Transition-Metal-Catalyzed Rearrangement of 5-Alkynals to γ-Alkynylketones and 1-Cyclopentenylketones

Ken Tanaka,* Kaori Sasaki, Kenzo Takeishi, and Koudai Sugishima

I. General

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (No. 27,099-7), $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ (No. 28,450-5), and $\mathrm{CH}_{3} \mathrm{CN}$ (No. 27100-4) were obtained from Aldrich and used as received. All other reagents were obtained from commercial sources and used as received. All reactions were carried out under an atmosphere of argon or nitrogen in oven-dried glassware with magnetic stirring.

II. Synthesis of 5-Alkynals

4-Methoxy-4-methyldec-5-ynal.

General Procedure 1: $n-\operatorname{BuLi}(1.58 \mathrm{M}$ in n-hexane, $23 \mathrm{~mL}, 36 \mathrm{mmol})$ was added to a solution of 1-hexyne ($5.2 \mathrm{~mL}, 46 \mathrm{mmol}$) in THF (120 mL) at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . 1,1-Dimethoxy-3-butanone was added at $0^{\circ} \mathrm{C}$, and stirred at rt for 0.5 h . MeI $(9.4 \mathrm{~mL}, 0.15 \mathrm{~mol})$ and DMSO $(90 \mathrm{~mL})$ were added, and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. To the residue was added water (35 mL) and AcOH (100 mL), and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 0.5 h . The reaction mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated, which afforded crude 3-methoxy-3-methylnon-4-ynal (5.1 g).
To a cooled $\left(-10^{\circ} \mathrm{C}\right)$ and stirred suspension of methoxymethyl triphenylphosphonium chloride ($19.4 \mathrm{~g}, 56.6 \mathrm{mmol}$) in THF (61 mL) under argon atmosphere was added an lithium diisopropylamine solution consisting of n - BuLi (1.58 M in n-hexane, 34 mL , 54 mmol) and diisopropylamine ($8.0 \mathrm{~mL}, 57 \mathrm{mmol}$) in THF (65 mL). To the deep red
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
solution was added a solution of crude 3-methoxy-3-methylnon-4-ynal (5.1 g) in THF (55 mL). The resulting solution was kept at $-10^{\circ} \mathrm{C}$ for 1 h and then diluted with saturated aqueous NaHCO_{3}. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. A solution of the residue in THF (375 mL) was treated with aqueous $\mathrm{HCl}(75 \mathrm{~mL}, 10 \%)$ at rt for 24 h . Saturated aqueous NaHCO_{3} was added slowly to neutralize HCl and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel chromatography (hexane:EtOAc = 15:1), which furnished 4-methoxy-4-methyldec-5-ynal ($5.2 \mathrm{~g}, 26 \mathrm{mmol}, 48 \%$ yield, unoptimized) as a pale yellow oil.
IR (neat) $3350,2900,1720,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.78(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-2.10(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 202.4, 86.7, 79.9, 72.8, 51.2, 39.6, 34.5, 30.7, 25.8, 21.9, 18.2, 13.5; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$196.1463, found 196.1426.

4-Methoxy-4-metyl-6-phenylhex-5-ynal.

The title compound was prepared from phenylacetylene according to the general procedure 1.
Pale yellow oil; IR (neat) 2900, 1720, 1440, 1370, 1260, 1180, 880, 760, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.83(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.48(\mathrm{~m}, 3 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=7.5 \mathrm{and} 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.3,131.7,128.5,128.3,122.4,89.1,86.2,73.2,51.6,39.5,34.4$, 25.6; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}[M]^{+} 216.1150$, found 216.1160 .

9-Chloro-4-methoxy-4-methylnon-5-ynal.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared from 5-chloro-1-pentyn according to the general procedure 1.
Pale yellow oil; IR (neat) 2900, 1720, 1430, 1370, 1270, 1180, 1150, $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.78(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 2.49-2.72 (m, 2H), $2.42(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.1,84.6,81.2,72.8,51.4,43.6,39.5,34.5,31.3,25.8,16.1$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClO}_{2}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$201.0682, found 201.0678.

4-Methoxy-4-methyl-6-trimethylsilanylhex-5-ynal.

The title compound was prepared from (trimethylsilyl)acetylene according to the general procedure 1.
Pale yellow oil; IR (neat) 3350, 2950, 1720, 1250, 1080, 840, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.79(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{dt}, J=1.8$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.0,105.4,90.6$, $72.9,51.4,39.4,34.2,25.5,-0.03$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$ 197.0998, found 197.0953.

4-Isopropyl-4-methoxydec-5-ynal.

General Procedure 2: A solution of 2-(2-bromoethyl)-1,3-dioxolane (12.5 g, 69 mmol)
in THF (20 mL) was added to a stirred suspension of magnesium ($3.0 \mathrm{~g}, 69 \mathrm{mmol}$) in THF $(80 \mathrm{~mL})$ and the reaction mixture was stirred at rt for 30 min . The solution was cooled to $0^{\circ} \mathrm{C}$, powder $\mathrm{CuBr}(9.3 \mathrm{~g}, 65 \mathrm{mmol})$ was added, and the resulting mixture was stirred at $5-15^{\circ} \mathrm{C}$ for 20 min . After cooling to $-70^{\circ} \mathrm{C}$, a solution of isobutyryl chloride $(5.8 \mathrm{~mL}, 55$ $\mathrm{mmol})$ in THF (100 mL) was added over 15 min , and the reaction mixture was stirred at $-70^{\circ} \mathrm{C}$ for an additional 1 h . The reaction mixture was warmed to rt and stirred at rt for 18 h. The mixture was poured into an ice cold 2 M solution of aqueous $\mathrm{HCl}(200 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel column chromatography (hexane:EtOAc $=5: 1$) to give 1-[1,3]dioxolan-2-yl-4-methylpentan-3-one ($3.0 \mathrm{~g}, 17.6$ $\mathrm{mmol}, 32 \%$ yield, unoptimized) as a pale yellow oil.
$n-\mathrm{BuLi}(1.58 \mathrm{M}$ in n-hexane, $8.4 \mathrm{~mL}, 13 \mathrm{mmol})$ was added to a solution of 1-hexyne (2.0 $\mathrm{mL}, 16.5 \mathrm{mmol})$ in THF $(45 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . THF (10 mL) solution of 1-[1,3]dioxolan-2-yl-4-methylpentan-3-one ($1.9 \mathrm{~g}, 11$ mmol) was added at $0^{\circ} \mathrm{C}$, and stirred at rt for 0.5 h . MeI ($3.4 \mathrm{~mL}, 55 \mathrm{mmol}$) and DMSO $(34 \mathrm{~mL})$ were added, and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. To the residue was added water (5 mL) and $\mathrm{AcOH}(15 \mathrm{~mL})$, and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated, which afforded 4-isopropyl-4-methoxydec-5-ynal ($1.1 \mathrm{~g}, 4.9 \mathrm{mmol}, 94 \%$ yield) as a pale yellow oil.
IR (neat) $2900,1690,1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.79(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.27(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.58(\mathrm{~m}$, $4 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.7,88.4,79.5,51.2,39.2,33.9,30.9,27.2,22.0,18.3,18.0,16.6$, 13.7; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$167.1071, found 167.1030.

4-Propyl-4-methoxydec-5-ynal.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared from 1-[1,3]dioxolan-2-yl-hexan-3-one ${ }^{2}$ according to the general procedure 2. 1-[1,3]Dioxolan-2-yl-hexan-3-one was prepared from 2-(2-bromoethyl)-1,3-dioxolane and butyryl chloride according to the general procedure 2.

IR (neat) $3300,2900,1700,1420,1280,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.78$ ($\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.28(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.72(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.6,87.7,79.5,75.9,51.1,40.5,39.4,31.3,30.8,21.9,18.3$, 17.3, 14.3, 13.6; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$167.1071, found 167.1030.

4-Methyldec-5-ynal. ${ }^{1}$

The title compound was prepared according to a literature procedure.

4-Butyldodec-5-ynal.

The title compound was prepared from 1-octyne and hept-2-enal by following the procedure for the synthesis of 4-methyldec-5-ynal. ${ }^{1}$
Colorless oil; IR (neat) 2850, 2720, 1715, $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $9.81(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=7.2$ and 1.8 Hz , $2 \mathrm{H}), 1.74-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.54(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.5,82.6,82.342 .1,35.2,31.31$, 31.29, 29.6, 29.0, 28.5, 27.7, 22.6, 22.5, 18.7, 14.0. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}$ [M] ${ }^{+}$ 236.2140, found 236.2124.

3-Methyldodec-5-ynal. ${ }^{1}$

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared according to a literature procedure.

Hexadec-5-ynal. ${ }^{1}$

The title compound was prepared according to a literature procedure.

1-Deuterio-4-methoxydodec-5-ynal.

The title compound was prepared from 4-methoxydodec-5-ynal ${ }^{1}$ by following the procedure for the synthesis of 1-deuterio-4-methyldec-5-ynal. ${ }^{1}$
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.01(\mathrm{tt}, J=6.0$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 2.61(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{dt}, J=7.2$ and $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.44-1.57 (m, 2H), 1.21-1.44 (m, 6H), $0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}, 61\right.$ $\mathrm{MHz}) \delta 9.81(\mathrm{~s})$.

1-Deuterio-4-methoxy-4-methyldec-5-ynal.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared from 4-methoy-4-methyldec-5-ynal by following the procedure for the synthesis of 1-deuterio-4-methyldec-5-ynal. ${ }^{1}$
Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}, 61 \mathrm{MHz}\right) \delta 9.81(\mathrm{~s})$.

1-Deuterio-4-methyldec-5-ynal. ${ }^{1}$

The title compound was prepared according to a literature procedure.

III. Hydroacylation of 5-Alkynal

2-Pentyliden-3-methoxy-3-methylcyclopentanone.

Under an Ar atmosphere, $\operatorname{BINAP}(12.5 \mathrm{mg}, 0.020 \mathrm{mmol})$ and $\left[\operatorname{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(8.1 \mathrm{mg}$, $0.020 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and the mixture was stirred at rt for 5 $\mathrm{min} . \mathrm{H}_{2}$ was introduced to the resulting solution in Schlenk tube. After stirring for 1 h at rt , the resulting solution was concentrated to dryness. 4-Methoxy-4-methyldec-5-ynal (39.3 $\mathrm{mg}, 0.200 \mathrm{mmol})$ was added to the residue by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h . The resulting solution was concentrated and purified by silica gel preparative TLC (hexane:EtOAc $=$ 5:1) to give 2-pentyliden-3-methoxy-3-methylcyclopentanone ($30.3 \mathrm{mg}, 0.154 \mathrm{mmol}, 77 \%$ yield) as a colorless oil.
IR (neat) 2900, 1720, 1640, 1500, 1440, 1220, 1180, 1080, 1040, 820, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.56(\mathrm{~m}, 5 \mathrm{H})$, $1.75-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
$\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 205.1,142.6,138.2,81.8,50.3,35.9,31.1,30.8,27.2,25.6,22.5$, 13.8; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$196.1463, found 196.1458.

IV. Catalytic Isomerization of 5-Alkynals

5-Methoxyundec-6-yn-2-one.

General Procedure 1 (using Rh catalyst: Table 1, entry 1). Under an Ar atmosphere, triphenylphosphite ($31.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(20.3 \mathrm{mg}, 0.050 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and the mixture was stirred at rt for $0.5 \mathrm{~h} . \mathrm{H}_{2}$ was introduced to the resulting solution in Schlenk tube. After stirring for 1 h at rt , the resulting solution was concentrated to dryness. 4-Methoxy-4-methyldec-5-ynal (98.1 mg , $0.500 \mathrm{mmol})$ was added to the residue by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 16 h . The resulting solution was concentrated and purified by silica gel preparative TLC (hexane:EtOAc $=5: 1$) to give 5 -methoxyundec-6-yn-2-one (75.5 mg , $0.385 \mathrm{mmol}, 77 \%$ yield) as a colorless oil.

General Procedure 2 (using Cu catalyst: Table 1, entry 2). Under an Ar atmosphere, $\mathrm{Cu}(\mathrm{OTf})_{2}(10.9 \mathrm{mg}, 0.030 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ and the mixture was stirred at rt for 5 min . 4-Methoxy-4-methyldec-5-ynal ($98.1 \mathrm{mg}, 0.500 \mathrm{mmol}$) was added to the residue by using $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 h . The resulting solution was concentrated and purified by silica gel preparative TLC (hexane:EtOAc = 5:1) to give 5-methoxyundec-6-yn-2-one ($52.1 \mathrm{mg}, 0.345 \mathrm{mmol}, 69 \%$ yield) as a colorless oil.
IR (neat) $2900,1700,1160,1080,960 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.98(\mathrm{tt}, J=$ 1.8 and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{dt}, J=1.8$ and $6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.56(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.2,86.8,77.9,70.1,56.1,39.0,30.6,29.9,29.6,21.8,18.2,13.4$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COMe}^{+}\right.$125.0966, found 125.0926.

5-Methoxy-7-phenylhept-6-yn-2-one.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared in 71% isolated yield from 4-methoxy-4-metyl-6-phenylhex-5-ynal according to the general procedure 1 . Reaction time: 16 h.
Pale yellow oil; IR (neat) 2900, 1700, 1340, 1160, 1100, 960, 760, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.41-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) 208.2,131.6,128.4,128.2,122.4,87.1,86.2,70.4,56.5,38.9,30.0,29.4$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}[M]^{+} 216.1150$, found 216.1072.

10-Chloro-5-methoxydec-6-yn-2-one.

The title compound was prepared in 74% isolated yield from 9 -chloro-4-methoxy-4-methylnon-5-ynal according to the general procedure 1. Reaction time: 39 h .
Pale yellow oil; IR (neat) 2900, 1700, 1340, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $3.99(\mathrm{tt}, J=1.8$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), $2.44(\mathrm{dt}, \quad J=1.8$ and $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.17 (s , $3 \mathrm{H}), 1.85-2.05(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.2,84.7,79.2$, $70.1,56.3,43.6,39.0,31.2,30.0,29.5,16.1$; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClO}_{2}[\mathrm{M}]^{+}$ 216.0917, found 216.0860.

5-Methoxy-7-trimethylsilanylhept-6-yn-2-one.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared in 24% isolated yield from 4-methoxy-7-trimethylsilanylhept-6-yn-2-one according to the general procedure 2. Reaction time: 110 h . Reaction temperature: $80^{\circ} \mathrm{C}$.
Colorless oil; IR (neat) 2900, 1700, 1340, 1240, 1090, 840, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 3.98(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $1.96(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.1,103.6,91.1$, $70.4,56.4,38.9,30.0,29.2,0.1$; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$197.0998, found 197.0939.

6-Methoxy-2-methyldodec-7-yn-3one.

The title compound was prepared in 43% isolated yield from 4-propyl-4-methoxydec-5-ynal according to the general procedure 1. Reaction time: 109 h.

Colorless oil; IR (neat) 2900, 1700, 1320, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.98$ $(\mathrm{tt}, J=1.8$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.22(\mathrm{dt}, J=1.8$ and $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61$ (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.32-1.53(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 210.5,86.9$, $78.0,70.3,56.1,44.8,38.0,30.7,29.6,21.8,18.3,17.2,13.7,13.5$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+}$224.1776, found 224.1721.

6-Methoxy-2-methyldodec-7-yn-3one.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared in 57% isolated yield from 4-isopropyl-4-methoxydec-5-ynal according to the general procedure 1. Reaction time: 16 h.
Pale yellow oil; IR (neat) 2900, 1700, 1440, 1320, 1180, 1100, 1020, $960 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.98(\mathrm{tt}, J=1.8$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.69(\mathrm{~m}, 3 \mathrm{H})$, 2.23 (dt, $J=1.8$ and $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 214.2,78.1,70.4,56.2$, 40.9, 35.7, 30.7, 29.7, 21.9, 18.32, 18.25, 18.2, 13.6; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+}$ 224.1776, found 224.1755.

1-(5-Methylcyclopent-1-enyl)pentan-1-one.

The title compound was prepared in 62% isolated yield from 4-methyldec-5-ynal according to the general procedure 1. Reaction time: 72 h . Reaction temperature: $50{ }^{\circ} \mathrm{C}$.
Pale yellow oil; IR (neat) 2890, 1660, 1440, $1360 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 6.63-6.69 (m, 1H), 2.97-3.11 (m, 1H), 2.50-2.72 (m, 3H), 2.32-2.50 (m, 1H), 2.04-2.21 (m, 1H), 1.46-1.67 (m, 3H), 1.23-1.41 (m, 2H), 1.07 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 199.4,150.0,142.5,38.9,38.2,31.9,31.7,26.9$, 22.4, 19.6, 13.8. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}$166.1358, found 166.1393.

1-(5-Butylcyclopent-1-enyl)heptan-1-one.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

The title compound was prepared in 71% isolated yield from 4-butyldodec-5-ynal according to the general procedure 1 . Reaction time: 40 h . Reaction temperature: $50^{\circ} \mathrm{C}$. Pale yellow oil; IR (neat) $2880,1660,1455,1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 6.64-6.70 (m, 1H), 2.90-3.03 (m, 1H), 2.31-2.69 (m, 3H), 1.95-2.11 (m, 1H), 1.53-1.73 $(\mathrm{m}, 4 \mathrm{H}), 1.15-1.42(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 199.6$, 149.0, 142.9, 43.5, 39.3, 33.1, 32.1, 31.7, 29.7, 29.0, 28.9, 24.7, 22.9, 22.5, 14.12, 14.05. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}[\mathrm{M}]^{+}$236.2140, found 236.2119.

1-(4-Methylcyclopent-1-enyl)heptan-1-one.

The title compound was prepared in 47% isolated yield from 3-methyldodec-5-ynal according to the general procedure 1 . Reaction time: 72 h . Reaction temperature: $50{ }^{\circ} \mathrm{C}$. Pale yellow oil; IR (neat) 2940, 1660, 1425, $1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 6.59-6.68 (m, 1H), 2.67-2.77 (m, 2H), 2.63 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.20 (m, 2H), 1.54-1.65 (m, 2H), 1.20-1.38 (m, 6H), 1.05 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 199.5,144.7,142.0,42.0,38.9,38.8,31.8$, 31.7, 29.1, 24.7, 22.6, 21.5, 14.1. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}[M]^{+}$194.1671, found 194.1643.

1-Cyclopent-1-enyldodecan-1-one.

The title compound was prepared in 43% isolated yield from hexadec-5-ynal according to the general procedure 1 . Reaction time: 72 h . Reaction temperature: $50^{\circ} \mathrm{C}$.
Pale yellow oil; IR (neat) $2870,1660,1440,1360 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 6.67-6.77 (m, 1H), 2.64 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.92$ (quint, $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.53-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.38(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta .199 .5,145.7,143.0,39.0,33.8,31.8,30.6,29.52,29.46,29.42,29.37,29.3$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
24.7, 22.7, 22.6, 14.1. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}[\mathrm{M}]^{+}$236.2140, found 236.2093.

V. Deuterium Labelling Studies

The reactions of deuterium labelled 5 -alkynals (eq 2, 3, and 4) were conducted according to the general procedure 1. The ratio of $\mathrm{X}=\mathrm{H} / \mathrm{Y}=\mathrm{H}(58 / 42,88 \mathrm{~h}$, eq 2) was determined by ${ }^{1} \mathrm{H}$ NMR integration of $9.78 \mathrm{ppm} / 4.00 \mathrm{ppm}$. The ratio of $\mathrm{X}=\mathrm{D} / \mathrm{Y}=\mathrm{D}$ (45/55, 88 h , eq 2) was determined by ${ }^{2} \mathrm{H}$ NMR integration of $9.80 \mathrm{ppm} / 3.98 \mathrm{ppm}$.

5-Dueterio-5-methoxyundec-6-yn-2-one.

[^0]
1-(2-Deuterio-5-Methylcyclopent-1-enyl)pentan-1-one.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.97-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.04-2.20 (m, 1H), 1.47-1.66 (m, 3H), 1.33 (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.07$ (d, $J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}, 61 \mathrm{MHz}\right) \delta 6.70(\mathrm{~s})$.

VI. References

(1) K. Takeishi, K. Sugishima, K. Sasaki, K. Tanaka, Chem. Eur. J., 2004, 10, 5681. S.Dang, B. P. Roberts, J. Chem. Soc., Perkin Trans. I, 1998, 67.

[^0]: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.59(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{2} \mathrm{H}$ NMR ($\left.\mathrm{CHCl}_{3}, 61 \mathrm{MHz}\right) \delta 3.96(\mathrm{~s})$.

