Supplementary data

Exploiting steric control for the regioselective synthesis of *para*-substituted secondary anilines

Philip W. Dyer,*^{ab} John Fawcett,^b Gerald A. Griffith,^b Martin J. Hanton,^b Céline Olivier,^b Adam R. Patterson,^a and Samuel Suhard^{ab}
^a Current Address: Department of Chemistry, University of Durham, South Road, Durham, UK DH1 3LE. Fax: 0191 384 4737; Tel: 0191 334 2150; E-mail: p.w.dyer@durham.ac.uk
^b Department of Chemistry, University of Leicester, University Road, Leicester, UK LE1 7RH.

Electronic Supplementary Information

General considerations

All manipulations of air and/or water sensitive materials were performed under an atmosphere of nitrogen using standard Schlenk and cannula techniques or in a conventional nitrogen-filled glove box (unless stated otherwise). Solvents were freshly distilled under nitrogen from sodium/benzophenone (tetrahydrofuran, diethyl ether, toluene, dme), from calcium hydride (dichloromethane), from sodium (hexane, pentane, 40-60 PE) or from P_2O_5 (C_6D_6 and $CDCl_3$) and degassed prior to use. Elemental analyses were performed by S. Boyer at the University of North London and Mrs J. Dorstal of the analytical services of the Department of Chemistry, University of Durham. NMR were recorded on a Bruker AM 250, AMX 300 or AMX 400; chemical shifts were referenced to residual protio impurities in the deuterated solvent (¹H), to the deuterated solvent (¹³C) or to external aqueous 85% H₃PO₄ (³¹P). All spectra were obtained at ambient probe temperatures unless stated otherwise. Infrared spectra were recorded (Nujol mulls [KBr windows], KBr discs, or in solution [KBr windows]) on a Perkin Elmer 1600 spectrophotometer; Nujol was dried over sodium wire. Mass spectra were recorded on a Kratos Concept 1H instrument and are reported in (*m/z*).

Aniline was dried and distilled prior to use and $(Pr_2^iN)_2PCl$ prepared according to a literature procedure.ⁱ All other chemicals were obtained commercially and used as received.

GC-MS were performed using a Perkin-Elmer Turbomass spectrometer/ Perkin-Elmer Autosystem XL gas chromatagraph.

Syntheses

N-(1-Isopropyl-2-methylpropylidene)aniline, $Pr_{2}^{i}C(=NPh)$: A xylene (200 mL) solution of 2,4-dimethyl-3-pentanone (70.8 mL, 0.5 mols), aniline (48 mL, 0.525 mols) and PTSA (0.25 g) was heated at reflux under Dean-Stark conditions for 4 days, after which time 8.1 mL of water had been evolved. Vacuum distillation removed xylene, aniline and ketone at < 40°C (a) 0.4 mmHg and gave the product between 54-55°C (a) 0.4 mmHg as a colourless oil (71.79 g, 76%); δ_{H} (250.13 MHz; CDCl₃) 7.18 (2H, m, *o*-C₆H₅), 6.90 (1H, m, *p*-C₆H₅), 6.55 (2H, m, *m*-C₆H₅), 2.70 (2H, sept, ³J_{HH} = 6.9, CH(CH₃)₂), 1.13 (6H, d, ³J_{HH} = 6.7, CH₃), 0.95 (6H, d, ³J_{HH} = 6.9, CH₃); δ_{C} {¹H} (62.90 MHz; CDCl₃) 183.83 (s, *C*=N), 151.75 (s, *i*-C₆H₅), 128.97 (s, *o*-C₆H₅), 122.54 (s, *p*-C₆H₅), 119.11 (s, *m*-C₆H₅), 32.59 (s, CH(CH₃)₂), 30.17 (s, CH(CH₃)₂), 22.69 (s, CH₃), 19.96 (s, CH₃); EI 189 (M)⁺, 146 (M-Prⁱ)⁺.

N-(1-Isopropyl-2-methylpropyl)aniline, $Pr_{2}^{i}CH(N(H)Ph)$ (1). This is a modification of the literature procedure.ⁱⁱ To a stirred, cooled (0°C) ethereal (200 mL) solution of $Pr_{2}^{i}C(=NPh)$ (18.53 g, 9.79×10^{-2} mols) was added LiAlH₄ (1.0 M, diethyl ether, 117 mL, 5.85×10^{-2} mols) and the mixture heated at reflux for 60 hours. After cooling (0°C), the mixture was cautiously hydrolysed with distilled water (150 mL). The organic fraction was separated and the aqueous fraction washed with Et₂O (4 × 100 mL). The combined organic fractions were dried (MgSO₄) and volatiles removed *in vacuo* to leave the product as a colourless oil, which is light sensitive, turning peach in colour unless kept in the dark (17.67 g, 94%), (Found: C, 81.76; H, 10.94; N, 7.43%. C₁₃H₂₁N requires: C, 81.62; H, 11.06; N, 7.32%); δ_{H} (400.13 MHz, CDCl₃) δ : 7.15 (2H, m, *o*-C₆H₅), 6.63 (3H, m, *p*-C₆H₅ + *m*-C₆H₅), 3.41 (1H, br s, NH), 2.99 (1H, br t, ³J_{HH} = 6.0, CH(NHPh)(Prⁱ)₂), 1.90 (2H, m, CH(CH₃)₂), 0.98 (6H, d, ³J_{HH} = 6.8, CH₃), 0.94 (6H, d, ³J_{HH} = 6.6, CH₃); δ_{C} {¹H}</sup> (62.90 MHz, CDCl₃) δ : 150.5 (s, *i*-C₆H₅), 129.4 (s, *o*-C₆H₅), 1112.6 (s, *m*-C₆H₅), 64.1 (s, CH(NHPh)(Prⁱ)₂), 31.5 (s, CH(CH₃)₂), 21.0 (s, CH₃), 18.1 (s, CH₃); EI: 191 (M)⁺, 148 (M-Prⁱ)⁺.

(para-bis(Diisopropylamino)phosphanyl-phenyl)-(1-isopropyl-2-methyl-propyl)-amine, $Pr_{2}^{i}CH[N(H)(para-{(Pr_{2}^{i}N)_{2}P}C_{6}H_{4})$ (2a). A Schlenk was charged with $Pr_{2}^{i}CH(N(H)Ph)$ $(5.12 \text{ g}, 2.68 \times 10^{-2} \text{ mols})$ which was degassed in vacuo. Et₂O (40 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 17.6 mL, 2.81×10⁻² mols) was added dropwise. The peach coloured solution immediately turned blue-green, and was allowed to warm to RT with stirring over 1 hour to give a yellow solution. After re-cooling (-78°C), the solution was transferred via cannula onto a cooled (-78°C) suspension of $(Pr_{2}^{i}N)_{2}PCl$ (7.15 g, 2.68×10⁻² mols) in Et₂O (40 mL). The reaction vessel was left to warm to RT with stirring for 18 hours, yielding a yellow solution with white precipitate. Removal of volatiles *in vacuo* and extraction of product from LiCl with hexane gave a vellow solution. The hexane solution was concentrated and after prolonged cooling (-30°C), the product precipitated as white crystals (5.61 g, 96%), (Found: C, 71.14; H, 11.59; N, 9.95. C₂₅H₄₈N₃P requires: C, 71.21; H, 11.47; N, 9.97%); δ_H (250.13 MHz; CDCl₃) 7.98 (2H, dd, ³J_{HH} 8.7, ³J_{PH} 6.7 Hz, m-C₆H₄), 6.53 (2H, dd, ³J_{HH} 8.7, ⁴J_{PH} 1.9 Hz, o-C₆H₄), 3.42 (4H, d sept, ³J_{HH} 6.7, ³J_{PH} 2.5, PNCH), 2.99 (1H, br d, ³J_{HH} 10.1, NH), 2.84 (1H, m, CNHCH), 1.58 (2H, overlapping sept, ${}^{3}J_{HH}$ 6.4 Hz, CCH), 1.29 (12H, d, ${}^{3}J_{HH}$ 7.0 Hz, NCH(CH₃)₂), 1.27 (12H, d, ${}^{3}J_{HH}$ 7.0 Hz, NCH(CH_3)₂), 0.83 (6H, d, ${}^{3}J_{HH}$ 6.7 Hz, CH(CH_3)₂), 0.76 (6H, d, ${}^{3}J_{HH}$ 6.7 Hz, CH(CH_3)₂); δ_{C} ¹H³ (62.90 MHz; CDCl₃) 150.1 (s, *ipso*-C₆H₄), 133.1 (d, ¹J_{PC} 21.9 Hz, *ipso*-C₆H₄), 131.1 (s, C₆H₄), 112.9 (d, ²J_{PC} 5.6 Hz, C₆H₄), 64.4 (s, NCH), 48.2 (d, ²J_{PC} 11.7 Hz, NCH), 31.8 (s, CH), 25.1 (d, ${}^{3}J_{PC}$ 7.6 Hz, NCH), 25.0 (d, ${}^{3}J_{PC}$ 7.1 Hz, NCH), 21.3 (s, CH(CH₃)₂), 18.4 (s, $CH(CH_3)_2$; δ_P {¹H} (101.26 MHz; CDCl₃) + 59.4 (s); EI: 421 (M⁺).

(para-diphenylphosphanyl-phenyl)-(1-isopropyl-2-methyl-propyl)-amine,

Prⁱ₂CH[N(H)(*para***-{Ph₂P}C₆H₄) (2b)**. A Schlenk was charged with **1** (1.04 g, 5.46×10^{-3} mols) which was degassed *in vacuo*. Et₂O (30 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 3.4 mL, 5.46×10^{-3} mols) was added dropwise. The peach coloured solution immediately turned blue-green, and was allowed to warm to RT with stirring over 1 hour to give a yellow solution. After re-cooling (-78°C), Ph₂PCl (1.0 mL, 5.46×10^{-3} mols) was added slowly from a syringe. The reaction was allowed to warm to room temperature and stirred for a further 12h, resulting in the formation of a pale yellow/green solution and a white precipitate; δ_P {¹H} (121.94 MHz; CDCl₃) +54.80 (s). Compound **2b** was converted directly to the corresponding sulphide **2e** (see below).

Prⁱ₂CH[N(H)(*para*-(*para*-trimethylsilyl-phenyl)-(1-isopropyl-2-methyl-propyl)-amine, ${Me_3Si}C_6H_4$ (2c). A Schlenk was charged with 1 (1.92 g, 0.01 mols) which was degassed in vacuo. Et₂O (50 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 6.25 mL, 0.01 mols) was added dropwise. The peach coloured solution immediately turned blue-green, and was allowed to warm to RT with stirring over 1 hour to give a yellow solution. After re-cooling (-78°C), Me₃SiCl (1.3 mL, 0.01 mols) was added slowly from a syringe. The reaction was allowed to warm to room temperature and stirred for a further 12h, resulting in the formation of a pale pink solution and white precipitate. All volatile components were removed *in vacuo* and the product extracted into CH_2Cl_2 (2 × 10 mL) and isolated by filtration. Removal of the solvent under vacuum afforded a red oil, which was distilled under reduced pressure (108-112°C, 0.2 mmHg; Kügelrohr) affording 2c (2.42 g, 89%) as a clear yellow oil (Found: C, 73.02; H, 10.91; N, 5.29. C₁₆H₂₉NSi requires: C, 72.93; H, 11.09; N, 5.32%); δ_H (250.13 MHz; CDCl₃) 7.17 (2H, d, ³J_{HH} 7.8 Hz, C₆H₄), 6.49 (2H, d, ${}^{3}J_{HH}$ 7.8 Hz, C₆H₄), 3.37 (1H, br d, ${}^{2}J_{HH}$ 10.0, NH), 2.90 (1H, m, $CH(NHPh)(Pr^{i})_{2}$, 1.81 (2H, m, $CH(CH_{3})_{2}$), 0.89 (6H, d, ${}^{3}J_{HH}$ 6.1, CH_{3}), 0.83 (6H, d, ${}^{3}J_{HH}$ 6.1, CH_3 , 0.17 (9H, s, Me₃Si); δ_{C} ¹H} (62.90 MHz; CDCl₃) 150.9 (s, N-*ipso*-C₆H₄), 134.8 (s, Nmeta-C₆H₄), 125.3 (s, Si-*ipso*-C₆H₄), 112.2 (s, N-para-C₆H₄), 63.7 (s, NCH), 31.4 (s, NCH), 21.1 (s, NCH), 18.2 (s, CH(CH₃)₂), -0.5 (s, (CH₃)₃Si); EI: 264 (MH⁺).

(para-trimethylstannyl-phenyl)-(1-isopropyl-2-methyl-propyl)-amine,

 $Pr_{2}^{i}CH[N(H)(para-\{Me_{3}Sn\}C_{6}H_{4})$ (2d). A Schlenk was charged with 1 (0.96 g, 5 mmols) which was degassed *in vacuo*. Et₂O (50 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 3.1 mL, 5 mmols) was added dropwise. The peach coloured solution immediately turned blue-green, and was allowed to warm to RT with stirring over 1 hour to give a yellow solution. After re-cooling (-78°C), Me_{3}SnCl (1.00 g, 5 mmols) was added slowly from a syringe. The reaction was allowed to warm to room temperature and stirred for a further 12h, resulting in the formation of a pale orange solution and white precipitate. All volatile components were removed *in vacuo* and the product extracted into CH₂Cl₂ (2 × 10 mL) and isolated by filtration. Removal of the solvent *in vacuo* afforded a dark red oil, which was distilled under reduced pressure (161-165°C, 0.2 mmHg; Kügelrohr)

affording **2d** (1.36 g, 77%) as a dark orange/brown oil (Found: C, 55.01; H, 8.43; N, 4.22. $C_{16}H_{29}NSn$ requires: C, 54.27; H, 8.25; N, 3.96%); δ_{H} (400.13 MHz; CDCl₃) 7.02 (2H, d, ${}^{3}J_{HH}$ 7.8 Hz, $C_{6}H_{4}$), 6.41 (2H, d, ${}^{3}J_{HH}$ 7.8 Hz, $C_{6}H_{4}$), 3.66 (1H, br d, ${}^{2}J_{HH}$ 8.0, NH), 2.90 (1H, m, CH(NHPh)(Prⁱ)₂), 1.96 (2H, m, CH(CH₃)₂), 0.91 (6H, d, ${}^{3}J_{HH}$ 6.1, CH₃), 0.87 (6H, d, ${}^{3}J_{HH}$ 6.1, CH₃), 0.20 (9H, s+satellites, ${}^{2}J_{SnH}$ 54.0 Hz, Me₃Sn); δ_{C} {¹H} (100.62 MHz; CDCl₃) 148.8 (s, N-*ipso*-C₆H₄), 142.0 (s+satellites, ${}^{1}J_{SnC}$ 470 Hz, Sn-*ipso*-C₆H₄), 134.3 (s, N-*meta*-C₆H₄), 112.2 (s, N-*para*-C₆H₄), 63.7 (s, NCH), 31.4 (s, NCH), 21.1 (s, NCH), 18.2 (s, CH(CH₃)₂), - 9.9 (s+satellites, ${}^{1}J_{SnC}$ 349 Hz, (CH₃)₃Sn); ES+: 356 (MH⁺).

(para-diphenylthiophosphanyl-phenyl)-(1-isopropyl-2-methyl-propyl)-amine,

Prⁱ₂CH[N(H)(*para***-{Ph₂PS}C₆H₄) (2e). To the reaction mixture obtained during the synthesis of 2b was added excess elemental sulphur. After stirring at rt for 12h the solution was filtered through a plug of silica and all volatile components removed** *in vacuo* **to afford a beige solid. Recrystallisation from hexane/CH₂Cl₂ at -30^{\circ}C gave 2e** (1.78 g, 80%) as colourless blocks suitable for a study by X-ray diffraction, (Found: C, 73.76; H, 7.41; N, 3.46. C₂₅H₃₀NPS requires: C, 73.71; H, 7.36; N, 3.44%); δ_H (250.13 MHz; CDCl₃) 7.63 (4H, m, arom.), 7.35 (8H, m, arom.), 6.47 (2H, dd, ³*J*_{HH} 7.0Hz, ⁴*J*_{HH} 2.0 Hz, C₆*H*₄), 3.77 (1H, br d, ²*J*_{HH} 10.0, N*H*), 2.98 (1H, m, C*H*(NHPh)(Prⁱ)₂), 1.81 (2H, m, C*H*(CH₃)₂), 0.93 (6H, d, ³*J*_{HH} 6.0, C*H*₃); δ_C{¹H} (62.90 MHz; CDCl₃) 152.9 (s, *ipso*-C₆H₄), 134.3 (d, ¹*J*_{PC} 85.3, *ipso*-C₆H₅), 134.2 (d, ³*J*_{PC} 12.1 Hz, C₆H₄), 132.4 (d, ²*J*_{PC} 10.7 Hz, *o*-C₆H₅), 131.3 (d, ⁴*J*_{PC} 2.8 Hz, *p*-C₆H₅), 128.5 (d, ³*J*_{PC} 12.4 Hz, *m*-C₆H₅), 116.5 (d, ¹*J*_{PC} 96.4 Hz, *ipso*-C₆H₄), 112.1 (d, ²*J*_{PC} 13.7 Hz, C₆H₄), 63.7 (s, NCH), 31.3 (s, CH), 21.1 (s, CH(CH₃)₂), 18.0 (s, CH(*C*H₃)₂); δ_P{¹H} (121.94 MHz; CDCl₃) + 42.2 (s); EI: 408 (MH⁺).

(1-Isopropyl-2-methyl-propyl)-bis(diisopropylamino)phosphanyl-(para-

bis(diisopropylamino)phosphanyl-phenyl)-amine (3a): A Schlenk was charged with **2a** (1.00 g, 2.37×10^{-3} mols). Et₂O (10 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 1.50 mL, 2.37×10^{-3} mols) was added dropwise. The colourless solution immediately turned red-brown, and was allowed to warm to RT with stirring over 1 hour to give a yellow solution. After re-cooling (-78°C), the solution was added to a cold (-78°C) suspension of (ⁱPr₂N)₂PCl (1.01 g, 2.37×10^{-3} mols) in Et₂O (10 mL). The reaction was

allowed to warm to room temperature and stirred for a further 12h, resulting in the formation of a pale vellow solution and white precipitate. The ³¹P NMR spectrum of the reaction mixture revealed only two resonances, δ +61.3 (s) and 102.7 (s) ppm, consistent with the formation of 3a. Volatile components were removed in vacuo to afford a yellow solid that was subsequently dissolved in CH₂Cl₂ (5 mL). Excess elemental sulphur was added and stirred for 1h. The reaction mixture was filtered and the filtrate passed through a plug of silica. Removal of solvent under reduced pressure afforded 3a as its disulphide (1.31 g, Crystals suitable for a study by X-ray crystallography were obtained by 77%). recrystallisation from CH₂Cl₂/hexane; (Found: C, 62.15; H, 10.56; N, 9.79. C₃₇H₇₅N₅P₂S₂ requires: C, 62.06; H, 10.56; N, 9.78%); δ_H (400.13 MHz; 323K; CDCl₃) 8.04 (4H, br, C₆H₄), 4.05 (4H, br sept., ³J_{HH} 7.0 Hz, PNCH), 3.82 (4H, sept., ³J_{HH} 7.0 Hz, PNCH), 3.64 (1H, t, ³*J*_{HH} 5.9 Hz, NC*H*), 2.50 (2H, m, NCHC*H*), 1.36 (24H, d ³*J*_{HH} 6.0 Hz, PNCHC*H*₃), 1.22 (24H, d ³*J*_{HH} 6.0 Hz, PNCHC*H*₃), 1.12 (6H, d ³*J*_{HH} 6.0 Hz, NCHCHC*H*₃), 0.56 (6H, d ³*J*_{HH} 6.0 Hz, NCHCHCH₃); $\delta_{\rm C}$ (100.62 MHz; 323K; CDCl₃) 146.4 (s, N-*ipso*-C₆H₄), 135.4 (d, ¹J_{PC} 120.0 Hz, P-*ipso*-C₆H₄), 132.8 (d, ²J_{PC} 11.5 Hz, C₆H₄), 129.9 (dd, ³J_{PC} 6.0 Hz, ³J_{PC} 12.9 Hz, C₆H₄), 68.2 (s, NCH), 48.9 (d, ${}^{2}J_{PC}$ 5.2 Hz, PNCH), 47.8 (d, ${}^{2}J_{PC}$ 5.2 Hz, PNCH), 31.4 (d, ${}^{3}J_{PC}$ 3.1 Hz, NCHCH), 24.8 (d, 2.4 Hz, PNCHCH₃), 24.7 (d, 2.4 Hz, PNCHCH₃), 24.0 (d, 7.8 Hz, PNCH*C*H₃), 23.9 (d, 7.8 Hz, PNCH*C*H₃), 23.6 (s, NCHCH*C*H₃), 19.6 (s, NCHCH*C*H₃); δ_P (161.99 MHz; 323K; CDCl₃) +71.30 (s), +71.29 (s); EI: 716 (M+).

One-pot preparation of 3a from 1: A Schlenk was charged with $Pr_{2}^{i}CH(N(H)Ph)$ (2.00 g, 0.010 mols) which was degassed *in vacuo*. Et₂O (40 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 13.1 mL, 0.021 mols) was added dropwise. The peach coloured solution immediately turned dark blue-green, and was allowed to warm to RT with stirring over 1 hour to give a yellow/orange solution. After re-cooling (-78°C), the solution was transferred *via* cannula onto a cooled (-78°C) suspension of $(Pr_{2}^{i}N)_{2}PCI$ (5.59 g, 0.020 mols) in Et₂O (40 mL). The reaction vessel was left to warm to RT with stirring for 18 hours, yielding a dark yellow solution with white precipitate. Removal of volatiles *in vacuo* and extraction of product from LiCl with hexane gave a yellow solution. The hexane solution was removed under reduced pressure to afford **3a** as a white solid (5.80 g, 89%); δ_P {¹H} (121.94 MHz; CDCl₃) +102.7 (s), +60.2 (s).

(1-Isopropyl-2-methyl-propyl)-diphenylphosphanyl-(para-trimethylsilanyl-phenyl)-

amine (3b): A Schlenk was charged with Prⁱ₂CH(N(H)Ph) (2.00 g, 0.010 mols) which was degassed in vacuo. Et₂O (20 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 13.1 mL, 0.021 mols) was added dropwise. The peach coloured solution immediately turned dark blue-green, and was allowed to warm to RT with stirring over 2 hours to give a dark yellow solution. After re-cooling (-78°C), the solution was transferred via cannula onto a cooled (-78°C) solution of Ph₂PCl (10.5 mL, 0.010 mols) in Et₂O (20 mL). ³¹P NMR spectroscopy showed a single resonance at δ –4.0 (s) ppm. The reaction vessel was left to warm to RT with stirring for 18 hours, yielding a dark yellow solution with white precipitate. The reaction mixture was cooled (-78°C) and BuⁿLi (1.6 M, hexanes, 13.1 mL, 0.021 mols) was added dropwise, before allowing the Schlenk to warm to RT, affording a yellow/brown solution. After 1h at RT the mixture was re-cooled (-78°C) prior to slow addition of excess Me₃SiCl (2.5 mL, 0.020 mols) via syringe. The reaction was left stirring at RT for 12h to afford a dark yellow solution and a white precipitate. Volatiles were removed in vacuo and the product extracted from LiCl with CH₂Cl₂ (2×10 mL) by filtration under N₂ and the solvent removed under reduced pressure to afford 3b as a yellow/orange air sensitive waxy solid (3.39 g, 76%). Further attempts to purify 3b lead to decomposition presumably as a result of the labile Si-N bond; (Found: C, 72.79; H, 7.91; N, 2.79. C₂₈H₃₈NPSi requires: C, 75.12; H, 8.56; N, 3.13%); δ_H (250.13 MHz; CDCl₃) 7.58 (4H, m, C₆H₅), 7.24 (8H, m, arom.), 6.40 (2H, dd, ${}^{3}J_{HH}$ 6.9 Hz, ${}^{4}J_{HH}$ 1.8 Hz, C₆H₄), 2.59 (1H, m, CH(NHPh)(Prⁱ)₂), 2.06 (2H, m, CH(CH₃)₂), 1.01 (6H, d, ³J_{HH} 6.2, CH₃), 0.91 (6H, d, ³J_{HH} 6.2, CH₃), 0.10 (9H, s, Si(CH₃)₃); δ_{C} {¹H} (62.90 MHz; CDCl₃) 144.9 (s, *ipso*-C₆H₄), 137.4 (d, ${}^{1}J_{PC}$ 15.8 Hz, *ipso*-C₆H₅), 133.8 (d, ${}^{2}J_{PC}$ 21.9 Hz, *o*-C₆H₅), 129.7 (${}^{3}J_{PC}$ 10.9 Hz, C₆H₄), 129.0 (s, p-C₆H₅), 128.8 (d, ${}^{3}J_{PC}$ 6.8 Hz, m- C₆H₅), 117. 3 (d, ${}^{1}J_{PC}$ 26.4 Hz, *ipso*-C₆H₄), 112.9 (s, C₆H₄), 67.5 (s, NCH), 30.6 (s, CH), 19.1 (s, CH(CH₃)₂), 17.8 (s, CH(CH₃)₂), -0.2 (s, Si(*C*H₃)₃); δ_P{¹H} (121.94 MHz; CDCl₃) –5.11 (s), EI: 448 (MH+).

N-lithium.tmeda-(1-isopropyl-2-methyl-propyl)-phenyl amide (4). A Schlenk was charged with $Pr_{2}^{i}CH(N(H)Ph)$ (2.08 g, 1.09×10^{-2} mols) which was degassed *in vacuo*. Et₂O (30 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 5.5 mL, 1.11×10^{-2} mols) was added dropwise. The peach coloured solution immediately turned

blue-green before it was allowed to warm to RT with stirring over 1 hour to give a yellow solution. TMEDA (1.6 mL, 1.09×10^{-2} mols) was added dropwise inducing a slight lightening in colour. After stirring at RT for 1h, concentration of the solution *in vacuo* lead to the immediate precipitation of **4** as square yellow platelets, which were isolated by filtration (2.49 g, 73%), (Found: C, 71.35; H, 11.67; N, 9.76. C₁₉H₃₆N₃Li requires: C, 72.80; H, 11.58; N, 13.41%; reliable analyses could not be obtained presumably due to the sensitive nature of the compound); $\delta_{\rm H}$ (400.13 MHz; 300 K; C₆D₆) 7.29 (2H, m, C₆H₄), 6.45 (1H, br, N*H*), 6.40 (2H, m, C₆H₄), 3.26 (1H, t, ³*J*_{HH} 5.9 Hz, NC*H*), 1.81 (2H, sept, ³*J*_{HH} 6.7 Hz, NCH(C*H*)), 1.75 (12H, s, NC*H*₃), 1.59 (4H, s, NC*H*₂), 1.18 (6H, d, ³*J*_{HH} 6.7 Hz, NCH(C*H*₃)₂), 1.02 (6H, d, ³*J*_{HH} 6.7 Hz, NCH(C*H*₃)₂); $\delta_{\rm C}$ {¹H} (100.62 MHz; C₆D₆) 164.5 (s, N*ipso*-C₆H₄), 130.4 (s br, *o*-C₆H₄), 112.8 (br v_{1/2} 176 Hz, P*ipso*-C₆H₄), 105.9 (s, *m*-C₆H₄), 66.3 (s, NCH), 56.7 (s, NCH₂), 45.7 (s, NCH₃), 33.7 (s, NCH(CH)), 21.9 (s, CH(CH₃)₂), 20.0 (s, CH(CH₃)₂).

Preparation of phenyl-triisopropysilanyl-amine (5). Compound **5** was prepared according to a slight modification of the literature procedure.ⁱⁱⁱ To a cold (-78°C) solution of aniline (2.4 mL, 25.9 mmol) in Et₂O (20 mL) was added BuⁿLi (1.6M hexanes, 16.3 mL, 25.9 mmol), which on warming afforded an orange solution. After a period of 30 mins at RT, the solution was cooled (-78°C) and a cold (-78°C) solution of TIPSCI (5.6 mL, 25.9 mmol) added. On warming to RT the solution became dark red and a white precipitate formed. After stirring at RT for 16h, all volatile components were removed *in vacuo* to afford a dark brown oil. Extraction with CH₂Cl₂ (2 × 10 mL) followed distillation under reduced pressure (80-85°C, 0.2 mmHg; Kügelrohr) affording **5** (3.88 g, 60%) as a dark brown oil; $\delta_{\rm H}$ (400.13 MHz; CDCl₃) 7.24 (2H, m, *ortho*-C₆H₄), 6.87 (1H, td, ³J_{HH} 6.4, ⁴J_{HH} 0.8 Hz, *para*-C₆H₄), 6.74 (2H, td, ³J_{HH} 6.4, ⁴J_{HH} 0.8 Hz, *meta*-C₆H₄), 3.20 (1H, br, v_{12} 11 Hz, NH), 1.22 (m, SiCH), [†] 1.16 (s, SiCH(CH₃))^{†‡}; $\delta_{\rm C}$ (¹H} (100.62 MHz; CDCl₃) 148.2 (s, *Nipso*-C₆H₄), 129.5 (s, *o*-C₆H₄), 118.2 (s, *p*-C₆H₄), 117.1 (s, *m*-C₆H₄), 18.6 (s, SiCH(CH₃)₂), 12.5 (s, SiCH); GC 8.69 (100%) minutes.

[†] Overlapping signals: combined integration = 21H.

[‡] The appearance of the isopropyl methyl resonance as a singlet is in accord with that reported previously.ⁱⁱⁱ

Solutions of **5** in dry $CDCl_3$ slowly hydrolyse under air, hydrolysis being complete after *ca*. 48 h. Samples of **5** remain unchanged for months if kept under dry, oxygen-free conditions.

Reaction of 5 with BuⁿLi and (Prⁱ₂N)₂PCl. A Schlenk was charged with 5 (0.45 g, 1.80 mmols) which was degassed in vacuo. Et₂O (30 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 1.1 mL, 1.80×10⁻³ mols) was added dropwise. The solution was re-cooled $(-78^{\circ}C)$ and added to a cold $(-78^{\circ}C)$ suspension of $(Pr_{2}^{i}N)_{2}PCl$ (0.48 g, 1.80 mmols). This gave a pale yellow solution, which on warming to RT became a green-yellow and formed a white precipitate. The reaction was left stirring at RT for 18h after which time volatiles were removed *in vacuo* and the product extracted from LiCl with CH₂Cl₂ (2×10 mL) by filtration under N₂ and the solvent removed under reduced pressure to afford a brown sticky oil; δ_P ¹H} (161.98 MHz; CH₂Cl₂) + 110.4 (s, 1P, 7), +58.3 (s, 3P, 6). Further attempts to purify the mixture lead to decomposition; hence, HCl (1.0 M, Et₂O, 10.8 mL, 108.00 mmols) was added slowly to a solution (Et₂O, 15 mL) of the brown oil at RT. The reaction mixture was then stirred at RT for 18h, affording an orange oil and an off-white precipitate. Removal of volatile components in vacuo followed by extraction with CH₂Cl₂ (2×10 mL) gave a dark orange-brown solution: δ_P {¹H} (161.98 MHz; CH₂Cl₂) +215 (s, PCl₃), + 160 (s, 8).; GC 8.29 (TIPSCI) minutes. The presence of $Pr_{2}^{i}NH_{2}CI$ and $C_{6}H_{5}NH_{3}CI$ were confirmed by ¹H spectroscopy and EI mass spectrometry.

bis(diisopropylamino)phosphanyl-(para-bis(diisopropylamino)phosphanyl-phenyl)-

triisopropylsilanyl-amine (9): A Schlenk was charged with **5** (0.45 g, 1.80×10^{-3} mols) which was degassed *in vacuo*. Et₂O (30 mL) was added and the solution cooled (-78°C) and stirred as BuⁿLi (1.6 M, hexanes, 2.2 mL, 3.60×10^{-3} mols) was added dropwise. The solution was re-cooled (-78°C) and added to a cold (-78°C) suspension of $(Pr_{2}^{i}N)_{2}PC1$ (0.96 g, 3.60×10^{-3} mols). This gave a dark orange solution, which on warming to RT became dark brown and formed a white precipitate. The reaction was left stirring at RT for 18h after which time volatiles were removed *in vacuo* and the product extracted from LiCl with CH₂Cl₂ (2×10 mL) by filtration under N₂ and the solvent removed under reduced pressure to afford **9** as a waxy tan solid [0.88 g, 69%; δ_P (161.98 MHz; CDCl₃) +111.0 (s), +58.9 (s)]. Following addition of CH₂Cl₂ (10 mL) and excess elemental sulphur to **9**, the reaction mixture was stirred at RT for 18h. The reaction mixture was filtered and the filtrate passed through a plug of silica. Removal of solvent under reduced pressure afford **9** as its disulphide following

recrystallisation from CH₂Cl₂/hexane (0.75 g, 54%); (Found: C, 59.10; H, 10.11; N, 9.00. C₃₇H₇₅N₅P₂S₂ requires: C, 60.50; H, 10.54; N, 9.05%); $\delta_{\rm H}$ (400.13 MHz; CDCl₃) 7.90 (4H, br, C₆H₄), 3.95 (4H, br sept., ³J_{HH} 6.9 Hz, PNC*H*), 3.65 (4H, sept., ³J_{HH} 6.9 Hz, PNC*H*), 1.24 (27H, m, SiC*H* and PNCHCH₃), 1.12 (s, 18H, SiCH(CH₃)); $\delta_{\rm C}$ {¹H} (100.62 MHz; CDCl₃) 147.0 (s, N*ipso*-C₆H₄), 134.5 (d, ¹J_{PC} 115.0 Hz, P-*ipso*-C₆H₄), 130.1 (d, ²J_{PC} 9.0 Hz, C₆H₄), 128.3 (dd, ³J_{PC} 6.9 Hz, ³J_{PC} 11.0 Hz, C₆H₄), 18.4 (s, SiCH(CH₃)₂), 12.5 (d, ³J_{PC} 1.1 Hz, SiCH); $\delta_{\rm P}$ (161.98 MHz; CDCl₃) +74.9 (s), +68.3 (s).

(1-Isopropyl-2-methyl-propyl)-methyl-phenyl-amine (10). This compound was prepared by reductive methylation using a modification of a literature procedure.^{iv} An acetonitrile solution (125 mL) of (1-isopropyl-2-methyl-propyl)-phenyl-amine (1) (4.0g, 0.02 mols) was treated with aqueous formaldehyde (37%, 25.2 mL, 0.03 mol) and NaBH₃CN (5.94 g, 0.09 mol). Glacial acetic acid (3.2 mL) was added drop-wise over a period of 10 minutes, inducing an exothermic reaction, during which time the reaction mixture darkened considerably. After stirring at r.t. for 2 h, a second portion of glacial acetic acid (3.2 mL) was added drop-wise over a period of 10 minutes before leaving the mixture to stir at r.t. for 30 minutes. The reaction mixture was poured into Et₂O (300 mL), washed with 1.0M KOH solution $(3 \times 100 \text{ mL})$ and saturated brine (100 mL). Finally the orange ether solution was separated and dried over K₂CO₃. Removal of all volatile components under reduced pressure afforded 10 as an analytically pure orange oil (2.90 g, 67%), (Found: C, 81.92; H, 11.25; N, 6.74. C₁₄H₂₃N requires: C, 81.89; H, 11.29; N, 6.82%); δ_H (301.24 MHz; CDCl₃) 7.22 (2H, m, *m*-C₆H₅), 6.79 (2H, d, ³J_{HH} 8.2 Hz, *m*-C₆H₅), 6.64 (1H, t, ³J_{HH} 7.0 Hz, *p*-C₆H₅), 3.44 (1H, t, ³J_{HH} 7.0 Hz, CH), 2.83 (3H, s, NMe), 2.16 (2H, overlapping sept, ³J_{HH} 7.0 Hz, CH), 0.99 (6H, d, ${}^{3}J_{\text{HH}}$ 7.0 Hz, CH₃), 0.92 (6H, d, ${}^{3}J_{\text{HH}}$ 7.0 Hz, CH₃); $\delta_{\text{C}}\{{}^{1}\text{H}\}$ (75.76 MHz; CDCl₃) 159.5 (s, *ipso*-C₆H₅), 136.6 (s, *m*-C₆H₅), 122.6 (s, *p*-C₆H₅), 119.2 (s, *o*-C₆H₅), 75.0 (s, *C*H), 41.2 (s, NMe), 37.8 (s, CH), 28.7 (s, CH₃), 27.3 (s, CH₃); GC-MS: 15.7 minutes; EI: 206 (MH⁺, 1%), 205 (MH⁺, 15%), 162 (100%).

(1-Isopropyl-2-methyl-propylidene)-*p*-tolyl-amine: A xylene (200 mL) solution of 2,4dimethyl-3-pentanone (51.95 g, 0.44 mols), toluidine (49.90 g, 0.46 mols) and PTSA (0.25 g) was heated at reflux under Dean-Stark conditions for 4 days, after which time 7.0 mL of water had been evolved. Vacuum distillation removed xylene, aniline and ketone at $< 50^{\circ}$ C @ 0.2 mmHg and gave the product between 170-172°C @ 0.2 mmHg as an orange/brown oil (52.78 g, 59%); $\delta_{\rm H}$ (250.13 MHz; CDCl₃) 7.05 (2H, d, ${}^{3}J_{\rm HH}$ 9.0 Hz, o-C₆ H_{4}), 6.50 (2H, d, ${}^{3}J_{\rm HH}$ 9.0 Hz, p-C₆ H_{5}), 2.80 (2H, m, CH(CH₃)₂), 2.30 (3H, s, p-CH₃), 1.18 (6H, d, ${}^{3}J_{\rm HH}$ = 6.9, CH₃), 1.00 (6H, d, ${}^{3}J_{\rm HH}$ = 6.9, CH₃); $\delta_{\rm C}$ {¹H} (62.90 MHz; CDCl₃) 183.6 (s, C=N), 149.0 (s, *i*-C₆H₄), 144.1 (s, *i*-C₆H₄), 129.4 (s, C₆H₅), 118.9 (s, C₆H₅), 32.2 (s, CH(CH₃)₂), 30.0 (s, CH(CH₃)₂), 22.6 (s, CHCH₃), 20.8 (s, p-CH₃), 19.8 (s, CHCH₃); EI: 204 (MH)⁺; IR KBr, neat) 1653cm⁻¹ (C=N).

(1-Isopropyl-2-methyl-propyl)-*p*-tolyl-amine (11): To a stirred, cooled (0°C) ethereal (200 mL) solution of $Pr_2^iC(=Np-CH_3-C_6H_4)$ (20.30 g, 99. 9×10⁻³ mols) was added LiAlH₄ (1.0 M, diethyl ether, 120 mL, 0.12 mols) and the mixture heated at reflux for 60 hours. After cooling (0°C), the mixture was cautiously hydrolysed with distilled water (150 mL). The organic fraction was separated and the aqueous fraction washed with Et₂O (4 × 100 mL). The combined organic fractions were dried (MgSO₄) and volatiles removed *in vacuo* to leave the product as an orange oil, which is light sensitive, turning red/brown in colour unless kept in the dark (18.24 g, 89%); since GC-MS analysis (>96%) revealed the purity of **11** to be high, no further purification was undertaken; (Found: C, 81.84; H, 10.89; N, 7.00%. C₁₄H₂₃N requires: C, 81.89; H, 11.29; N, 6.82%); $\delta_{\rm H}$ (301.24 MHz, CDCl₃) δ : 6.90 (2H, d, ³*J*_{HH} 8.0 Hz, C₆*H*₄), 6.50 (2H, ³*J*_{HH} 8.0 Hz, C₆*H*₄), 3.28 (1H, br s, N*H*), 2.93 (1H, br v_{4} 17 Hz, NC*H*), 2.20 (2H, s, *p*-CH₃), 1.82 (2H, m, C*H*(CH₃)₂), 0.97 (6H, d, ³*J*_{HH} = 5.7, C*H*₃), 0.91 (6H, d, ³*J*_{HH} = 5.7, C*H*₃); $\delta_{\rm C}$ {¹H} (75.76 MHz, CDCl₃) δ : 141.5 (s, *i*-C₆H₅), 130.2 (s, C₆H₄), 126.1 (s, *p*-CH₃-C), 116.1 (s, *p*-C₆H₅), 112.5 (s, C₆H₄), 70.4 (s, NCH), 31.0 (s, CH(CH₃)₂), 20.9 (s, *p*-CH₃), 20.1 (s, CH₃), 19.2 (s, CH₃); EI: 205 (M)⁺.

Diphenylphosphino-methyl-phenyl-amine (12)^v: ⁿBuLi (1.6M, 3.10 mL, 4.87×10^{-3} mols), To a cooled (-78°C) Schlenk charged with **10** (1.00 g, 4.87×10^{-3} mols) and Et₂O (20 mL) was added BuⁿLi (1.6M, 3.10 mL, 4.87×10^{-3} mols) *via* a syringe. The solution was stirred and allowed to warm to rt to afford a red/brown solution. After 1 h at rt the reaction mixture was cooled (-78°C) and added to a cooled (-78°C) solution of Ph₂PCl (1.12 mL, 4.87×10^{-3} mols) in Et₂O (10 mL). On warming to rt a brown solution and a white precipitate were obtained.

Removal of volatile components *in vacuo* followed by extraction with CH_2Cl_2 (2×10 mL) afforded **12** as a brown oil (1.36 g, 96% yield) that was pure according to ¹H and ³¹P NMR spectroscopy. The spectroscopic data were consistent with those reported in the literature; δ_P {¹H} (161.98 MHz; CH_2Cl_2) +56.8 (s).

Reaction of 10 with BuⁿLi and (ⁱPr₂N)₂PCI: To a cooled (-78°C) Schlenk charged with 10 (1.30 g, 6.34×10^{-3} mols) and Et₂O (20 mL) was added BuⁿLi (1.6M, 4.00 mL, 6.34×10^{-3} mols) *via* a syringe. The solution was stirred and allowed to warm to rt to afford a red/brown solution. After 1 h at rt the reaction mixture was cooled (-78°C) and added to a cooled (-78°C) suspension of (ⁱPr₂N)₂PCl (1.69 g, 6.34×10^{-3} mols) in Et₂O (20 mL). On warming to rt a brown solution and a white precipitate were obtained. The ³¹P NMR spectrum of the reaction mixture displayed a sharp resonance at δ + 105.2 ppm and overlapping signals at *ca*. δ + 56-61 ppm, which correspond to the formation of 13 and 14, in <16% and 72%, respectively. This assignment was further confirmed by addition of excess elemental sulphur to the reaction mixture, stirring at rt for 12h, followed by filtration and removal of volatile components *in vacuo* to afforded a waxy brown solid; GC-MS analysis : 20.2 (371 {MH⁺}, 16%, 13), 24.5 (371 {MH⁺}, 72%, 14). Attempts at the separation of 13 from 14 proved unsuccessful.

Reaction of 11 with ⁿBuLi and Ph₂PCI: To a cooled (-78°C) Schlenk charged with **11** (1.00 g, 4.87×10^{-3} mols) and Et₂O (20 mL) was added ⁿBuLi (1.6M, 3.10 mL, 4.87×10^{-3} mols) *via* a syringe. The solution was stirred and allowed to warm to rt to afford a dark blue solution. After 1 h at rt the reaction mixture was cooled (-78°C) and a solution of Ph₂PCl (0.90 mL, 4.87×10^{-3} mols) added directly *via* syringe. On warming to rt a dark brown solution and a white precipitate were obtained. The ³¹P NMR spectrum of the reaction mixture displayed a multitude of resonances, which included a sharp resonance at δ - 4.8 ppm (consistent with the formation of **15**), confirming complete consumption of Ph₂PCl. Following addition of excess elemental sulphur to the reaction mixture, stirring at rt for 12h, filtration and removal of volatile components *in vacuo*, all attempts to further purify the reaction mixture were unsuccessful; GC-MS analysis : 25.9 (423 {MH⁺}, 30%, **15**).

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

- ⁱ R. B. King and N. D. Sadanani, Synth. React. Org. Met-Org. Chem., 1985, 15, 149.
- ⁱⁱ R. K. Howe, J. Org. Chem., **1968**, *33*, 2848-2851.
- ⁱⁱⁱ A. R. Bassindale, C. Eaborn, D. R. M. Walton, J. Organomet. Chem., **1970**, 25, 57.
- ^{iv} R. F. Borch and A. I. Hassid, J. Org. Chem., **1973**, 37, 1673.
- ^v S. Singh and K. M. Nicholas, *Chem. Commun.*, **1998**, 149; R. Contreras, J. M. Grevy, Z. García-Hernández, M. Güizado-Rodriguez, and B. Wrackmeyer, *Heteroatom Chem.*, **2001**, *12*, 542.