Novel synthetic approach to PtCo alloy nanoparticles by reduction of nanometer-sized metal coordination polymers

Mami Yamada,*^a Masayuki Maesaka,^a Masato Kurihara,^b Masatomi Sakamoto,^b and Mikio Miyake*^a

^a Deprtment of Physical Materials Science, Japan Advanced Institute of Science and Technology (JAIST),
1-1 Asahidai, Nom-shi, Ishikawa 923-1292, Japan. Fax: +81-761-51-1116; Tel: +81-761-51-1540;
E-mail: myamada@jaist.ac.jp, miyake@jaist.ac.jp
^b Department of Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa,

Electronic Supplementary Information (ESI)

Yamagata 990-8560, Japan.

Fig. S1 TEM images of the compounds 1-4. The numbers in the figure refer to those of the compound. Scale bar = 20 nm.

Fig. S2 The relation between Pt/Co ratio and the IR intensity ratio of Pt^{II} -CN-Pt^{IV} to Pt^{II} -CN-Co.

Fig. S3 TGA curve of the compound **1** in the H₂ atmosphere (N₂/H₂ = 10, total flow rate is 110 mL/min.).

Fig. S4 IR spectra of the compound 1 before and after the transformation reaction in the H_2 atmosphere. The reaction temperature and the reaction time are noted in the figure.

Fig. 5 XPS curve in the Co2p energy range of compound **1** after the transformation reaction in H_2 atmosphere at 350 °C for 3h (top) and at 400 °C for 3h (bottom). The peak at 781.9 eV attributed to the Co sites in Pt^{II}-CN-Pt^{IV}/Co negatively shifts to the peak at 778.2 eV due to metal Co.

Fig. S6 XRD patterns of the compound 1 before and after the transformation reaction in the H_2 atmosphere at 400 °C for 3h. The peaks marked by squares are assigned to PtCo.