Supplementary data

Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry

Dirk T.S. Rijkers, G. Wilma van Esse, Remco Merkx, Arwin J. Brouwer, Hans J.F. Jacobs, Roland J. Pieters and Rob M.J. Liskamp*

Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmaceutical sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.

Fax: +31 30253 5566; phone: +31 30253 7396/7307; e-mail: R.M.J.Liskamp@pharm.uu.nl

Experimental Section

Instruments and methods: The peptides were synthesized on an Applied Biosystems 433A Peptide Synthesizer. Analytical HPLC runs were carried out on a Shimadzu HPLC system and preparative HPLC runs were performed on a Gilson HPLC workstation. Analytical HPLC runs were performed on Alltech Adsorbosphere XL C18 and Alltech Prosphere C4 columns ($250 \times 4.6 \mathrm{~mm}$, pore size $300 \AA$, particle size: 5 $\mu \mathrm{m}$) or on a Merck LiChroCART CN column ($250 \times 4.6 \mathrm{~mm}$, pore size $100 \AA$, particle size: $5 \mu \mathrm{~m}$) at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ using a linear gradient of buffer B ($0-100 \%$ in 25 min) in buffer A (buffer A: 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$, buffer B: 0.1% TFA in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5 \mathrm{v} / \mathrm{v}$). Preparative HPLC runs were performed on an Alltech Prosphere C4 column ($250 \times 22 \mathrm{~mm}$, pore size $300 \AA$, particle size: $10 \mu \mathrm{~m}$) or on a Merck LiChroCART CN column ($250 \times 10 \mathrm{~mm}$, pore size $100 \AA$, particle size: $10 \mu \mathrm{~m}$) at a flow rate of $4.0 \mathrm{~mL} / \mathrm{min}$ using a linear gradient of buffer $\mathrm{B}(0-100 \%$ in 50 min$)$ in buffer A (buffer A: 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$, buffer B: $0.1 \% \mathrm{TFA}$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5 \mathrm{v} / \mathrm{v}$). Liquid chromatography electrospray ionization mass spectrometry was measured on a Shimadzu LCMS-QP8000 single quadrupole bench-top mass spectrometer operating in a positive ionization mode. MALDI-TOF analysis was performed on a Kratos Axima CFR apparatus with bradykinin(1-7) (monoisotopic $[\mathrm{M}+\mathrm{H}]^{+} 757.399$), human $\mathrm{ACTH}(18-39)$ (monoisotopic $[\mathrm{M}+\mathrm{H}]^{+}$ 2465.198), bovine insulin oxidized B chain (monoisotopic $[\mathrm{M}+\mathrm{H}]^{+}$3494.651), bovine insulin (monoisotopic $[\mathrm{M}+\mathrm{H}]^{+}$5730.609) and equine cyotchrome c (average $[\mathrm{M}+\mathrm{H}]^{+}$12361.96) as external references and α-cyano-4-hydroxycinnamic acid or sinapic acid as matrices. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian G-300 (300 MHz) spectrometer and chemical shifts are given in ppm (δ) relative to TMS. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian G-300 $(75.5 \mathrm{MHz})$ spectrometer and chemical shifts are given in ppm relative to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$. The ${ }^{13} \mathrm{C}$ NMR spectra were recorded using the attached proton test (APT) sequence. R_{f} values were determined by thin layer chromatography (TLC) on Merck precoated silicagel

60F254 plates. Spots were visualized by UV-quenching, ninhydrin or $\mathrm{Cl}_{2} /$ TDM. ${ }^{1}$ Elemental analyses were done by Kolbe Mikroanalytisches Labor (Mülheim an der Ruhr, Germany).

Syntheses:

Compound 1: 3,5-dihydroxymethylbenzoate ($21.4 \mathrm{~g}, 130 \mathrm{mmol}$) was dissolved in dry DMF (250 mL) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(45 \mathrm{~g}, 330 \mathrm{mmol}, 2.5$ equiv) was added. To this suspension, a solution of propargylbromide in toluene ($35 \mathrm{~mL}, 314 \mathrm{mmol}, 2.5$ equiv) was added dropwise. The reaction mixture was stirred for 48 h at room temperature. Then, DMF was removed by evaporation and the residue was redissolved in EtOAc (400 mL) and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{KHSO} \mathrm{K}_{4}(3 \times$ $100 \mathrm{~mL})$ and brine $(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was recrystallized from EtOAc/hexane to obtain $\mathbf{1}$ as off-white crystals in 81% yield (25.2 g). $R_{\mathrm{f}}(\mathrm{EtOAc} /$ hexane $4: 1 \mathrm{v} / \mathrm{v}): 0.76$; $R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 98: 2 \mathrm{v} / \mathrm{v}): 0.87 ; R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH} 95: 20: 3 \mathrm{v} / \mathrm{v}\right): 0.83 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.55(\mathrm{t}(J$ $2.47 \mathrm{~Hz}), 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{~d}(J 2.47 \mathrm{~Hz}), 4 \mathrm{H}), 6.81(\mathrm{t}(J 2.20 \mathrm{~Hz}), 1 \mathrm{H}), 7.29(\mathrm{~d}(J 2.20 \mathrm{~Hz}), 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 52.4,56.0,76.0,77.9,107.5,108.8,132.0,157.8,158.4$; Elemental analysis: calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{C} 68.83$, H 4.95, found C 68.76, H 4.95.

Compound 2: Methyl ester $\mathbf{1}$ was dissolved in dioxane/ MeOH ($114 \mathrm{~mL}, 14: 5 \mathrm{v} / \mathrm{v}$) and $4 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL}, 2.5$ equiv) was added in one portion. The obtained reaction mixture was stirred for 5 h at room temperature. Then, the reaction mixture was neutralized by the addition of 1 N HCl and the solvent were removed by evaporation. The residue was redissolved in EtOAc $(100 \mathrm{~mL})$ and the organic phase was washed with 1 N $\mathrm{KHSO}_{4}(3 \times 50 \mathrm{~mL})$ and brine $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residual solid was obtained in 96% yield (5.13 g) and used without further purification in the next synthesis steps. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.\left.{ }_{6}\right) \delta 2.50(b r o a d ~ s, 2 H), 4.85(d)(J 2.20 \mathrm{~Hz}), 4 \mathrm{H}\right), 6.86(\mathrm{t}(J 2.47 \mathrm{~Hz}), 1 \mathrm{H}), 7.17(\mathrm{~d}(J 2.47 \mathrm{~Hz}), 2 \mathrm{H})$.

The synthesis of dendrimers $\mathbf{3}, \mathbf{4}$ and $\mathbf{5}$ were synthesized using the protocols as described previously. ${ }^{2}$

Compound 3: $R_{\mathrm{f}}(\mathrm{EtOAc} /$ hexane $4: 1 \mathrm{v} / \mathrm{v}): 0.03 ; R_{\mathrm{f}}(\mathrm{DCM} / \mathrm{MeOH} 98: 2 \mathrm{v} / \mathrm{v}): 0.13 ; R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}\right.$ 95:20:3 v/v): 0.80; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.55(\mathrm{t}(J 2.47 \mathrm{~Hz}), 4 \mathrm{H}), 3.82(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{t}(J 4.94$ $\mathrm{Hz}), 4 \mathrm{H}), 4.68(\mathrm{~d}(J 2.47 \mathrm{~Hz}), 8 \mathrm{H}), 6.54(\mathrm{t}(J 2.20 \mathrm{~Hz}), 1 \mathrm{H}), 6.72(\mathrm{t}(J 2.20 \mathrm{~Hz}), 2 \mathrm{H}), 6.93(\mathrm{t}(J 5.77 \mathrm{~Hz}), 2 \mathrm{H})$, $7.05(\mathrm{~d}(\mathrm{~J} 2.47 \mathrm{~Hz}), 4 \mathrm{H}), 7.09(\mathrm{~d}(\mathrm{~J} 2.47 \mathrm{~Hz}) 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 40.4,53.2,56.9,57.6,77.0,78.8$, 106.3, 107.1, 107.6, 109.0 132.9, 137.4, 159.6, 160.3, 167.4, 168.1; MS analysis: calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{10}$ 678.22, found ES-MS $679.40[\mathrm{M}+\mathrm{H}]^{+}, 701.45\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; MALDI-TOF $679.298[\mathrm{M}+\mathrm{H}]^{+}, 701.245[\mathrm{M}+$ $\mathrm{Na}]^{+}$.

Compound 4: $R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH} 95: 20: 3 \mathrm{v} / \mathrm{v}\right): 0.73 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 2.50(\mathrm{broad} \mathrm{s}, 8 \mathrm{H}), 3.59$ $(\mathrm{m}, 12 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~m}, 12 \mathrm{H}), 4.83(\mathrm{~d}, 8 \mathrm{H}), 6.78(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~m}, 14 \mathrm{H}), 8.68(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
(DMSO-d d_{6}) $\delta 37.8,49.8,53.3,63.7,76.0,76.4,102.5,103.5,104.2,105.1,129.1,133.8,155.7,156.9,157.1$, 163.3; MS analysis: calcd for $\mathrm{C}_{86} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{22}$ 1546.52, found MALDI-TOF $1547.490[\mathrm{M}+\mathrm{H}]^{+}, 1569.496[\mathrm{M}+$ $\mathrm{Na}]^{+}$.

Compound 5: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}\right) \delta 2.50$ (broad s, 16 H), $3.58(\mathrm{~m}, 28 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~m}, 28 \mathrm{H}), 4.82$ $(\mathrm{d}, 32 \mathrm{H}), 6.88(\mathrm{~m}, 15 \mathrm{H}), 7.11(\mathrm{~m}, 30 \mathrm{H}), 8.70(\mathrm{~m}, 14 \mathrm{H})$; MS analysis: calcd for $\mathrm{C}_{182} \mathrm{H}_{16} \mathrm{~N}_{14} \mathrm{O}_{46}$ 3282.33, found MALDI-TOF $3321.467[\mathrm{M}+\mathrm{K}]^{+}$.

Azide $\mathbf{6}$ was prepared according to: S.G. Alvarez and M.T. Alvarez, Synthesis, 1997, 413; azides $\mathbf{7 - 1 0}, \mathbf{1 3}$ and $\mathbf{1 4}$ were synthesized by diazotransfer in solution according to: J.T. Lundquist, IV and J.C. Pelletier, Org. Lett., 2001, 3, 781; azido peptides $\mathbf{1 1}$ and $\mathbf{1 2}$ were synthesized by diazotransfer on the solid support according to: D.T.S. Rijkers, H.H.R. van Vugt, H.J.F. Jacobs and R.M.J. Liskamp, Tetrahedron Lett., 2002, 43, 3657.

Compound 6: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}(J 7.14 \mathrm{~Hz}), 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{q}(J 7.14 \mathrm{~Hz}), 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 14.0,50.2,61.8,168.2$.

Compound 7: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.01 / 1.03-1.06 / 1.08(\mathrm{dd}(J 15.11 \mathrm{~Hz}, J 6.88 \mathrm{~Hz}), 6 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (d (J 5.49 Hz$), 1 \mathrm{H})$.

Compound 8: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 2.09/2.23 (double $\left.\mathrm{m}, 2 \times 1 \mathrm{H}\right), 2.59(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H})$.

Compound 9: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.85 / 0.88$ (dd $(J 6.59 \mathrm{~Hz}, J 1.10 \mathrm{~Hz}), 6 \mathrm{H}$), 1.26-1.57 (broad m, 3H), $3.02 / 3.05-3.07 / 3.09$ (dd ($J 14.1 \mathrm{~Hz}, J 7.5 \mathrm{~Hz}$), 1 H), $3.28 / 3.28-3.32 / 3.34$ (dd ($J 14.1 \mathrm{~Hz}, J 4.2 \mathrm{~Hz}$), 1 H), 3.73 $(\mathrm{s}, 3 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 6.21(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}(J 8.52 \mathrm{~Hz}), 1 \mathrm{H}), 7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 22.0,23.0,24.8,38.5,41.5,50.8,52.6,65.5,127.5,128.8,129.8,136.1,168.4,173.1$.

Compound 10: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.96 / 0.97-0.98 / 0.99(\mathrm{dd}(J 6.4 \mathrm{~Hz}, J 2.3 \mathrm{~Hz}), 6 \mathrm{H}), 1.42(\mathrm{~d}(J 7.14 \mathrm{~Hz})$, $3 \mathrm{H})$, 1.67-1.85 (broad m, 3H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H})$.

Compound 11: Synthesized as described, see reference 3. $[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 1338.70, found 1338.72 (ES-MS).

Compound 12: $R_{\mathrm{t}}: 17.88 \mathrm{~min}(\mathrm{C} 4) ; R_{\mathrm{t}}: 19.66 \mathrm{~min}(\mathrm{C} 18)$; MS analysis: calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{6} 580.27$, found ES-MS $581.55[\mathrm{M}+\mathrm{H}]^{+}, 603.55[\mathrm{M}+\mathrm{Na}]^{+}$.

Compound 13: $R_{\mathrm{t}}: 12.89 \mathrm{~min}(\mathrm{C} 4) ; R_{\mathrm{t}}: 15.57 \mathrm{~min}(\mathrm{C} 18)$; MS analysis: calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{11} \mathrm{O}_{8} 571.28$, found $572.55[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 14: $R_{\mathrm{t}}: 16.81 \mathrm{~min}(\mathrm{C} 4)$; MS analysis: calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{11} \mathrm{O}_{7} 629.30$, found $630.55[\mathrm{M}+\mathrm{H}]^{+}$, $652.70[\mathrm{M}+\mathrm{Na}]^{+}, 668.25[\mathrm{M}+\mathrm{K}]^{+}$.

General procedure for the microwave-assisted click reaction: the alkyne (1 equiv) and the azide (1.3 equiv per arm) were dissolved in 3 mL DMF/ $\mathrm{H}_{2} \mathrm{O} \quad 1: 1 \mathrm{v} / \mathrm{v}$ or $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} \quad 1: 1 \mathrm{v} / \mathrm{v}$. To this solution, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.05$ equiv) and Na -ascorbate (0.50 equiv) were added. The reaction mixture was placed in a microwave reactor (Biotage) and irradiated during $5-30 \mathrm{~min}$ at $100^{\circ} \mathrm{C}$. The cycloaddition reaction was monitored on TLC for completion of the reaction.

Compound 15: $R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH} 95: 20: 3 \mathrm{v} / \mathrm{v}\right): 0.73$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{t}(J 7.14 \mathrm{~Hz}), 6 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{q}(J 7.14 \mathrm{~Hz}), 4 \mathrm{H}), 5.19(\mathrm{~s}, 4 \mathrm{H}), 5.21(\mathrm{~s}, 4 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}) ; 7.81(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.0,33.8,50.8,52.3,62.0,62.4,106.9,108.6,124.3,132.1,143.9,159.1,166.6 ; \mathrm{MS}$ analysis: calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{8} 502.48$, found ES-MS $503.30[\mathrm{M}+\mathrm{H}]^{+}, 525.30[\mathrm{M}+\mathrm{Na}]^{+}$; MALDI-TOF $503.259[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 16: $R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH} 95: 20: 3 \mathrm{v} / \mathrm{v}\right): 0.68 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}} \mathrm{d}_{6}\right): \delta 1.21(\mathrm{t}(J 7.14 \mathrm{~Hz})$, $12 \mathrm{H}), 3.59(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{q}(J 7.14 \mathrm{~Hz}), 8 \mathrm{H}),, 4.21(\mathrm{~m}, 4 \mathrm{H}), 5.21(\mathrm{~s}, 8 \mathrm{H}), 5.42(\mathrm{~s}, 8 \mathrm{H}), 6.82(\mathrm{~m}$, $1 \mathrm{H}), 6.91(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 4 \mathrm{H}), 8.24(\mathrm{~s}, 4 \mathrm{H}), 8.63(\mathrm{t}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}\right): \delta 14.2$, $40.5,50.6,52.5,61.5,61.7,66.6,104.5,106.6,107.8,126.3,131.8,136.5,142.7,159.2,159.9,166.1,167.4 ;$ MS analysis: calcd for $\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{~N}_{14} \mathrm{O}_{18}, 1194.437$, found MALDI-TOF $1195.597[\mathrm{M}+\mathrm{H}]^{+}, 1217.578[\mathrm{M}+$ $\mathrm{Na}]^{+}$; Elemental analysis: calcd for $\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{~N}_{14} \mathrm{O}_{18}$ C 54.27%, H 5.23%, N 16.41%, found C $54.16 \%, \mathrm{H}$ 5.17%, N 16.22%.

Compound 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right)$: $\delta 1.20(\mathrm{t}(\mathrm{J} 7.14 \mathrm{~Hz}) 24 \mathrm{H}), 3.60(\mathrm{broad} \mathrm{m}, 12 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~m}$, $28 \mathrm{H}), 5.21(\mathrm{~s}, 16 \mathrm{H}), 5.41(\mathrm{~s}, 16 \mathrm{H}), 6.72(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 4 \mathrm{H}) 7.04(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~m} 8 \mathrm{H})$, $8.23(\mathrm{~s}, 8 \mathrm{H}), 8.68(\mathrm{~m}, 6 \mathrm{H})$; MS analysis: calcd for $\mathrm{C}_{118} \mathrm{H}_{134} \mathrm{~N}_{30} \mathrm{O}_{38}, 2580.50$, found MALDI-TOF 2581.012 $[\mathrm{M}+\mathrm{H}]^{+}, 2603.116[\mathrm{M}+\mathrm{Na}]^{+}$; Elemental analysis: calcd for $\mathrm{C}_{118} \mathrm{H}_{134} \mathrm{~N}_{30} \mathrm{O}_{38} \mathrm{C} 54.87 \%, \mathrm{H} 5.37 \%, \mathrm{~N}$ 16.00%, found C 54.88%, H 5.17%, N 16.19%.

Compound 18: MS analysis: calcd for $\mathrm{C}_{246} \mathrm{H}_{278} \mathrm{~N}_{62} \mathrm{O}_{78}, 5347.969$, found MALDI-TOF 5389.460 $\left[\left(\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}\right)+\mathrm{H}\right]^{+}$.

Compound 19: $R_{\mathrm{t}}: 19.05 \mathrm{~min}(\mathrm{C} 4) ; R_{\mathrm{t}}: 20.84 \mathrm{~min}(\mathrm{C} 18) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}\right): \delta 0.74(\mathrm{~d}(J 6.59 \mathrm{~Hz}), 6 \mathrm{H})$, $0.94(\mathrm{~d}(J 6.59 \mathrm{~Hz}), 6 \mathrm{H}), 1.24(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{broad} \mathrm{s}, 2 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 4 \mathrm{H}), 7.07(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 8.30(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d d_{6}) $\delta 18.5,19.4,31.0,52.6,61.8,107.0,108.3,124.9$, 131.8, 134.2, 142.2, 159.4, 166.1, 170.3; MS analysis: calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{8} 530.21$, found; MALDI-TOF

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
$531.339[\mathrm{M}+\mathrm{H}]^{+}, 553.308[\mathrm{M}+\mathrm{Na}]^{+}$.

Compound 20: $R_{t}: 15.98$ min (CN); MS analysis: calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{12}$ 590.16, found; ES-MS 591.29 [M + $\mathrm{H}]^{+}$.

Compound 21: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.85(\mathrm{~d}(J 5.49 \mathrm{~Hz}), 12 \mathrm{H}), 1.55(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 6 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 4 \mathrm{H}), 5.57(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.6,22.5,24.6,39.5,40.8,51.1,52.2,61.9,65.4$, $106.8,108.4,123.7,127.2,128.5,128.7,132.0,134.9,143.4,159.0,166.2,167.2,172.3$; MS analysis: calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{10} 880$, found ES-MS $881.50[\mathrm{M}+\mathrm{H}]^{+}, 903.30[\mathrm{M}+\mathrm{Na}]^{+}$; MALDI-TOF $881.288[\mathrm{M}+\mathrm{H}]^{+}$, $903.244[\mathrm{M}+\mathrm{Na}]^{+}$; Elemental analysis: calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{C} 62.71 \%$, H 6.41%, N 12.72%, found C 62.64\%, H 6.37\%, N 12.64\%.

Compound 22: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.89(\mathrm{~m}, 12 \mathrm{H}), 1.24(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}(J 7.42 \mathrm{~Hz}), 6 \mathrm{H}), 1.89$ (broad $\mathrm{m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 4 \mathrm{H}), 5.47(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 8.35$ (s, 2H), 9.03 (d ($J 6.59 \mathrm{~Hz}$), 2H); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 17.3,22.2,23.0,24.8,41.3,48.5,52.7,53.0,61.4$, 62.2, 107.4, 108.7, 132.3, 143.0, 159.9, 166.5, 168.7, 173.3; MS analysis: calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{10} 728.35$, found ES-MS $729.55[\mathrm{M}+\mathrm{H}]^{+}, 751.45[\mathrm{M}+\mathrm{Na}]^{+}$; MALDI-TOF $729.417[\mathrm{M}+\mathrm{H}]^{+}, 751.359[\mathrm{M}+\mathrm{Na}]^{+}$; Elemental analysis: calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{C} 56.03 \%$, H $6.64 \%, \mathrm{~N} 15.38 \%$, found $\mathrm{C} 56.10 \%, \mathrm{H} 6.60 \%, \mathrm{~N}$ 15.28\%.

Compound 23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.87 / 0.90(\mathrm{~d}(J 6.59 \mathrm{~Hz}), 24 \mathrm{H}), 1.29 / 1.31(\mathrm{~d}(J 7.14 \mathrm{~Hz}), 12 \mathrm{H}), 1.39(\mathrm{~m}$, $4 \mathrm{H}), 2.04(\mathrm{~m}, 8 \mathrm{H}), 3.72(\mathrm{~s}, 12 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~m}, 4 \mathrm{H}), 4.17(\mathrm{~m}, 4 \mathrm{H}), 4.51(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{~s}, 8 \mathrm{H}), 5.49$ $(\mathrm{m}, 4 \mathrm{H}), 6.63(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}(\mathrm{~J} 7.78 \mathrm{~Hz}), 4 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H})$, 8.07 (s, 4H); MS analysis: calcd for $\mathrm{C}_{78} \mathrm{H}_{106} \mathrm{~N}_{18} \mathrm{O}_{22}$ 1646.77, found MALDI-TOF $1647.730[\mathrm{M}+\mathrm{H}]^{+}$, $1669.732[\mathrm{M}+\mathrm{Na}]^{+}$.

Compound 24: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$) : $\delta 0.86(\mathrm{~m}, 48 \mathrm{H}), 1.21(\mathrm{~m}, 8 \mathrm{H}), 1.28(\mathrm{~d}(7.14 \mathrm{~Hz}), 24 \mathrm{H}), 1.98(\mathrm{~m}, 16 \mathrm{H})$, 3.58 (overlapping signals, 36 H), 3.80 (overlapping signals, 15 H), $4.13(\mathrm{~m}, 8 \mathrm{H}$), 4.82 (broad s, 16 H), $5.19(\mathrm{~m}$, $8 \mathrm{H}), 6.77(\mathrm{~m}, 21 \mathrm{H}), 7.05(\mathrm{~m}, 14 \mathrm{H}), 8.19(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) $816.8,21.7,22.5,24.4,40.5,48.0$, $52.2,56.0,66.4,78.7,79.1,99.7,104.2,105.2,106.2,107.8,131.8,136.5,142.5,158.4,159.2,159.6,166.0$, 166.1, 168.2, 172.7.

Compound 25: R_{t} : 19.1 min (C4); MS analysis: calcd for $\mathrm{C}_{136} \mathrm{H}_{202} \mathrm{~N}_{34} \mathrm{O}_{36} \mathrm{~S}_{2}$ 2952.872, found; MALDI-TOF $2953.310[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 26: MS analysis: calcd for $\mathrm{C}_{70} \mathrm{H}_{84} \mathrm{~N}_{16} \mathrm{O}_{16}, 1404.625$, found MALDI-TOF $1427.822[\mathrm{M}+\mathrm{Na}]^{+}$.

Supplementary Material for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Compound 27: MS analysis: calcd for $\mathrm{C}_{150} \mathrm{H}_{178} \mathrm{~N}_{34} \mathrm{O}_{24}, 2999.325$, found MALDI-TOF $3021.827[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 28: MS analysis: calcd for $\mathrm{C}_{56} \mathrm{H}_{86} \mathrm{~N}_{22} \mathrm{O}_{20}, 1386.639$, found MALDI-TOF $1386.638[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 29: $R_{\mathrm{t}}: 16.78 \mathrm{~min}(\mathrm{CN})$; MS analysis: calcd for $\mathrm{C}_{122} \mathrm{H}_{182} \mathrm{~N}_{46} \mathrm{O}_{42}$, 2963.352, found MALDI-TOF $2963.805[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 30: MS analysis: calcd for $\mathrm{C}_{68} \mathrm{H}_{90} \mathrm{~N}_{22} \mathrm{O}_{18}, 1502.680$, found MALDI-TOF $1503.913[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 31: R_{t} : 21.23 min (CN); MS analysis: calcd for $\mathrm{C}_{146} \mathrm{H}_{190} \mathrm{~N}_{46} \mathrm{O}_{38}$, 3195.435, found MALDI-TOF $3195.730[\mathrm{M}+\mathrm{H}]^{+}$.

References

1 E. Von Arx, M. Faupel and M.J. Bruggen, J. Chromatogr., 1976, 120, 224.
2 S.J.E. Mulders, A.J. Brouwer, P.G.J. van der Meer and R.M.J. Liskamp, Tetrahedron Lett., 1997, 38, 631;
S.J.E. Mulders, A.J. Brouwer and R.M.J. Liskamp, Tetrahedron Lett., 1997, 38, 3085 A.J. Brouwer, S.J.E.

Mulders and R.M.J. Liskamp, Eur. J. Org. Chem., 2001, 1903; A.J. Brouwer and R.M.J. Liskamp, Eur. J. Org. Chem., 2005, 487.
3 D.T.S. Rijkers, H.H.R. van Vugt, H.J.F. Jacobs and R.M.J. Liskamp, Tetrahedron Lett., 2002, 43, 3657.

