Supplementary data

Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry

Dirk T.S. Rijkers, G. Wilma van Esse, Remco Merkx, Arwin J. Brouwer, Hans J.F. Jacobs, Roland J. Pieters and Rob M.J. Liskamp^{*}

Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmaceutical sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands. Fax: +31 30 253 5566; phone: +31 30 253 7396/7307; e-mail: R.M.J.Liskamp@pharm.uu.nl

Experimental Section

Instruments and methods: The peptides were synthesized on an Applied Biosystems 433A Peptide Synthesizer. Analytical HPLC runs were carried out on a Shimadzu HPLC system and preparative HPLC runs were performed on a Gilson HPLC workstation. Analytical HPLC runs were performed on Alltech Adsorbosphere XL C18 and Alltech Prosphere C4 columns (250×4.6 mm, pore size 300Å, particle size: 5 μ m) or on a Merck LiChroCART CN column (250 × 4.6 mm, pore size 100Å, particle size: 5 μ m) at a flow rate of 1.0 mL/min using a linear gradient of buffer B (0 – 100% in 25 min) in buffer A (buffer A: 0.1% TFA in H₂O, buffer B: 0.1 % TFA in CH₃CN/H₂O 95:5 v/v). Preparative HPLC runs were performed on an Alltech Prosphere C4 column (250 \times 22 mm, pore size 300Å, particle size: 10 μ m) or on a Merck LiChroCART CN column (250×10 mm, pore size 100Å, particle size: 10 µm) at a flow rate of 4.0 mL/min using a linear gradient of buffer B (0 - 100% in 50 min) in buffer A (buffer A: 0.1% TFA in H₂O, buffer B: 0.1 % TFA in CH₃CN/H₂O 95:5 v/v). Liquid chromatography electrospray ionization mass spectrometry was measured on a Shimadzu LCMS-QP8000 single quadrupole bench-top mass spectrometer operating in a positive ionization mode. MALDI-TOF analysis was performed on a Kratos Axima CFR apparatus with bradykinin(1-7) (monoisotopic $[M + H]^+$ 757.399), human ACTH(18-39) (monoisotopic $[M + H]^+$ 2465.198), bovine insulin oxidized B chain (monoisotopic $[M + H]^+$ 3494.651), bovine insulin (monoisotopic $[M + H]^+$ 5730.609) and equine cyotchrome c (average $[M + H]^+$ 12361.96) as external references and α -cyano-4-hydroxycinnamic acid or sinapic acid as matrices. ¹H NMR spectra were recorded on a Varian G-300 (300 MHz) spectrometer and chemical shifts are given in ppm (δ) relative to TMS. ¹³C NMR spectra were recorded on a Varian G-300 (75.5 MHz) spectrometer and chemical shifts are given in ppm relative to CDCl₃ (77.0 ppm). The ¹³C NMR spectra were recorded using the attached proton test (APT) sequence. R_f values were determined by thin layer chromatography (TLC) on Merck precoated silicagel

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

60F254 plates. Spots were visualized by UV-quenching, ninhydrin or Cl₂/TDM.¹ Elemental analyses were done by Kolbe Mikroanalytisches Labor (Mülheim an der Ruhr, Germany).

Syntheses:

Compound 1: 3,5-dihydroxymethylbenzoate (21.4 g, 130 mmol) was dissolved in dry DMF (250 mL) and anhydrous K_2CO_3 (45 g, 330 mmol, 2.5 equiv) was added. To this suspension, a solution of propargylbromide in toluene (35 mL, 314 mmol, 2.5 equiv) was added dropwise. The reaction mixture was stirred for 48 h at room temperature. Then, DMF was removed by evaporation and the residue was redissolved in EtOAc (400 mL) and the organic phase was washed with H₂O (3 × 100 mL), 1N KHSO₄ (3 × 100 mL) and brine (3 × 100 mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residue was recrystallized from EtOAc/hexane to obtain 1 as off-white crystals in 81% yield (25.2 g). R_f (EtOAc/hexane 4:1 v/v): 0.76; R_f (DCM/MeOH 98:2 v/v): 0.87; R_f (CHCl₃/MeOH/AcOH 95:20:3 v/v): 0.83; ¹H-NMR (CDCl₃) δ 2.55 (t (*J* 2.47 Hz), 2H), 3.91 (s, 3H), 4.72 (d (*J* 2.47 Hz), 4H), 6.81 (t (*J* 2.20 Hz), 1H), 7.29 (d (*J* 2.20 Hz), 2H); ¹³C-NMR (CDCl₃) δ 52.4, 56.0, 76.0, 77.9, 107.5, 108.8, 132.0, 157.8, 158.4; Elemental analysis: calcd for C₁₄H₁₂O₄ C 68.83, H 4.95, found C 68.76, H 4.95.

Compound **2**: Methyl ester **1** was dissolved in dioxane/MeOH (114 mL, 14:5 v/v) and 4N NaOH (15 mL, 2.5 equiv) was added in one portion. The obtained reaction mixture was stirred for 5 h at room temperature. Then, the reaction mixture was neutralized by the addition of 1N HCl and the solvent were removed by evaporation. The residue was redissolved in EtOAc (100 mL) and the organic phase was washed with 1N KHSO₄ (3×50 mL) and brine (3×50 mL), dried (Na₂SO₄) and evaporated *in vacuo*. The residual solid was obtained in 96% yield (5.13 g) and used without further purification in the next synthesis steps. ¹H-NMR (DMSO-d₆) δ 2.50 (broad s, 2H), 4.85 (d (*J* 2.20 Hz), 4H), 6.86 (t (*J* 2.47 Hz), 1H), 7.17 (d (*J* 2.47 Hz), 2H).

The synthesis of dendrimers **3**, **4** and **5** were synthesized using the protocols as described previously.²

Compound **3**: $R_{\rm f}$ (EtOAc/hexane 4:1 v/v): 0.03; $R_{\rm f}$ (DCM/MeOH 98:2 v/v): 0.13; $R_{\rm f}$ (CHCl₃/MeOH/AcOH 95:20:3 v/v): 0.80; ¹H-NMR (CDCl₃) δ 2.55 (t (*J* 2.47 Hz), 4H), 3.82 (m, 4H), 3.88 (s, 3H), 4.07 (t (*J* 4.94 Hz), 4H), 4.68 (d (*J* 2.47 Hz), 8H), 6.54 (t (*J* 2.20 Hz), 1H), 6.72 (t (*J* 2.20 Hz), 2H), 6.93 (t (*J* 5.77 Hz), 2H), 7.05 (d (*J* 2.47 Hz), 4H), 7.09 (d (*J* 2.47 Hz) 2H); ¹³C-NMR (CDCl₃) δ 40.4, 53.2, 56.9, 57.6, 77.0, 78.8, 106.3, 107.1, 107.6, 109.0 132.9, 137.4, 159.6, 160.3, 167.4, 168.1; MS analysis: calcd for C₃₈H₃₄N₂O₁₀ 678.22, found ES-MS 679.40 [M + H]⁺, 701.45 [M + Na]⁺; MALDI-TOF 679.298 [M + H]⁺, 701.245 [M + Na]⁺.

Compound 4: $R_{\rm f}$ (CHCl₃/MeOH/AcOH 95:20:3 v/v): 0.73; ¹H-NMR (DMSO-d₆) δ 2.50 (broad s, 8H), 3.59 (m, 12H), 3.61 (s, 3H), 4.14 (m, 12H), 4.83 (d, 8H), 6.78 (m, 7H), 7.12 (m, 14H), 8.68 (m, 6H); ¹³C-NMR

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

 $(DMSO-d_6) \ \delta \ 37.8, \ 49.8, \ 53.3, \ 63.7, \ 76.0, \ 76.4, \ 102.5, \ 103.5, \ 104.2, \ 105.1, \ 129.1, \ 133.8, \ 155.7, \ 156.9, \ 157.1, \ 163.3; \ MS \ analysis: \ calcd \ for \ C_{86}H_{78}N_6O_{22} \ 1546.52, \ found \ MALDI-TOF \ 1547.490 \ [M+H]^+, \ 1569.496 \ [M+Na]^+.$

Compound 5: ¹H-NMR (DMSO-d₆) δ 2.50 (broad s, 16H), 3.58 (m, 28H), 3.81 (s, 3H), 4.13 (m, 28H), 4.82 (d, 32H), 6.88 (m, 15H), 7.11 (m, 30H), 8.70 (m, 14H); MS analysis: calcd for C₁₈₂H₁₆₆N₁₄O₄₆ 3282.33, found MALDI-TOF 3321.467 [M + K]⁺.

Azide 6 was prepared according to: S.G. Alvarez and M.T. Alvarez, *Synthesis*, 1997, 413; azides 7 – 10, 13 and 14 were synthesized by diazotransfer in solution according to: J.T. Lundquist, IV and J.C. Pelletier, *Org. Lett.*, 2001, 3, 781; azido peptides 11 and 12 were synthesized by diazotransfer on the solid support according to: D.T.S. Rijkers, H.H.R. van Vugt, H.J.F. Jacobs and R.M.J. Liskamp, *Tetrahedron Lett.*, 2002, 43, 3657.

Compound **6**: ¹H-NMR (CDCl₃) δ 1.32 (t (*J* 7.14 Hz), 3H), 3.88 (s, 2H), 4.26 (q (*J* 7.14 Hz), 2H); ¹³C-NMR (CDCl₃) δ 14.0, 50.2, 61.8, 168.2.

Compound 7: ¹H-NMR (CDCl₃) δ 1.01/1.03-1.06/1.08 (dd (*J* 15. 11 Hz, *J* 6.88 Hz), 6H), 2.23 (m, 1H), 3.79 (d (*J* 5.49 Hz), 1H).

Compound 8: ¹H-NMR (CDCl₃) δ 2.09/2.23 (double m, 2 × 1H), 2.59 (m, 2H), 4.13 (m, 1H).

Compound **9**: ¹H-NMR (CDCl₃) δ 0.85/0.88 (dd (*J* 6.59 Hz, *J* 1.10 Hz), 6H), 1.26-1.57 (broad m, 3H), 3.02/3.05-3.07/3.09 (dd (*J* 14.1 Hz, *J* 7.5 Hz), 1H), 3.28/3.28-3.32/3.34 (dd (*J* 14.1 Hz, *J* 4.2 Hz), 1H), 3.73 (s, 3H), 4.28 (m, 1H), 4.52 (m, 1H), 6.21 (broad s, 1H), 6.65 (d (*J* 8.52 Hz), 1H), 7.29 (m, 5H); ¹³C-NMR (CDCl₃) δ 22.0, 23.0, 24.8, 38.5, 41.5, 50.8, 52.6, 65.5, 127.5, 128.8, 129.8, 136.1, 168.4, 173.1.

Compound **10**: ¹H-NMR (CDCl₃) δ 0.96/0.97-0.98/0.99 (dd (*J* 6.4 Hz, *J* 2.3 Hz), 6H), 1.42 (d (*J* 7.14 Hz), 3H), 1.67-1.85 (broad m, 3H), 3.78 (s, 3H), 3.97 (m, 1H), 4.57 (m, 1H), 6.89 (d, 1H).

Compound 11: Synthesized as described, see reference 3. $[M + H]^+$: calcd: 1338.70, found 1338.72 (ES-MS).

Compound **12**: R_t : 17.88 min (C4); R_t : 19.66 min (C18); MS analysis: calcd for C₂₈H₃₆N₈O₆ 580.27, found ES-MS 581.55 [M + H]⁺, 603.55 [M + Na]⁺.

Compound **13**: R_t : 12.89 min (C4); R_t : 15.57 min (C18); MS analysis: calcd for C₂₁H₃₇N₁₁O₈ 571.28, found 572.55 [M + H]⁺.

Compound 14: R_t : 16.81 min (C4); MS analysis: calcd for $C_{27}H_{39}N_{11}O_7$ 629.30, found 630.55 [M + H]⁺, 652.70 [M + Na]⁺, 668.25 [M + K]⁺.

General procedure for the microwave-assisted click reaction: the alkyne (1 equiv) and the azide (1.3 equiv per arm) were dissolved in 3 mL DMF/H₂O 1:1 v/v or THF/H₂O 1:1 v/v. To this solution, CuSO₄.5H₂O (0.05 equiv) and Na-ascorbate (0.50 equiv) were added. The reaction mixture was placed in a microwave reactor (Biotage) and irradiated during 5 - 30 min at 100°C. The cycloaddition reaction was monitored on TLC for completion of the reaction.

Compound **15**: $R_{\rm f}$ (CHCl₃/MeOH/AcOH 95:20:3 v/v): 0.73; ¹H-NMR (CDCl₃) δ 1.28 (t (*J* 7.14 Hz), 6H), 3.89 (s, 3H), 4.24 (q (*J* 7.14 Hz), 4H), 5.19 (s, 4H), 5.21 (s, 4H), 6.81 (m, 1H), 7.27 (m, 2H); 7.81 (s, 2H); ¹³C-NMR (CDCl₃) δ 14.0, 33.8, 50.8, 52.3, 62.0, 62.4, 106.9, 108.6, 124.3, 132.1, 143.9, 159.1, 166.6; MS analysis: calcd for C₂₂H₂₆N₆O₈ 502.48, found ES-MS 503.30 [M + H]⁺, 525.30 [M + Na]⁺; MALDI-TOF 503.259 [M + H]⁺.

Compound **16**: $R_{\rm f}$ (CHCl₃/MeOH/AcOH 95:20:3 v/v): 0.68; ¹H-NMR (DMSO-d₆): δ 1.21 (t (*J* 7.14 Hz), 12H), 3.59 (m, 4H), 3.81 (s, 3H), 4.17 (q (*J* 7.14 Hz), 8H,), 4.21 (m, 4H), 5.21 (s, 8H), 5.42 (s, 8H), 6.82 (m, 1H), 6.91 (m, 2H), 7.09 (m, 2H), 7.15 (m, 4H), 8.24 (s, 4H), 8.63 (t, 2H); ¹³C-NMR (DMSO-d₆): δ 14.2, 40.5, 50.6, 52.5, 61.5, 61.7, 66.6, 104.5, 106.6, 107.8, 126.3, 131.8, 136.5, 142.7, 159.2, 159.9, 166.1, 167.4; MS analysis: calcd for C₅₄H₆₂N₁₄O₁₈, 1194.437, found MALDI-TOF 1195.597 [M + H]⁺, 1217.578 [M + Na]⁺; Elemental analysis: calcd for C₅₄H₆₂N₁₄O₁₈ C 54.27%, H 5.23%, N 16.41%, found C 54.16%, H 5.17%, N 16.22%.

Compound 17: ¹H-NMR (DMSO-d₆): δ 1.20 (t (*J* 7.14 Hz) 24H), 3.60 (broad m, 12H), 3.79 (s, 3H), 4.18 (m, 28 H), 5.21 (s, 16H), 5.41 (s, 16H), 6.72 (m, 2H), 6.81 (m, 1H), 6.93 (m, 4H) 7.04 (m, 6H), 7.18 (m 8H), 8.23 (s, 8H), 8.68 (m, 6H); MS analysis: calcd for C₁₁₈H₁₃₄N₃₀O₃₈, 2580.50, found MALDI-TOF 2581.012 [M + H]⁺, 2603.116 [M + Na]⁺; Elemental analysis: calcd for C₁₁₈H₁₃₄N₃₀O₃₈ C 54.87%, H 5.37%, N 16.00%, found C 54.88%, H 5.17%, N 16.19%.

Compound **18**: MS analysis: calcd for $C_{246}H_{278}N_{62}O_{78}$, 5347.969, found MALDI-TOF 5389.460 $[(M+CH_3CN) + H]^+$.

Compound **19**: R_t : 19.05 min (C4); R_t : 20.84 min (C18); ¹H-NMR (DMSO-d₆): δ 0.74 (d (*J* 6.59 Hz), 6H), 0.94 (d (*J* 6.59 Hz), 6H), 1.24 (m, 2H), 3.84 (s, 3H), 4.10 (broad s, 2H), 5.03 (m, 2H), 5.21 (s, 4H), 7.07 (m, 1H), 7.18 (m, 2H), 8.30 (s, 2H); ¹³C-NMR (DMSO-d₆): δ 18.5, 19.4, 31.0, 52.6, 61.8, 107.0, 108.3, 124.9, 131.8, 134.2, 142.2, 159.4, 166.1, 170.3; MS analysis: calcd for C₁₆H₃₀N₆O₈ 530.21, found; MALDI-TOF

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

 $531.339 [M + H]^+, 553.308 [M + Na]^+.$

Compound **20**: R_t : 15.98 min (CN); MS analysis: calcd for C₂₄H₂₆N₆O₁₂ 590.16, found; ES-MS 591.29 [M + H]⁺.

Compound **21**: ¹H NMR (CDCl₃): δ 0.85 (d (*J* 5.49 Hz), 12H), 1.55 (m, 6H), 3.38 (m, 2H), 3.57 (m, 2H), 3.67 (s, 6H), 3.90 (s, 3H), 4.49 (m, 2H), 5.13 (s, 4H), 5.57 (m, 2H), 6.77 (m, 1H), 6.99 (m, 4H), 7.27 (m, 5H), 7.33 (m, 5H), 7.86 (s, 2H); ¹³C-NMR (CDCl₃): δ 21.6, 22.5, 24.6, 39.5, 40.8, 51.1, 52.2, 61.9, 65.4, 106.8, 108.4, 123.7, 127.2, 128.5, 128.7, 132.0, 134.9, 143.4, 159.0, 166.2, 167.2, 172.3; MS analysis: calcd for C₄₆H₅₆N₈O₁₀ 880, found ES-MS 881.50 [M + H]⁺, 903.30 [M + Na]⁺; MALDI-TOF 881.288 [M + H]⁺, 903.244 [M + Na]⁺; Elemental analysis: calcd for C₄₆H₅₆N₈O₁₀ C 62.71%, H 6.41%, N 12.72%, found C 62.64%, H 6.37%, N 12.64%.

Compound **22**: ¹H NMR (DMSO-d₆): δ 0.89 (m, 12H), 1.24 (m, 2H), 1.30 (d (*J* 7.42 Hz), 6H), 1.89 (broad m, 4H), 3.64 (s, 6H), 3.84 (s, 3H), 4.25 (m, 2H), 5.19 (s, 4H), 5.47 (m, 2H), 7.05 (m, 1H), 7.19 (m, 2H), 8.35 (s, 2H), 9.03 (d (*J* 6.59 Hz), 2H); ¹³C NMR (DMSO-d₆): δ 17.3, 22.2, 23.0, 24.8, 41.3, 48.5, 52.7, 53.0, 61.4, 62.2, 107.4, 108.7, 132.3, 143.0, 159.9, 166.5, 168.7, 173.3; MS analysis: calcd for C₃₄H₄₈N₈O₁₀ 728.35, found ES-MS 729.55 [M + H]⁺, 751.45 [M + Na]⁺; MALDI-TOF 729.417 [M + H]⁺, 751.359 [M + Na]⁺; Elemental analysis: calcd for C₃₄H₄₁N₄O₇ C 56.03%, H 6.64%, N 15.38%, found C 56.10%, H 6.60%, N 15.28%.

Compound **23**: ¹H NMR (CDCl₃): δ 0.87/0.90 (d (*J* 6.59 Hz), 24H), 1.29/1.31 (d (*J* 7.14 Hz), 12H), 1.39 (m, 4H), 2.04 (m, 8H), 3.72 (s, 12H), 3.79 (s, 3H), 3.84 (m, 4H), 4.17 (m, 4H), 4.51 (m, 4H), 5.02 (s, 8H), 5.49 (m, 4H), 6.63 (m, 2H), 6.75 (m, 1H), 6.98 (m, 4H), 7.16 (m, 2H), 7.42 (d (J 7.78 Hz), 4H), 7.68 (m, 2H), 8.07 (s, 4H); MS analysis: calcd for C₇₈H₁₀₆N₁₈O₂₂ 1646.77, found MALDI-TOF 1647.730 [M + H]⁺, 1669.732 [M + Na]⁺.

Compound **24**: ¹H NMR (DMSO-d₆): δ 0.86 (m, 48H), 1.21 (m, 8H), 1.28 (d (7.14 Hz), 24H), 1.98 (m, 16H), 3.58 (overlapping signals, 36H), 3.80 (overlapping signals, 15H), 4.13 (m, 8H), 4.82 (broad s, 16H), 5.19 (m, 8H), 6.77 (m, 21H), 7.05 (m, 14H), 8.19 (s, 8H); ¹³C NMR (DMSO-d₆): δ16.8, 21.7, 22.5, 24.4, 40.5, 48.0, 52.2, 56.0, 66.4, 78.7, 79.1, 99.7, 104.2, 105.2, 106.2, 107.8, 131.8, 136.5, 142.5, 158.4, 159.2, 159.6, 166.0, 166.1, 168.2, 172.7.

Compound **25**: R_t : 19.1 min (C4); MS analysis: calcd for $C_{136}H_{202}N_{34}O_{36}S_2$ 2952.872, found; MALDI-TOF 2953.310 [M + H]⁺.

Compound **26**: MS analysis: calcd for $C_{70}H_{84}N_{16}O_{16}$, 1404.625, found MALDI-TOF 1427.822 [M + Na]⁺.

Compound **27**: MS analysis: calcd for $C_{150}H_{178}N_{34}O_{24}$, 2999.325, found MALDI-TOF 3021.827 [M + H]⁺.

Compound **28**: MS analysis: calcd for $C_{56}H_{86}N_{22}O_{20}$, 1386.639, found MALDI-TOF 1386.638 $[M + H]^+$.

Compound **29**: R_t : 16.78 min (CN); MS analysis: calcd for C₁₂₂H₁₈₂N₄₆O₄₂, 2963.352, found MALDI-TOF 2963.805 [M + H]⁺.

Compound **30**: MS analysis: calcd for $C_{68}H_{90}N_{22}O_{18}$, 1502.680, found MALDI-TOF 1503.913 $[M + H]^+$.

Compound **31**: R_t : 21.23 min (CN); MS analysis: calcd for C₁₄₆H₁₉₀N₄₆O₃₈, 3195.435, found MALDI-TOF 3195.730 [M + H]⁺.

References

1 E. Von Arx, M. Faupel and M.J. Bruggen, J. Chromatogr., 1976, 120, 224.

2 S.J.E. Mulders, A.J. Brouwer, P.G.J. van der Meer and R.M.J. Liskamp, *Tetrahedron Lett.*, 1997, **38**, 631; S.J.E. Mulders, A.J. Brouwer and R.M.J. Liskamp, *Tetrahedron Lett.*, 1997, **38**, 3085 A.J. Brouwer, S.J.E. Mulders and R.M.J. Liskamp, *Eur. J. Org. Chem.*, 2001, 1903; A.J. Brouwer and R.M.J. Liskamp, *Eur. J. Org. Chem.*, 2005, 487.

3 D.T.S. Rijkers, H.H.R. van Vugt, H.J.F. Jacobs and R.M.J. Liskamp, Tetrahedron Lett., 2002, 43, 3657.