8.3=1420[\mathrm{~J} / \mathrm{mol}]=1.42[\mathrm{KJ} / \mathrm{mol}]
\end{gathered}
$$

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

6. Mean Plane Deviation Diagrams.

Fig. S19 Comparison of mean plane deviation diagrams of 8 and 9.

7. Structural comparison of 1 and ist dianion.

Fig. S20 Structure of $\mathbf{1}$.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. S21 Structure of dianion of 1.

