Gold Nanoparticle-Based Competition Colorimetric Assay for Detection of Protein-Protein Interactions

Charng-Sheng Tsai, Ting-Bin Yu and Chao-Tsen Chen
Department of Chemistry, National Taiwan University, Taipei, Taiwan
chenct@ ntu.edu.tw

Supporting Information

Synthetic procedures and spectroscopic data for mannopyranoside, overlaid UV-vis spectra of Man-GNPs in the presence of individual tested protein, MALDI-TOF-MS spectra, Job's plot, Hill plot as well as the binding isotherm of ConA in the presence of different amount of BS-I with the curve fitting to obtain the binding constant.

Experimental Section

Synthesis of Man-GNP: To 100 mL of $32-\mathrm{nm}$ gold nanoparticle solution prepared according to the Frens method ${ }^{1}$ was added 200 L of 1.0 mM thiol-derivatized mannopyranoside (see Figure S1). Self-assembly was facilitated by leaving the solution for a period of 15 h . The suspension was centrifuged at 7000 rpm with Eppendorf 5810 R centrifuge for 15 min at $10^{\circ} \mathrm{C}$ and the resulting modified nanoparticles were then resuspended in 0.01% aqueous sodium citrate solution to give an
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
approximate concentration of 0.29 nM . Based on elemental analysis, there are 9000 mannopyranosides per gold nanoparticle. ${ }^{2}$

UV-vis absorption measurements: Absorption spectra were recorded $25^{\circ} \mathrm{C}$ on a Hewlett-Packard 8453A diode array spectrometer under the control of a Pentium PC running the manufacturer-supplied software package. The concentration of the proteins is made to $1 \mathrm{mg} / \mathrm{mL}$ by dissolving them in 0.01 M PBS $(\mathrm{pH}=7.4)$ buffer containing $0.1 \mathrm{mM} \mathrm{CaCl}_{2}$, and MnCl_{2}. Addition of 20 L individually tested protein $(1 \mathrm{mg} / \mathrm{mL})$ to 2 mL Man-GNP $(0.29 \mathrm{nM})$, the absorption spectrum was recorded, respectively, after 30 min of incubation time (see Figure S2).

Competition colorimetric assay: (a) The same series of proteins with comparable concentrations of ConA were added to the preformed Man-GNPs $(0.29 \mathrm{nM}) / \mathrm{ConA}(98 \mathrm{nM})$ solution, respectively and the resulting absorption spectra were recorded. Or (b) ConA (98 nM) was first mixed with the tested protein having comparable concentrations for 5 min at $4^{\circ} \mathrm{C}$ followed by the addition of Man-GNPs (0.29 nM). After 30 min incubation, the absorption spectrum was recorded (see text Figure 2 and Table S1).

Detection of protein-protein interaction with SDS-PAGE and MALDI-TOF-MS: The above-mentioned competition assay solutions were transferred to vials and centrifuged. The sinked protein-bound nanoparticles were isolated and washed with deionized water several times to remove the residual protein solution. Some of the particles were loaded to 12% SDS-PAGE and separated by gel electrophoresis followed by staining the gel with Coomassie Bule. Some of the protein-bound nanoparticles were mixed with matrix (sinapinic acid in $0.01 \% \mathrm{TFA}, 50 \% \mathrm{CH}_{3} \mathrm{CN}_{(\mathrm{aq})}$), and directly placed on the MALDI-TOF plate. A Bruker Biflex MALDI-TOF-MS was employed to analyze the sample (see Figure S3).

Surface Plasmon Resonance measurement: Biacore X (Biacore, Piscataway, NJ) was used in the conventional injection mode for the immobilization and characterization of the interaction. ConA was
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
immobilized on a research-grade CM5 chip (Biacore, Uppsala, Sweden) using standard amine coupling. Four concentrations of BS-1 (from 0.5 to $4.0 \mu \mathrm{M}$) in phosphate buffered saline (PBS) containing 0.1 mM MnCl 2 and $0.1 \mathrm{mM} \mathrm{CaCl} 2_{2}$ were passed over the ConA-labeled chip at a rate of $20 \mu \mathrm{~L} / \mathrm{min}$ at $25^{\circ} \mathrm{C}$ (see text Figure 5).

Synthetic Scheme 1

(a) Jones reagent, Acetone, 98%; (b) $\mathrm{Hg}(\mathrm{CN})_{2}, \mathrm{HgBr}_{2}, 4 \mathrm{~A} \mathrm{MS}, \mathrm{CH}_{3} \mathrm{CN}$; (c) $\mathrm{PPh}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (d) 1, DCC, DMAP, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 45 \%$; (e) AcSH, AIBN, MeOH, $365 \mathrm{~nm}, 81 \%$; (f) $\mathrm{NaOMe}, \mathrm{MeOH}, 80 \%$; (f) 32-nm Gold nanoparticles

Synthesis of linker-containing mannopyranoside

ω-Undecylenyl alcohol was oxidized by Jones reagent giving rise to undec-10-enoic acid (1). D-Mannopyranose (Man) was activated by using acetyl chloride, and treated with 8-azido-3,6-dioxa-1-octyl-ol in the presence of mercuric cyanide and mercuric bromide to provide the
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
glycosylated peracetate product, which was subsequently reduced to 2-[2-(2-Aminoethoxy)-ethoxy]ethoxyl 2,3,4,6-tetra-O-acetyl- α-mannopyranoside under Staudiger reaction condition. Condensation of the resulting amine with $\mathbf{1}$ in the presence of DCC yielded compound 5. The terminal olefin was converted to thioacetate through radial type addition with thiolacetic acid in the presence of AIBN under photolytic conditions. Saponification of OAc and SAc groups was effected by stirring with sodium methoxide in dry methanol at room temperature for 3 h to afford the corresponding thiol (7). Compounds 1-7 were fully characterized by IR, MS, HRMS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

General Method: All reagents and starting materials were obtained from commercial suppliers (Acros, Aldrich, Sigma and Merck) and were used without further purification. IR spectra were recorded on a Nicolet 550 series II spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using either a Varian Mercury Plus 400 or Bruker Avance 400 spectrometer. The proton and carbon chemical shifts are given in ppm using $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.24\right.$ and 77.0) as internal standard. High resolution mass spectra were recorded with a JEOL-102A mass spectrometer. Analytical TLC (silica gel, 60F-54, Merck) and spots were visualized under UV light and/or phosphomolybdic acid-ethanol. Flash column chromatography was performed with Kiesegel 60 (230-400 mesh) silica gel (Merck). All proteins are purchased from Sigma and used without further purification.

Experimental procedures:

Undec-10-enoic acid (1)

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Undec-10-en-1-ol ($3.0 \mathrm{~g}, 17.6 \mathrm{mmol}$) was dissolved in 20 mL of acetone and cooled to $0^{\circ} \mathrm{C}$. Jones reagent ($2.7 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, 2.7 \mathrm{M} \mathrm{CrO}_{3} ; 16.0 \mathrm{~mL}, 44.0 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , quenched with isopropyl alcohol $(12 \mathrm{~mL})$, and stirred for 10 min . The precipitate was filtered, and the filtrate was concentrated. The resulting residue was extracted with EtOAc and washed with 5% citric acid ($\times 3$), $\mathrm{H}_{2} \mathrm{O}(\times 3)$ and brine $(\times 1)$. The organic phase was dried over anhydrous MgSO_{4}, filtered, and concentrated. The product $\mathbf{1}(3.23 \mathrm{~g}, 98 \%)$ was obtained as an oil. TLC (Hex/EtOAc (4:1)) $R_{f}=0.33 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.77(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{q}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1$ H), $2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.18(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 179.7, 138.6, 113.8, 34.4, 34.1, 29.6, 29.5, 29.4, 29.3, 29.2, 25.0; IR (neat) $3416,3323,2925,2859$, 1646, 1553, 1467, 1135, $1062 \mathrm{~cm}^{-1}$. FAB-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}+1\right)$ 185.1542, Found 185.1542.

8-Azido-3,6-dioxa-1-octyl2', $3^{\prime}, 4^{\prime}, 6^{\prime}-$ tetra-O-acetyl- α-D-manno-pyranoside (4)

Compound $\mathbf{2}$ and $\mathbf{3}$ were synthesized as previously reported. ${ }^{3,4}$ To a solution of compound $\mathbf{3}(2.1 \mathrm{~g}$, $12.0 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added $\mathrm{Hg}(\mathrm{CN})_{2}(3.0 \mathrm{~g}, 12.0 \mathrm{mmol}), \mathrm{HgBr}_{2}(4.3 \mathrm{~g}, 12.0 \mathrm{mmol}), 4 \mathrm{~A}$ MS $(5.0 \mathrm{~g})$. Compound $2(5.9 \mathrm{~g}, 14.4 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise to the reaction mixture at room temperature for 5 h . It was filtered and concentrated. The residue was redissolved in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $1 \% \mathrm{KI}_{(\mathrm{aq})}(\times 2), 10 \% \mathrm{NaHCO}_{3(\mathrm{aq)}}(\times 2)$ and brine. The organic phase was dried over anhydrous MgSO_{4}, filtered and concentrated. The product $5(3.0 \mathrm{~g}, 50 \%)$ was obtained as an oil after silica gel column chromatography eluted with Hex/EtOAc (7/3). TLC (Hex/EtOAc (1:1)) R_{f}
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
$=0.30 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.30-5.19(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H})$, 4.05-3.96(m, 2 H), $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.37(\mathrm{~m}, 9 \mathrm{H}), 3.33(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}$, $3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.6,169.9,169.8,169.6,97.6,70.6$, $70.5,69.9,69.9,69.4,68.9,68.2,67.2,66.0,62.3,50.5,20.7,20.6,20.6,20.5$. IR (neat) 2937, 2880, 2113, 1750, 1438, 1373, 1223, 1138, 1087, 1050, 981, 937, $921,602 \mathrm{~cm}^{-1}$. FAB-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{12}\left(\mathrm{M}^{+}+1\right) 506.1986$, found 506.1983.

Compound (5)

To a solution of compound $\mathbf{4}(1.26 \mathrm{~g}, 2.5 \mathrm{mmol})$ in 20 mL of THF was added $\mathrm{PPh}_{3}(0.77 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(67.0 \mu \mathrm{~L}, 3.7 \mathrm{mmol})$. The mixture was stirred at room temperature for 8 h . THF was removed and added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, compound $\mathbf{1}(0.69 \mathrm{~g}, \mathrm{mmol})$, $\mathrm{HOBt}(0.34 \mathrm{~g}, 2.5 \mathrm{mmol})$, a catalytic amount of DMAP, and TEA (1.0 mL). The reaction mixture was stirred at room temperature for additional 10 h and was then filtered through a pad of celite. The filtrate was concentrated and the resulting residue was dissolved in 70 mL of EtOAc and washed with 5% citric acid $(\times 3), 10 \% \mathrm{NaHCO}_{3}(\times 3)$ and brine. The organic phase was dried over anhydrous MgSO_{4}, filtered and concentrated. The product 5 ($0.65 \mathrm{~g}, 45 \%$) was obtained as an oil after silica gel column chromatography eluted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 / 3)$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(1: 1)\right) R_{f}=0.30 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.70(\mathrm{~m}, 1 \mathrm{H})$, $5.35-5.15(\mathrm{~m}, 3 \mathrm{H}), 4.94-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=5.1,12.4,1 \mathrm{H}), 4.08-3.96$ $(\mathrm{m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 7 \mathrm{H}), 3.48-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.90$ $(\mathrm{m}, 8 \mathrm{H}), 1.56-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.4,169.8,169.2$, 169.1, 1688, 138.5, 113.7, 97.3, 70.5, 70.1, 69.9, 69.8, 69.4, 68.9, 68.3, 67.3, 65.9, 62.3, 39.2, 36.8,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
33.9, 29.5, 29.5, 29.2, 29.0, 25.9, 21.1, 21.0, 20.9. IR (neat) 2932, 2866, 1759, 1666, 1228,1142, 1096, 1043, $771 \mathrm{~cm}^{-1}$. FAB-HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{NO}_{13}\left(\mathrm{M}^{+}+1\right) 646.3438$, found 646.3445 .

Compound (6)

To a solution of compound $\mathbf{5}(550.0,0.85 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was added thiolacetic acid (0.40 $\mathrm{mL}, 5.10 \mathrm{mmol})$ and azobis(isobutylnitrile) $(46 \mathrm{mg}, 0.28 \mathrm{mmol})$. The reaction mixture was irradiated in a photochemical reactor (Rayonet reactor lamp, Southern New England Ultraviolet Co., model RPR-100, 365 nm) for 6 h under nitrogen atmosphere. The mixture was concentrated and purified with silica gel flash column chromatography eluted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 / 2)$ to yield yellowish oil (500.0 $\mathrm{mg}, 81 \%) . \mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(2: 3)\right) R_{f}=0.33 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.13(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$, 5.31-5.16(m, 3 H), $4.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.76$ (m, 1 H$), 3.67-3.52(\mathrm{~m}, 7 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3$ H), 2.13-2.10 (m, 5 H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.40(\mathrm{~m} 4 \mathrm{H}), 1.35-1.15(\mathrm{~m}, 12$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 195.1,172.5,169.9,169.2,169.2,168.9,97.4,70.5,70.1,69.9$, $69.9,69.4,69.0,68.3,67.3,66.0,62.4,39.3,36.8,30.9,29.7,29.6,29.5,29.5,29.3,29.3,29.0,26.0$, $21.2,21.1,21.0,21.0$. IR (neat) $2939,2859,1765,1659,1546,1374,1228,1142,1096,1049 \mathrm{~cm}^{-1}$. FAB-HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{NO}_{14} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 722.3422$, found 722.3417 .

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Compound (7)

To a solution of compound $\mathbf{6}(445.0 \mathrm{mg}, 0.62 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was added $\mathrm{NaOMe}(200.0$ $\mathrm{mg}, 3.72 \mathrm{mmol}$) at room temperature for 3 h . The mixture was neutralized by Dowex $50 \mathrm{x} 8-400$ resin. After filtration through a pad of celite, the filtrate was concentrated and the residue was purified with silica gel flash column chromatography eluted with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 / 8)$ to yield an oil ($250.0 \mathrm{mg}, 80 \%$) $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(8: 2)\right) R_{f}=0.45 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.02(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.81(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.52(\mathrm{~m}, 13 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.49$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SH}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.26(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 175.5,101.4,74.4,72.4,72.0,71.5,71.3,71.2,70.6,68.5,67.6,62.9$, 40.5, 39.9, 37.2, 35.4, 30.8, 30.7, 30.6, 30.4, 29.7, 29.7, 27.3; IR (KBr) 3416, 3323, 2925, 2859, 1646, 1553, 1467, 1135, $1062 \mathrm{~cm}^{-1}$; FAB-MS : m/z $512.3\left(\mathrm{M}^{+}+1\right), 534.2\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; FAB-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{NO}_{9} \mathrm{~S}$ $\left(\mathrm{M}^{+}+1\right) 512.2894$, found 512.2885.

Figure S1. TEM photographs of 32 nm gold nanoparticles (a) Man-GNPs (b) In the presence of ConA, Man-GNPs form cross-linked aggregation mediated by ConA.

Figure S2. Overlaid absorption spectra of Man-GNPs in the presence of BS-I, SBA, MAL, ECL, WGA, BS-II, ConA and thyroglobulin. No detectable change was observed in the case of RNaseA, Trypsin inhibitor, BSA, and those spectra are omitted for the clarity.

Table S1: Summary of protein-protein interactions results obtained from UV-vis studies empolying Man-GNP

proteins	Thyroglobulin	BS-I	SBA	MAL	ECL	WGA	BS-II	RNaseA	Trypsin
inhibitor									

+ : Protein-protein interaction occurs. -: Protein-protein interaction does not occur.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Figure S3. MALDI-TOF mass spectrum of biomolecules adsorbed on the Man-GNPs in the case of mixing ConA and BS-I.

Fitting Equation:

$\mathbf{Y}=\mathbf{K}[\mathbf{L}]^{\mathrm{n}} / \mathbf{1}+\mathrm{K}[\mathbf{L}]^{\mathrm{n}}$
K: binding constant
L: concentration of BS-I
n : number of binding site
Y: percentage of signal change

Figure S4. Binding isotherm of ConA titrated with different amount of BS-I in the presence of constant concentration of MAN-GNPs. The binding constant of ConA/BS-I based on the wavelength changes of the surface plasmon absorbance can be obtained by nonlinear regression based on the curve fitting equation shown at left hand side. The binding strength is calculated to be 1.5×10^{15}.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Figure S5. Job's plot of ConA binding to BS-I based on gold nanoparticle-based competition colorimetric assay. X axis is the mole fractions of ConA. The crossing point of two lines corresponds to 0.68 at the X -axis, indicating the stoichiometry for the binding of BS-I to ConA is 1:2.

Figure S6. Hill plot of ConA binding to BS-I based on gold nanoparticle-based competition colorimetric assay. Y: percentage of wavelength change. The slope of the line is called Hill coefficient which is 1.8332 in our study. Since the magnitude of Hill coefficient is greater than 1, the binding of ConA/BS-I is cooperative.

Reference:

1. G. Frens, Nature 1973, 241, 20-22.
2. Abad, J. M.; Mertens, S. F. L.; Pita, M.; Ferna'ndez, V.M.; Schiffrin, D.J. J. Am. Chem. Soc. 2005, 127, 5689-5694.
3. Sznaidman, M, L.; Johnson, S. C.; Crasto, C.; Hecht, S. M. J. Org. Chem. 1994, 60, 3942-3943.
4. Roy, B. C.; Santos, M.; Mallik, S.; and Campiglia, A.D. J. Org. Chem. 2003, 68, 3999-4007.
