Electronic Supplementary Information

The synthesis of tris(perfluoroalkyl)phosphines

Makeba B. Murphy-Jolly, Lesley C. Lewis and Andrew J. M. Caffyn*

Experimental

General

Manipulations were carried out under argon using standard Schlenk techniques. Solvents were distilled from the appropriate drying agents and stored over 4 Å molecular sieves before use. ³¹P, ¹⁹F, ¹³C and ¹H NMR were recorded on a Bruker 400 MHz spectrometer with 85% H₃PO₄, CCl₃F and SiMe₄ as external references respectively.

Materials

P(OPh)₃ was purchased from Aldrich (3kg, US\$103). PhP(OPh)₂, Ph₂POPh and (PhO)₂PCH₂CH₂P(OPh)₂ were obtained by reaction of PhPCl₂ (Strem, 1 kg, US\$88), Ph₂PCl (Strem, 1 kg, US\$242) and Cl₂PCH₂CH₂PCl₂ (Strem, 10 g, US\$172) respectively, with phenol in the presence of NEt₃.^{1,2} NaOPh was made by reaction of phenol with sodium. Caesium fluoride can be purchased from Apollo (500 g, £130). Tetrabutylammonium triphenyldifluorosilicate (TBAT) was purchased from Aldrich (5 g, US\$48.50). P(OC₆H₄CN)₃ was made by reaction of PCl₃ with HOC₆H₄CN (Alfa, 100 g, US\$70.80) in the presence of NEt₃. The silanes CF₃SiMe₃ (Apollo, 100 g, US\$100), C₂F₅SiMe₃ (Hansa, 1 g, US\$78), C₃F₇SiMe₃ (Aldrich, 1 g, US\$47.50) are commercially available. We made all the silanes described, from the corresponding perfluoroalkyl iodide and chlorotrimethylsilane in the presence of tetrakis(dimethylamino)ethylene (Lancaster, 50 g, US\$30) using Petrov's procedure in 40-75% yields.³ The cost of the perfluoroalkyl iodides is as follows: CF₃I (Apollo, 500 g, £264), C₂F₅I (Apollo, 500 g, £220), C₃F₇I (Apollo, 100 g, £106), C₄F₉I (Apollo, 100 g, £45) and C₆F₁₃I (Apollo, 500 g, £114).

Synthesis of Ph₂PCF₃

Ph₂P(OPh) (0.049 g, 0.18 mmol) was added to a mixture of dried CsF (0.016 g, 0.1 mmol) in ether (0.4 ml) under argon in an NMR tube. CF₃SiMe₃ (0.038 g, 0.27 mmol) was added, and the reaction closed and sealed. The reaction was monitored by ³¹P NMR, which showed quantitative yield on completion. ³¹P NMR: δ 1.7 (q, ²*J*_{PF} =

74 Hz) [lit.⁴ (CDCl₃) 2.7 (q, ${}^{2}J_{PF} = 73$ Hz)]. 19 F NMR: δ -56.8 (d, ${}^{2}J_{PF} = 74$ Hz) [lit.⁴ (CDCl₃) -55.3 (d, ${}^{2}J_{PF} = 73$ Hz)].

General procedure for the synthesis of PhP(CF₃)₂ and PhP(C₂F₅)₂

PhP(OPh)₂ (0.2 mmol) was added to a mixture of dried CsF (0.1 mmol) in ether (0.4 ml) under argon in an NMR tube. R_fSiMe_3 ($R_f = CF_3$, C_2F_5) (0.54 mmol) was added, and the reaction closed and sealed. The reaction was monitored by ³¹P NMR, which showed 90% yield on completion. **PhP(CF_3)2:** ³¹P NMR: δ 3.4 (septet, ² $J_{PF} = 80$ Hz) [lit.⁴ (CDCl₃) 0.7 (septet, ² $J_{PF} = 80$ Hz)]. ¹⁹F NMR: δ -51.8 (d, ² $J_{PF} = 83$ Hz) [lit.⁴ (CDCl₃) -53.3 (d, ² $J_{PF} = 80$ Hz)]. **PhP(C₂F₅)2:** ³¹P NMR: δ 3.3 (br, m) [lit.⁵ (C₆D₆) 3.5 (m)]. ¹⁹F NMR: δ -79.3 (d, ³ $J_{PF} = 17$ Hz, CF₃); -108.6 (d, ²J = 54 Hz, CF₂) [lit.⁵ (C₆D₆) -79.63 (d, ³ $J_{PF} = 18$ Hz, CF₃); -108.7, -108.9 (AB portion of ABX spin system, ² $J_{FF} \sim 300$ Hz, ² $J_{PF}(A) = 63$ Hz, ² $J_{PF}(B) = 35$ Hz, CF₂)].

General procedure for the synthesis of P(C₃F₇)₃ and P(C₆F₁₃)₃

P(OC₆H₄CN)₃ (0.23mmol) was added to dried CsF (0.70mmol) in a 1:1 mixture of benzonitrile/ether (0.6 ml) under argon in an NMR tube. R_fSiMe₃ (R_f = C₄F₉, C₆F₁₃) (0.70mmol) was added. The reaction was exothermic and a separate layer of product was observed almost immediately. This was separated by syringe to give crude product. **P(C₃F₇)₃:** ³¹P NMR: δ 21.6 (m) [lit.⁶ 23.3(m)]. ¹⁹F NMR: δ -79.6 (s); -101.1 (d, ³*J*_{PF} = 38 Hz); -120.5 (d, ²*J*_{PF} = 34 Hz) [lit.⁶ -81.0 (s); -103.2 (d, ²*J*_{PF} = 37 Hz); -122.7 (d, ³*J*_{PF} = 30 Hz)]. **P(C₆F₁₃)₃:** ³¹P NMR: δ 27.9 (br) [lit.⁶ 25.0 (m)]. ¹⁹F NMR: δ -78.1 (s, CF₃); -98.1(d, ²*J*_{PF} = 34 Hz, PC*F*₂); -114.1 (d, ³*J*_{PF} unresolved, CF₂); -118.4(s); -119.4 (s); -123.1 (s) [lit.⁶ -83.2 (s); -102.8 (d, ²*J*_{PF} = 25 Hz); -118.8 (d, ³*J*_{PF} = 11 Hz); -123.2 (s); 124.3 (s); -128.0 (s)].

General procedure for the synthesis of (CF₃)₂PCH₂CH₂P(CF₃)₂ and (C₂F₅)₂PCH₂CH₂P(C₂F₅)₂

 $R_{f}SiMe_{3}$ ($R_{f} = CF_{3}$, $C_{2}F_{5}$) (0.6mmol) was added to a mixture of dried CsF (0.3mmol), (PhO)₂PCH₂CH₂P(OPh)₂ (0.15mmol) and ether (0.5 ml) in an NMR tube. The mixture

was shaken intermittently and allowed to stand overnight. The reaction was monitored by ³¹P NMR, which showed 95% (R_f=CF₃) and 90% yield (R_f = C₂F₅) on completion. (CF₃)₂PCH₂CH₂P(CF₃)₂: ³¹P NMR: δ-1.0 (m) [lit.⁷ -3.2 (m)]. ¹⁹F NMR: δ-54.5 (d, ²J_{PF} = 83 Hz) [lit.⁸ -54.9 (d, ²J_{PF} = 74 Hz)]. (C₂F₅)₂PCH₂CH₂P(C₂F₅)₂: ³¹P NMR: δ 6.41 (m) [lit.⁹ (C₆D₆) 7.4 (m)]. ¹⁹F NMR: δ-85.0 (s, CF₃); -110.7 (m, ²J_{PF} = 45 Hz) [lit.⁹ (C₆D₆) -82.3 (s, CF₃); -112.1 (tm, ²J_{PF} = 43 Hz, CF₂)].

Isolation of Ph₂PC₂F₅

Ph₂P(OPh) (4.5 g, 16.3 mmol) was added to a mixture of dried CsF (1.09 g, 7.18 mmol) in ether (20 ml) under argon in an NMR tube. C₂F₅SiMe₃ (3.4 g, 17.5 mmol) was added, and the reaction sealed. The reaction was monitored by ³¹P NMR, which showed quantitative yield overnight. Volatiles were pumped off to reduce the volume of the mixture. The crude product was removed by cannula filtration. Vacuum distillation of the filtrate at 89-93°C and 0.075Torr (104-107°C and 0.2Torr¹⁰) gave Ph₂PC₂F₅ (4.0 g, 80%). ¹H NMR (C₆D₆): δ 7.60 (m, 2H); 7.02 (m, 3H) (Figure 1) [lit.¹⁰ (C₆D₆) 7.59 (m, 2H), 7.01 (m, 3H)]. ³¹P NMR (C₆D₆) : δ -2.4 (t, ²*J*_{PF} = 65 Hz) [lit.¹⁰ (C₆D₆) -1.41 (tq, ²*J*_{PF} = 58.0 Hz, ³*J*_{PF} = 17 Hz]. ¹⁹F NMR δ-80.7 (d, ³*J*_{PF} = 16.2 Hz); -112.9 (d, ²*J*_{PF} = 57.2 Hz) [lit.¹⁰ (C₆D₆) -80.4 (dt, ³*J*_{PF} = 16.5 Hz, ³*J*_{FF} = 3.1 Hz); -112.6 (tq, ²*J*_{PF} = 57.0 Hz, ³*J*_{FF} = 3.1 Hz)]. ¹³C NMR: (CDCl₃) δ 135.3 (d, ¹*J*_{PC} = 22 Hz); 131.0 (s); 129.0 (s); 128.9 (s); 120.8 (tdq, ¹*J*_{CF} = 288 Hz, ¹*J*_{CP} = 53 Hz, ²*J*_{CF} = 37 Hz, CF₂); 120.1 (qtd, ¹*J*_{CF} = 287 Hz, ²*J*_{CF} = 33 Hz, ²*J*_{CP} = 21 Hz, CF₃) (Figure 2).

Isolation of P(CF₃)₃

A mixture of P(OPh)₃ (2.9 ml, 0.011 mol), CsF (1.08 g, 0.007 mol) and PhCN (3 ml) was de-aerated by three freeze, pump, thaw degas cycles. CF₃SiMe₃ (5 ml, 0.03 mol) was then added at -196°C. The mixture was warmed slowly to room temperature, at which time a vigorous reaction occurred. The mixture was stirred for 1 hour. Trap to trap condensation using a vacuum line gave P(CF₃)₃ (1.91 g, 80%). ³¹P NMR: δ -3.6 (dectet, ²*J*_{PF} = 83 Hz) [lit.¹¹ -2.5(dectet, ²*J*_{PF} = 85 Hz)]. ¹⁹F NMR: δ -51.6 (d) [lit.¹¹ -50.7 (d)]. ¹³C NMR (*d*₈-toluene) δ 125.7 (qm, ¹*J*_{CF} = 309 Hz) (Figures 3a & 3b) [lit.¹¹ (C₆D₆) 125.9 (q, ¹*J*_{CF} = 318 Hz)]. **Caution:** P(CF₃)₃ is a spontaneously flammable gas (bp = 17 °C).¹² It can be conveniently stored under air-free conditions in a radical inhibiting solvent such as toluene.¹³

Isolation of P(C₂F₅)₃

P(OPh)₃ (5.68 g, 18.2 mmol) was added to a mixture of dried CsF (2.31 g, 15.2 mmol) in benzonitrile (25 ml) under argon. C₂F₅SiMe₃ (9.02 g, 46.9 mmol) was added. The reaction was shaken intermittently over 10 minutes and left for 1 hour, during which a bottom layer of product separated from the mixture. The bottom layer was removed and distilled, at 60-62 °C, to give P(C₂F₅)₃ (5.18 g, 85%). ³¹P NMR: δ 12.7 (septet of dectets) [lit.⁶ 13.7 (septet of dectets)]. ¹⁹F NMR: δ -82.6 (d, ³*J*_{PF} = 15 Hz, CF₃); -106.7 (d, ²*J*_{PF} = 53 Hz, CF₂) [lit.⁶ -84.5 (d, ³*J*_{PF} = 16 Hz, CF₃); -107.9(d, ²*J*_{PF} = 48 Hz, CF₂)]. ¹³C NMR: (CDCl₃) δ 118.2 (qm, ¹*J*_{CF} = 287 Hz, CF₃); 117.6 (tq, ¹*J*_{CF} = 298 Hz, ²*J*_{CF} = 45 Hz, CF₂) (Figure 4).

Isolation of P(C₄F₉)₃

P(OC₆H₄CN)₃ (1.21 g, 3.1 mmol) was added to dried CsF (2.95 g, 19.4 mmol) in a Schlenk under argon. Benzonitrile (10 ml) and ether (10 ml) were added. C₄F₉SiMe₃ (6 ml, 19.7 mmol) was added by syringe and the mixture stirred rapidly. A colourless bottom layer of crude product separated from the mixture. This layer (1.5 g, 0.75 ml) was removed by syringe and distilled using a Hickman still to give P(C₄F₉)₃ (0.80 g, 40%). ³¹P NMR: δ 21.8 (m) [lit.⁶ 23.7 (m)]. ¹⁹F NMR: δ -83.7 (s, CF₃); -103.6 (d, ²*J*_{PF} = 33 Hz, PCF₂); -120.6 (d, ³*J*_{PF} = 30 Hz, C*F*₂CF₂CF₃); -128.5 (s, C*F*₂CF₃) [lit.⁶ -83.7(s); -103.3(d, ²*J*_{PF} = 32 Hz); -120.1(d, ³*J*_{PF} = 30 Hz); -128.0(s)]. ¹³C NMR: δ 127-108 (m, CF₂'s); 119.5 (qt, ¹*J*_{CF} = 287 Hz, ²*J*_{CF} = 33 Hz, CF₃) (Figure 5).

References

- 1. T. J. Hall and J. H. Hargis, J. Org. Chem., 1986, 51, 4185.
- 2. J. Chatt, W. Hussain, G. J. Leigh, M. Hapipah, C. J. Pickett and D. A. Rankin, *J. Chem. Soc., Dalton Trans.*, 1985, 1131.
- 3. V. A. Petrov, *Tetrahedron Lett.*, 2001, **42**, 3267.
- 4. P. Panne, D. Naumann and B. Hoge, J. Fluorine Chem., 2001, 112, 283.

- 5. J. D. Palcic, P. N. Kapoor, D. M. Roddick and R. G. Peters, *Dalton Trans.*, 2004, 1644.
- 6. J. J. Kampa, J. W. Nail and R. J. Lagow, Angew. Chem. Int. Ed., 1995, 34, 1241.
- 7. B. Hoge and C. Thösen, *Inorg. Chem.*, 2001, **40**, 3113.
- 8. I. G. Phillips, R. G. Ball and R. G. Cavell, *Inorg. Chem.*, 1988, 27, 4038.
- 9. M. F. Ernst and D. M. Roddick, *Inorg. Chem.*, 1989, 28, 1624.
- R. G. Peters, B. L. Bennett, R. C. Schnabel and D. M. Roddick, *Inorg. Chem.*, 1997, 36, 5962.
- 11. A. B. Burg, Inorg. Nucl. Chem. Lett., 1977, 13, 199.
- 12. F. W. Bennett, H. J. Emeléus and R. N. Haszeldine, J. Chem. Soc., 1953, 1565.
- 13. W. Mahler, Inorg. Chem., 1979, 18, 352.

Figure 1. ¹H NMR spectrum of Ph₂PC₂F₅ in CDCl₃

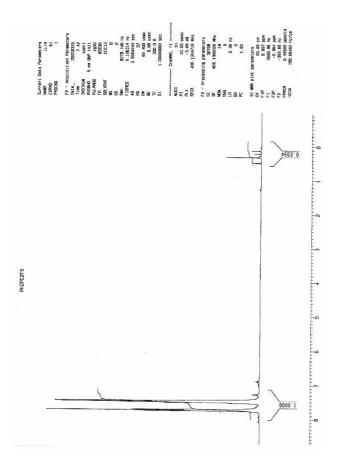
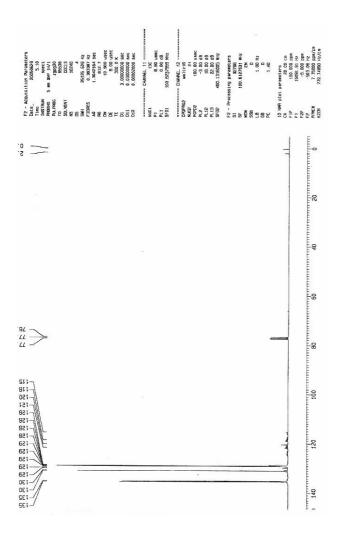



Figure 2. ¹³C NMR spectrum of Ph₂PC₂F₅ in CDCl₃

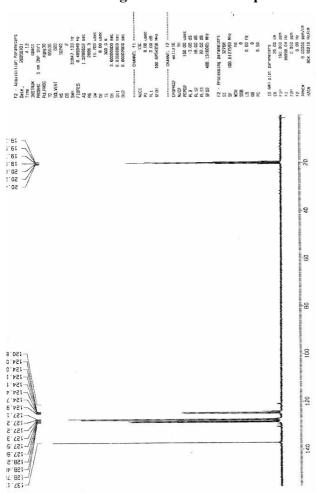


Figure 3a. ¹³C NMR spectrum of $P(CF_3)_3$ in d_8 -toluene

Figure 3b. Expansion of ¹³C NMR spectrum of P(CF₃)₃ in *d*₈-toluene

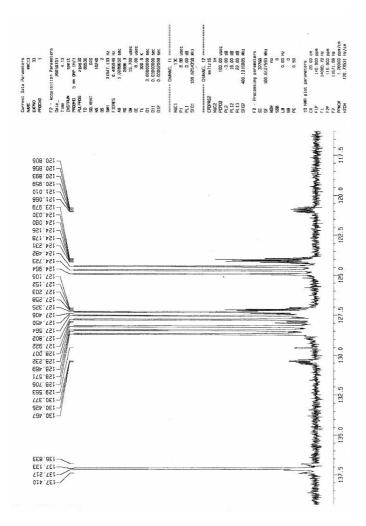
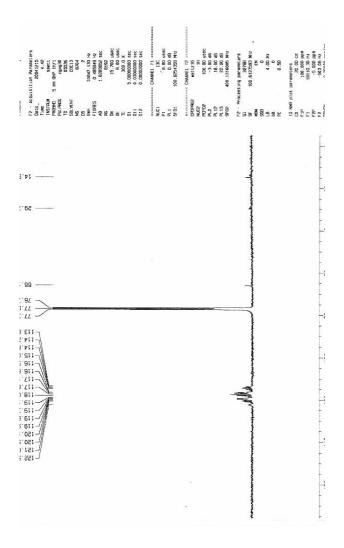
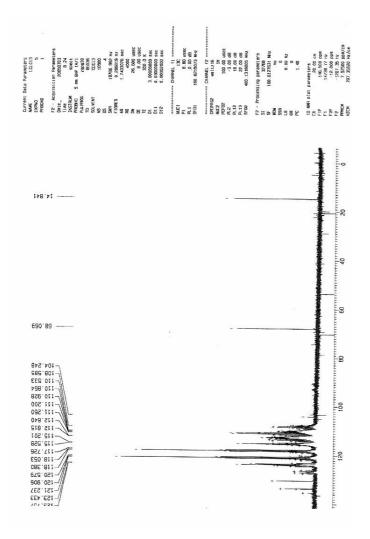




Figure 4. ¹³C NMR spectrum of P(C₂F₅)₃ in CDCl₃

