Electronic Supplementary Information

# Ligand Amplification in a Dynamic Combinatorial Glycopeptide Library

Tom Hotchkiss, Holger B. Kramer, Katie J. Doores, David P. Gamblin, Neil J. Oldham and Benjamin G. Davis\*

### **S1. Mass Spectrometry**

Electrospray ionization-mass spectrometric (ESI-MS) analysis of DCLs was conducted on a Micromass LCT time-of-flight mass spectrometer coupled to a Waters Alliance 2790 HPLC. Samples were loop injected into the MS using the LC autosampler. The ESI capillary and cone voltages were optimized at 2.8 kV and 50 V respectively. DCL samples were quenched by the addition of formic acid (4 %), and diluted 20-fold in MeOH before injection into the MS. 'Native' ESI-MS of WGA was performed on a Q-TOFmicro quadrupole-time of flight mass spectrometer. The standard Micromass source was replaced with an Advion BioSciences NanoMate<sup>TM</sup> chip-based nano-ESI source. Protein samples were sprayed from 10 mM NH<sub>4</sub>OAc (pH 7) using a chip nozzle voltage of 1.69 kV, and a cone voltage of 100 V. Collisional cooling of ions was achieved by partially closing a valve on the rotary vacuum pump, leading to an increased pressure in the intermediate vacuum region of the mass spectrometer. CsI was used for calibration.

Denaturing ESI-MS analysis of WGA revealed the presence of two major polypeptide chains with masses of 17086.6 and 17175.8  $\pm$  2 Da, accounting for the multiple signals seen for the dimer in Fig. 3 in the main text.

#### S2. Experimental

bis-N-Butoxycarbonyl-L-glycinyl-L-cysteine methylester 3

# Supplementary Material (ESI) for Chemical Communications

# This journal is © The Royal Society of Chemistry 2005



Diisoprpylamine (1 mL) was added to a solution of *bis*-L-cysteine methylester (0.39 g, 1.4 mmol), 1,3-dicyclohexylcarbodiimide (0.55 g, 2.8 mmol), hydroxybenztriazole (0.36 g, 2.8 mmol) and *N*-Butoxycarbonyl-L-glycine (0.50 g, 2.8 mmol) in DCM (50 mL) and the reaction mixture was stirred at room temperature under Argon. After 24 h, t.l.c. (ethyl acetate:methanol, 5:1) showed the formation of a product (R<sub>f</sub> 0.4). The reaction mixture was filtered, diluted with DCM (40 mL) and washed with water (2 x 30 mL). The organic layers was dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo* to yield bis-*N*-butoxycarbonyl-L-glycinyl-L-cysteine methylester (0.49g, 60%) as a white amorphous solid;  $[\alpha]_D^{21}$  +35.5 (*c*, 1.0 in CHCl<sub>3</sub>);  $\delta_H$  (400 MHz, CDCl<sub>3</sub>) 1.46 (18H, s, (CH<sub>3</sub>)<sub>3</sub>), 3.20 (4H, m, CH<sub>2</sub>-Cys), 4.70-4.74 (4H, m,  $\alpha$ CH<sub>2</sub>-Gly), 3.79 (6H, s, OMe), 4.86 (2H, m,  $\alpha$ H-Cys), 5.51 (2H, m, NH-Gly), 7.23 (2H, d *J*<sub>NH, $\alpha$ H-Cys</sub> 7.4 Hz, NH-Cys);  $\delta_C$  (500 MHz, CD<sub>3</sub>OD) 25.39 (t, CH<sub>2</sub>(Cys)), 28.15 (q, C(<u>CH<sub>3</sub></u>)<sub>3</sub>), 157.87 (s, NC(O)O), 170.49 (s, C(O) Gly), 170.99 (s, C(O) Cys); *m/z* (ESI<sup>+</sup>) 605 (M+Na<sup>+</sup>, 100%); HRMS (ESI<sup>+</sup>) calcd for C<sub>22</sub>H<sub>39</sub>N<sub>4</sub>O<sub>10</sub>S<sub>2</sub> 583.2108. Found 583.2120.

#### N-Butoxycarbonyl-L-glycinyl-L-cysteine methylester 4



Tributyl phosphine (245 mL, 1.0 mmol) was added to a solution of bis-*N*-butoxycarbonyl-L-glycinyl-L-cysteine methylester (246 mg, 0.83 mmol) in THF (10 mL) and methanol (2 mL). After 40 min, t.l.c. (1:1, petrol:ethyl acetate) indicated formation of a product ( $R_f$  0.3) with complete consumption of the starting material ( $R_f$  0.0). The reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography to afford *N*-butoxycarbonyl-L-glycinyl-L-cysteine methylester (496 mg, quantitative) as a foam; [ $\alpha$ ]<sub>D</sub><sup>21</sup> +33.9 (*c*, 1.1 in CHCl<sub>3</sub>);  $v_{max}$ 

#### # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

(thin film) 3320 (br, SH), 1744, 1674 (s, C=O) cm<sup>-1</sup>;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 1.35 (9H, s, (CH<sub>3</sub>)<sub>3</sub>), 1.47 (1H, at, *J* 8.8 Hz, SH), 2.87-2.91 (2H, m, CH<sub>2</sub>-Cys), 3.68 (3H, s, OMe), 3.76 (2H, d, *J* 4.9 Hz, CH<sub>2</sub>-Gly), 4.75-4.79 (1H, m,  $\alpha$ H-Cys), 5.69 (1H, m, NH-Gly), 7.17 (1H, d *J* 6.4 Hz, NH-Cys);  $\delta_{\rm C}$  (100 MHz, CDCl<sub>3</sub>) 26.6 (t, CH<sub>2</sub>-Cys), 28.2 (q, CH<sub>3</sub>), 52.6 (q, OMe), 53.7 (d,  $\alpha$ C), 80.0 (s, <u>C</u>(CH<sub>3</sub>)<sub>3</sub>), 156.2, 169.8, 170.4 (3 x s, 3 x C=O); *m/z* (ESI<sup>+</sup>) 315 (M+Na<sup>+</sup>,100), 293 (M+H<sup>+</sup>, 70 %); HRMS (ESI<sup>+</sup>) calcd. for C<sub>11</sub>H<sub>21</sub>N<sub>2</sub>O<sub>5</sub>S (M+H<sup>+</sup>) 293.1171. Found 293.1174.

## *N*-Butoxycarbonyl-glycinyl-L-cysteinyl-(S-1-β-D-glucopyranosyl disulfide) methylester G



A solution of *N*-butoxycarbonyl-glycinyl-L-cysteine methylester (45 mg, 0.13 mmol) in methanol (8 mL) was added dropwise to a solution of phenyl 1-selenenylsulfide-β-D-glucopyranoside (100 mg, 0.3 mmol) and triethylamine (15 µL, 0.15 mmol) in methanol (12 mL) and the resulting solution was stirred at room temperature. After 30 min, t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a major product (R<sub>f</sub> 0.4). The reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography (ethyl acetate:methanol, 9:1) to yield *N*butoxycarbonyl-glycinyl-L-cysteinyl-(S-1-β-D-glucopyranosyl disulfide) methylester (32 mg, 36 %) as a white amorphous solid;  $[\alpha]_D^{21}$  -101.2 (*c*, 1.2 in MeOH); v<sub>max</sub> (thin film) 3346 (br, OH, NH), 1740, 1675 (s, C=O) cm<sup>-1</sup>;  $\delta_H$  (400 MHz, CD<sub>3</sub>OD) 1.48 (9H, s, C(CH<sub>3</sub>)<sub>3</sub>), 3.08 (1H, dd, *J*<sub>CH,αH</sub> 8.0 Hz, *J*<sub>CH,CH</sub><sup>-</sup> 13.9 Hz, C<u>H</u>H<sup>-</sup>-Cys), 3.32-3.38 (5H, m, CH<u>H</u><sup>'</sup>-Cys, H-4, H-5, CH<sub>2</sub>-Gly), 3.43 (1H, at, *J* 8.8 Hz, H-3), 3.53 (1H, at, *J* 9.0 Hz, H-2), 3.71 (1H, dd, *J*<sub>5,6</sub> 5.5 Hz, *J*<sub>6,6</sub><sup>-</sup> 12.0 Hz, H-6), 3.76 (3H, s, OMe), 3.91 (1H, dd, *J*<sub>5,6</sub><sup>-</sup> 1.8 Hz, H-6'), 4.38 (1H, d, *J*<sub>1,2</sub> 9.4 Hz, H-1), 4.96 (1H, m, αH);  $\delta_C$  (100 MHz, CD<sub>3</sub>OD) 27.3 (q, CH<sub>3</sub>), 4.01 (t, CH<sub>2</sub>-Cys), 43.1 (t, CH<sub>2</sub>-Gly), 51.6 (q, OMe), 61.5 (t, C-6), 69.9, 81.1 (2 x d, C-4, C-5), 71.0 (d, C-2), 78.0 (d, C-3), 80.0 (s,  $\underline{C}(CH_3)_3$ ), 90.2 (d, C-1), 171.1 (s, C=O); *m/z* (ESI<sup>+</sup>) 509 (M+Na<sup>+</sup>, 100 %); HRMS calcd. for C<sub>17</sub>H<sub>30</sub>N<sub>2</sub>O<sub>10</sub>S<sub>2</sub>Na 509.1240. Found 509.1245.

#### **S3.** Library formation

Libraries consisted of 100µg each of *N*-butoxycarbonyl-glycinyl-L-cysteinyl-(S-2acetamino-2-deoxy-1- $\beta$ -D-glucopyranosyl disulfide) methylester and *N*butoxycarbonyl-L-cysteinyl-(*S*-2-acetamino-2-deoxy-1- $\beta$ -D-glucopyranosyl disulfide)-L-threonine methylester. Where DTT was used 5µg was added to the library. Solvents were water, Buffer: a 10mM solution of ammonium acetate adjusted to pH 7.5 by addition of ammonia and a 4% by volume solution of formic acid. 10 µL samples were taken and quenched in 100 µL of 4% formic acid solution before analysis. Wheat Germ Agglutinin (100 µg of a 5 mg/mL solution) was added after 78 h.