Cover page for Supplementary Information

Manuscript Title:

Lewis acid-promoted reactions of zirconacyclopentadienes with isocyanates. One-pot three-component synthesis of multiply substituted iminocyclopentadienes from one isocyanate and two Alkynes

Authors:

Jiang Lu,^a Guoliang Mao,^a Wenxiong Zhang^a and Zhenfeng Xi*^{ab}

Affiliations:

Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871 China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Contents:

- 1) Experimental Details and Characterization Data;
- 2) Copies of ¹H NMR and ¹³C NMR spectra for all new compounds;

1) Experimental Section

General: Unless otherwise noted, all starting materials were commercially available and were used without further purification. All reactions involving organometallic compounds were run under a slightly positive pressure of dry N_2 with use of standard Schlenk techniques. Zirconocene dichloride was obtained from Nichia. Boron trifluoride diethyl etherate (BF₃·Et₂O) and *n*BuLi was purchased from Acros, PhMgBr and EtAlCl₂ purchased from Kanto Chemicals. Toluene was refluxed and distilled from sodium benzophenone ketyl under a nitrogen atmosphere.

¹H and ¹³C NMR spectra were recorded on a JEOL-300MHz spectrometer. IR spectra were recorded as neat liquids. GLC analysis was performed on a gas chromatograph (Shimadzu 14B) equipped with a flame ionization detector and a capillary column (CBP1-M25-25). GLC yields were determined using suitable hydrocarbons as internal standards.

General procedure for the preparation of multiply substituted iminocyclopentadiene derivatives (2a-2f). An alkyne (4.0 mmol) was added into a toluene solution of [Cp₂ZrBu₂] (Negishi reagent), prepared in situ from [Cp₂ZrCl₂] (2.0 mmol, 0.58 g) and *n*BuLi (4.0 mmol, 2.6 mL, 1.60M hexane solution) in toluene (20 mL) at -78°C. The reaction mixture was then stirred at room temperature for 1 h to afford zirconacyclopentadiene. Isocyanate (4.0 mmol) was added to this solution at room temperature, then BF₃·Et₂O (8.0 mmol, 1.0 mL) were added to this solution at -78 °C. After stirring the reaction mixture at 0 °C for 1 h, raise the temperature to 80°C and stir the mixture for another 1h. The above reaction mixture was quenched with saturated aqueous NaHCO3 and extracted with n-hexane. The extract was washed with water and brine and dried over Na₂SO₄. The solvent was then evaporated in vacuo to give red-brown oil, which was purified by column chromatograph to the products.

(3,5-Dichloro-phenyl)-(2,3,4,5-tetrapropyl-cyclopenta-2,4-dienylidene)-amine

(2a). Red liquid in 74% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.52 (b, 3H), 0.91 (b, 2H), 0.99 (t, J = 7.2 Hz, 9H), 1.45 (b, 6H), 1.57-1.62 (m, 2H), 2.20 (b, 6H), 6.72-7.30 (m, 3H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.97, 14.37, 14.60, 22.99, 23.93, 25.97, 27.31, 28.26, 116.69, 122.42, 123.77, 131.14, 134.50, 147.91, 153.20, 155.13, 171.86. HRMS calcd for C₂₃H₃₁NCl₂ 391.1834, found 391.1831.

(2,4-Dichloro-phenyl)-(2,3,4,5-tetrapropyl-cyclopenta-2,4-dienylidene)-amine

(2b). Red liquid in 73% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.47 (b, 3H), 0.98 (b, 11H), 1.47-1.65 (m, 8H), 2.20-2.23 (m, 6H), 6.74-7.36 (m, 3H). ¹³C NMR (CDCl₃, Me₄Si): δ 14.09, 14.34, 14.55, 22.99, 23.39, 23.90, 26.03, 27.33, 28.23, 120.39, 123.69, 124.11, 126.71, 128.23, 128.97, 131.29, 146.96, 147.78, 154.49, 172.94. HRMS calcd for C₂₃H₃₁NCl₂ 391.1834, found 391.1835.

(4-Bromo-phenyl)-(2,3,4,5-tetrapropyl-cyclopenta-2,4-dienylidene)-amine (2c). Red liquid in 81% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.45 (t, *J* = 7.2Hz, 3H), 0.89-1.00 (m, 11H), 1.47-1.61 (m, 8H), 2.17-2.26 (m, 6H), 6.68-7.37 (m, 4H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.95, 14.39, 14.60, 23.04, 23.70, 24.07, 26.01, 27.45, 28.21, 115.66, 119.96, 123.81, 131.09, 131.28, 147.29, 150.31, 154.37, 171.17. HRMS calcd for C₂₃H₃₂NCl 401.1718, found 401.1721.

(4-Fluoro-phenyl)-(2,3,4,5-tetrapropyl-cyclopenta-2,4-dienylidene)-amine (2d). Red liquid in 77% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.45 (t, *J* = 7.2 Hz, 3H), 0.85-1.02 (m, 11H), 1.39-1.65 (m, 8H), 2.14-2.29 (m, 6H), 6.74-6.98 (m, 4H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.97, 14.41, 14.60, 23.09, 23.69, 24.13, 26.07, 27.59, 28.20, 28.29, 114.87 (d, *J* = 22.2Hz, 2C), 119.49 (d, *J* = 7.4Hz, 2C), 123.73, 131.45, 147.13, 147.43 (d, *J* = 3.1Hz, 1C), 154.25, 159.41 (d, *J* = 238.6Hz, 1C), 171.53. HRMS calcd for C₂₃H₃₂NF 341.2519, found 341.2517.

(2-Chloro-phenyl)-(2,3,4,5-tetrapropyl-cyclopenta-2,4-dienylidene)-amine (2e). Red liquid in 75% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.41 (b, 3H), 0.97-1.00 (m, 11H), 1.45-1.64 (m, 8H), 2.17-2.29 (m, 6H), 6.80-7.35 (m, 4H). 13 C NMR (CDCl₃, Me₄Si): δ 14.05, 14.37, 14.56, 23.04, 23.46, 23.95, 26.07, 27.35, 28.20, 119.63, 122.87, 123.81, 124.31, 126.54, 129.30, 131.29, 147.44, 148.23, 153.97, 172.19. HRMS calcd for C₂₃H₃₂NCl 357.2223, found 357.2224.

(2-Chloro-phenyl)-(2,3,4,5-tetraphenyl-cyclopenta-2,4-dienylidene)-amine (2f). Dark solid in 91% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 6.47-7.38 (m, 24H). ¹³C NMR (CDCl₃, Me₄Si): δ 120.49, 123.04, 124.28, 125.85, 126.15, 127.02, 127.26, 127.51, 128.59, 129.76, 130.08, 131.29, 132.47, 132.77, 133.42, 133.62, 134.00, 147.19, 148.46, 153.87, 169.56. HRMS calcd for C₃₅H₂₄NCl 493.1597, found 493.1592.

General procedure for the preparation of multiply substituted indenyl imines derivatives (2g-2i). A monoyne (2.0 mmol) was added to a solution of $[Cp_2ZrPh_2]$ in toluene, prepared in situ from $[Cp_2ZrCl_2]$ (2.0 mmol, 0.58 g) and PhLi (2.0 mmol, 1.0 mL, 2.0M dibutyl ether) in toluene (20 mL) at -78°C. The reaction mixture was then stirred at 100 °C for 9 h to afford zirconaindene. The solution was cooled to room temperature and isocyanate (4.0 mmol) was added. Then BF₃·Et₂O (8.0 mmol, 1.0 mL) were added to this solution at -78°C. After stirring the reaction mixture at 0°C for 1 h, raise the temperature to 80°C and stir the mixture for another 1h. The above reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with n-hexane. The extract was washed with water and brine and dried over Na₂SO₄. The solvent was then evaporated in vacuo to give red-brown oil, which was purified by column chromatograph to the products.

(2-Chloro-phenyl)-(2,3-dibutyl-inden-1-ylidene)-amine (2g). Orange liquid in 59% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.94 (t, *J* = 7.2Hz, 3H), 0.98 (t, *J* = 7.2Hz, 3H), 1.39-1.67 (m, 8H), 2.50-2.58 (m, 4H), 6.28-7.44 (m, 8H). ¹³C NMR (CDCl₃, Me₄Si): δ 14.01, 14.13, 22.91, 23.13, 23.77, 25.72, 30.45, 32.29, 118.75, 119.61, 123.06, 124.35, 124.52, 126.20, 127.31, 129.12, 129.87, 130.96, 137.55, 146.08,

148.90, 149.50, 168.29. HRMS calcd for C₂₃H₂₆NCl₂ 351.1754, found 351.1756

(4-Methoxyl-phenyl)-(2,3-dibutyl-inden-1-ylidene)-amine (2h). Red liquid in 55% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.94 (t, *J* = 7.2Hz, 3H), 0.98 (t, *J* = 7.2Hz, 3H), 1.37-1.62 (m, 8H), 2.47-2.57 (m, 4H), 3.83 (s, 3H), 6.41-7.18 (m, 8H). ¹³C NMR (CDCl₃, Me₄Si): δ 14.01, 14.11, 22.98, 23.12, 23.82, 25.66, 30.52, 32.51, 55.48, 114.29, 118.52, 119.59, 124.95, 125.83, 128.68, 130.42, 137.93, 145.42, 146.31, 148.35, 156.39, 167.26. HRMS calcd for C₂₄H₂₉NO 347.2249, found 347.2254.

(4-Methyl-phenyl)-(2,3-dibutyl-inden-1-ylidene)-amine (2i). Red liquid in 51% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.94 (t, *J* = 7.2Hz, 3H), 0.97 (t, *J* = 7.2Hz, 3H), 1.37-1.62 (m, 8H), 2.38 (s, 3H), 2.47-2.57 (m, 4H), 6.35-7.16 (m, 8H). ¹³C NMR (CDCl₃, Me₄Si): δ 14.01, 14.11, 20.98, 22.97, 23.12, 23.79, 25.66, 30.52, 32.50, 118.17, 118.52, 125.07, 125.78, 128.78, 129.56, 130.41, 133.01, 137.87, 146.31, 148.35, 149.58, 166.80. HRMS calcd for C₂₄H₂₉N 331.2300, found 331.2302.

General procedure for the preparation of multiply substituted Hexa-2,4-dienedioic acid bisamide derivatives (3a-3e) and multiply substituted Penta-2,4-dienoic acid amide derivatives (4a-4d). A monoyne (4.0 mmol) was added into a toluene solution of [Cp₂ZrBu₂] (Negishi reagent), prepared in situ from $[Cp_2ZrCl_2]$ (2.0 mmol, 0.58 g) and *n*BuLi (4.0 mmol, 2.6 mL, 1.60M hexane solution) in toluene (20 mL) at -78°C. The reaction mixture was then stirred at room temperature for 1 h to afford zirconacyclopentadiene. Isocyanate (4.0 mmol) and EtAlCl₂ (8.0 mmol, 8.8 mL, 0.9M hexane solution) were added to this solution at -78°C. After stirring the reaction mixture at -30°C for 1 h, the above reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with Et₂O. The extract was washed with water and brine and dried over Na₂SO₄. The solvent was then evaporated in vacuo to give yellow oil, which was purified by column chromatograph to the products.

(2Z,4Z)-N1,N6-bis(2,4-dichlorophenyl)-2,3,4,5-tetrapropyl

hexa-2,4-dienediamide (3a). White solid in 89% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.89 (t, J = 7.5Hz, 6H), 0.92 (t, J = 7.5Hz, 6H), 1.34-1.51 (m, 8H), 2.14-2.20 (m, 4H), 2.34 (t, J = 7.8Hz, 4H), 7.21-8.24 (m, 6H), 8.88 (s, 2H), . ¹³C NMR (CDCl₃, Me₄Si): δ 14.06, 14.75, 21.59, 22.03, 32.46, 36.96, 123.39, 124.35, 127.66, 128.88, 129.24, 133.28, 133.67, 144.37, 169.75. HRMS calcd for C₃₀H₃₆N₂O₂Cl₄ 596.1531, found 596.1518.

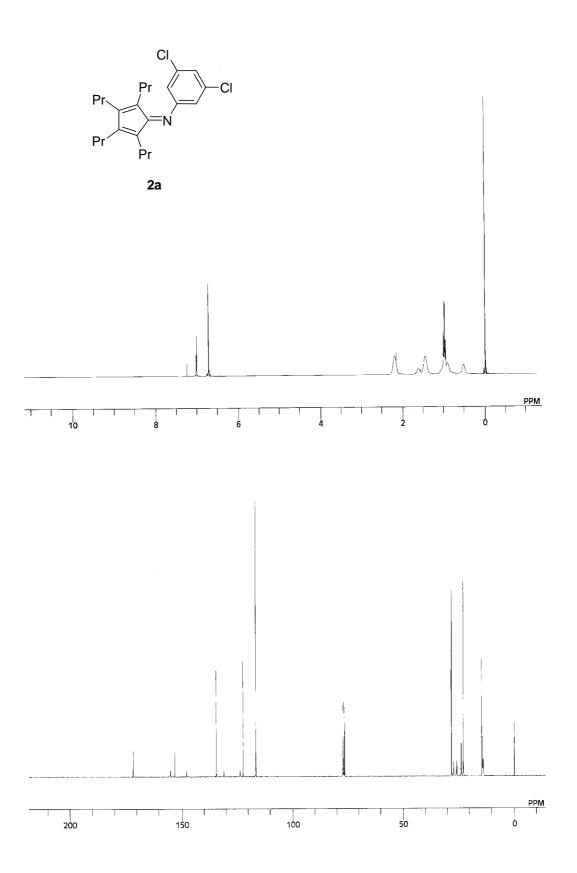
(2Z,4Z)-N1,N6-bis(2-chlorophenyl)-2,3,4,5-tetrapropyl hexa-2,4-dienediamide (3b). White solid in 80% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.89 (t, J = 7.2Hz, 6H), 0.92 (t, J = 7.2Hz, 6H), 1.33-1.57 (m, 8H), 2.15-2.22 (m, 4H), 2.35 (t, J = 7.8Hz, 4H), 6.99-8.27 (m, 8H), 8.88 (s, 2H), . ¹³C NMR (CDCl₃, Me₄Si): δ 14.07, 14.77, 21.61, 22.01, 32.50, 37.01, 122.74, 123.82, 124.74, 127.45, 129.17, 133.40, 134.91, 144.12, 169.75. HRMS calcd for C₃₀H₃₈N₂O₂Cl₂ 528.2310, found 528.2310.

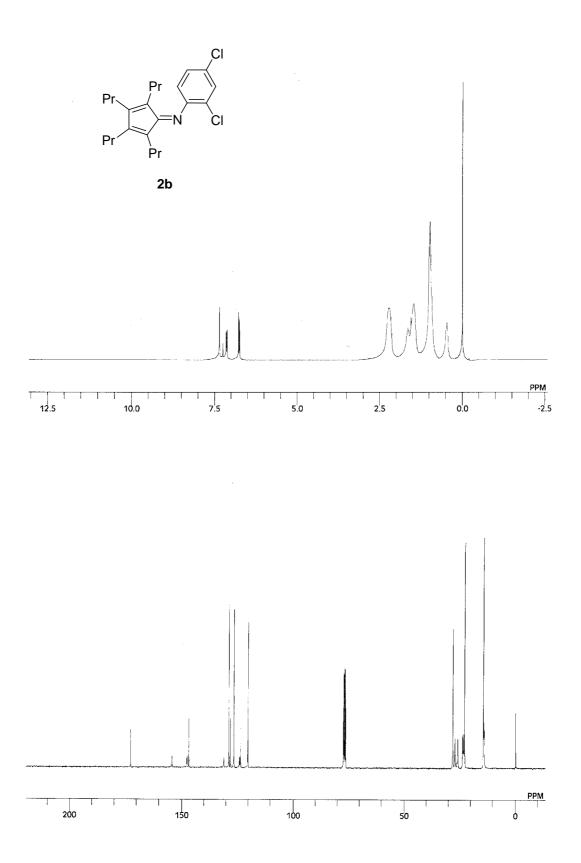
(2Z,4Z)-N1,N6-bis(4-chlorophenyl)-2,3,4,5-tetrapropyl hexa-2,4-dienediamide (3c). White solid in 23% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.86 (t, J = 7.2Hz, 12H), 1.24-1.49 (m, 8H), 2.08-2.13 (m, 4H), 2.30 (t, J = 7.8Hz, 4H), 7.25-7.57 (m, 8H), 9.17 (s, 2H), . ¹³C NMR (CDCl₃, Me₄Si): δ 14.09, 14.69, 21.62, 22.11, 32.57, 36.96, 121.09, 128.94, 129.12, 134.22, 136.80, 142.55, 170.49. HRMS calcd for C₃₀H₃₈N₂O₂Cl₂ 528.2310, found 528.2303.

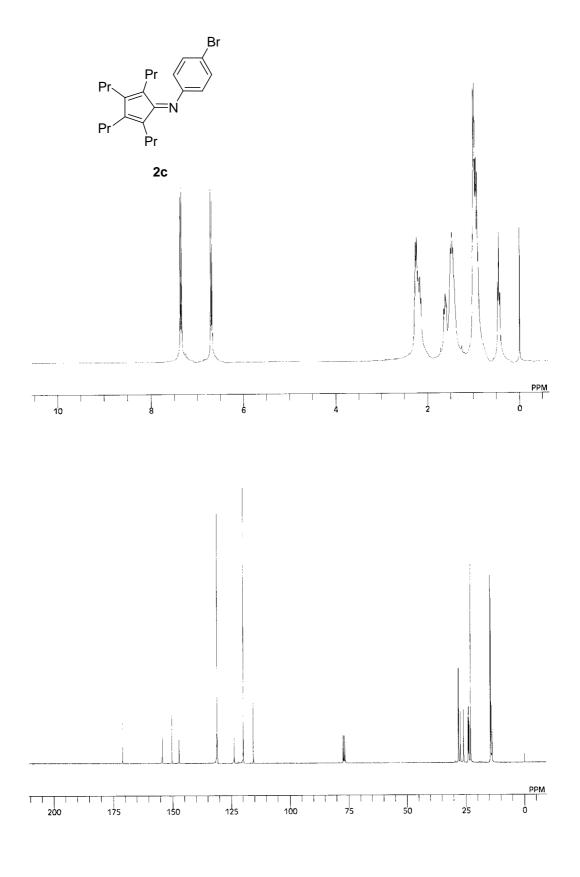
(2Z,4Z)-N1,N6-bis(4-fulorophenyl)-2,3,4,5-tetrapropyl hexa-2,4-dienediamide (3d). White solid in 26% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.85 (t, J = 7.2Hz, 6H), 0.87 (t, J = 7.2Hz, 6H), 1.22-1.50 (m, 8H), 2.10-2.20 (m, 4H), 2.26-2.34 (m, 4H), 6.96-7.59 (m, 8H), 9.30 (s, 2H), . ¹³C NMR (CDCl₃, Me₄Si): δ 14.09, 14.70, 21.64, 22.10, 32.57, 36.96, 115.50 (d, J = 22.3Hz, 2C), 121.59 (d, J = 8.1Hz, 2C), 134.23, 134.33 (d, J = 3.1Hz, 1C), 142.33, 159.29 (d, J = 241.1Hz, 1C), 170.41. HRMS calcd for C₃₀H₃₈N₂O₂F₂ 496.2901, found 496.2902. (2Z,4Z)-N1,N6-bis(4-methylphenyl)-2,3,4,5-tetrapropyl hexa-2,4-dienediamide (3e). White solid in 34% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.86 (t, J = 7.2Hz, 6H), 0.87 (t, J = 7.2Hz, 6H), 1.30-1.50 (m, 8H), 2.09-2.15 (m, 4H), 2.25-2.33 (m, 10H), 7.09-7.51 (m, 8H), 9.06 (s, 2H). ¹³C NMR (CDCl₃, Me₄Si): δ 14.14, 14.74, 20.90, 21.63, 22.09, 32.60, 36.96, 119.92, 129.34, 133.57, 134.36, 135.80, 142.09, 170.23. HRMS calcd for C₃₂H₄₄N₂O₂ 488.3403, found 488.3407.

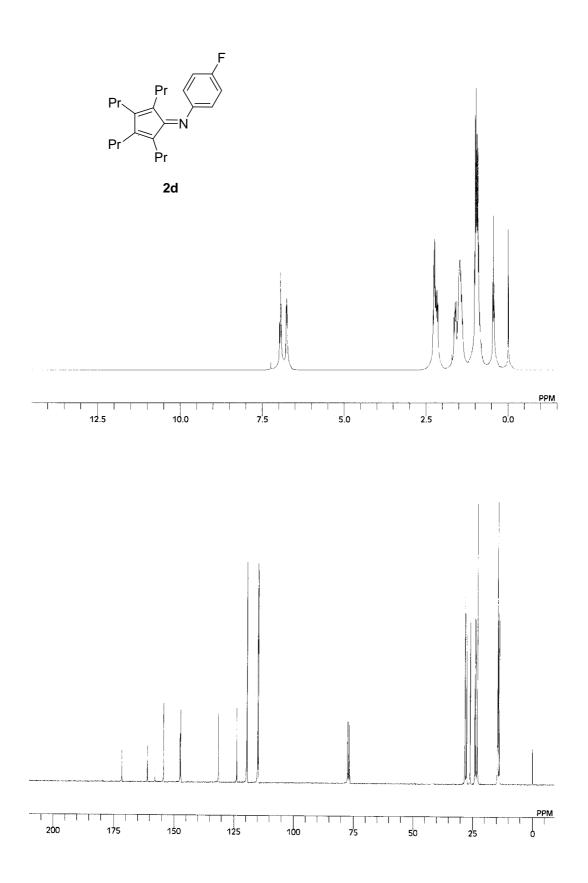
2,3,4-Tripropyl-octa-2,4-dienoic acid (4-bromophenyl)-amide (4a). White solid in 54% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.80 (t, *J* = 7.2Hz, 3H), 0.89-0.98 (m, 9H), 1.18-1.50 (m, 8H), 1.91-1.99 (m, 2H), 2.09-2.18 (m, 4H), 2.33-2.38 (m, 2H), 5.45 (t, *J* = 7.2Hz, 1H), 7.21-7.41 (m, 5H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.88, 14.10, 14.77, 21.36, 22.26, 22.71, 22.85, 30.18, 32.23, 32.27, 33.09, 116.23, 120.73, 131.08, 131.87, 134.61, 137.41, 139.84, 145.16, 170.18. HRMS calcd for C₂₃H₃₄NOBr 419.1824, found 419.1837.

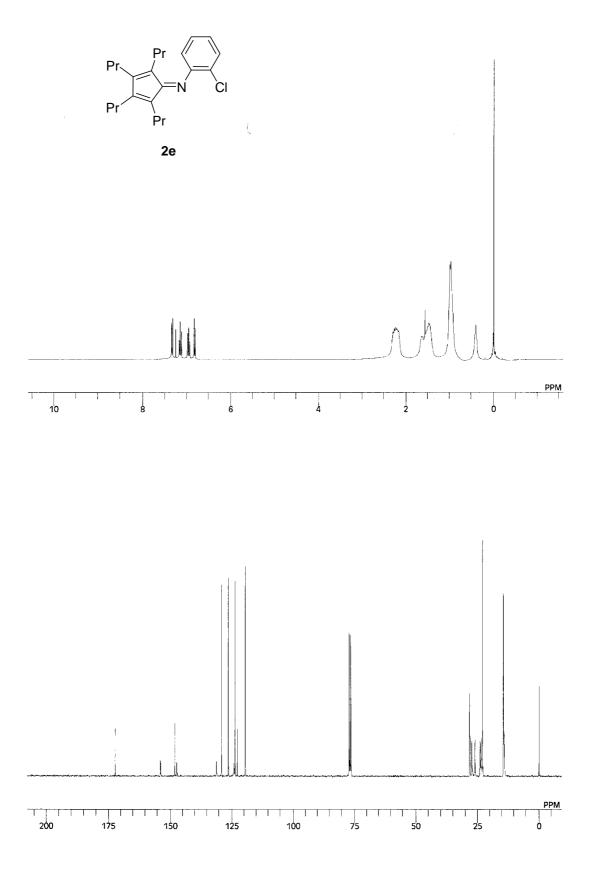
2,3,4-Tripropyl-octa-2,4-dienoic acid (4-chlorophenyl)-amide (4b). White solid in 30% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.80 (t, *J* = 7.5Hz, 3H), 0.90-0.98 (m, 9H), 1.20-1.25 (m, 2H), 1.36-1.48 (m, 6H), 1.94-1.97 (m, 2H), 2.10-2.19 (m, 4H), 2.33-2.39 (m, 2H), 5.46 (t, *J* = 7.2Hz, 1H), 7.22-7.42 (m, 5H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.88, 14.11, 14.76, 21.39, 22.26, 22.71, 22.86, 30.20, 32.26, 32.31, 33.08, 120.46, 128.68, 128.92, 131.06, 134.64, 136.97, 139.87, 145.11, 170.20. HRMS calcd for C₂₃H₃₄NOCl 375.2329, found 375.2331.

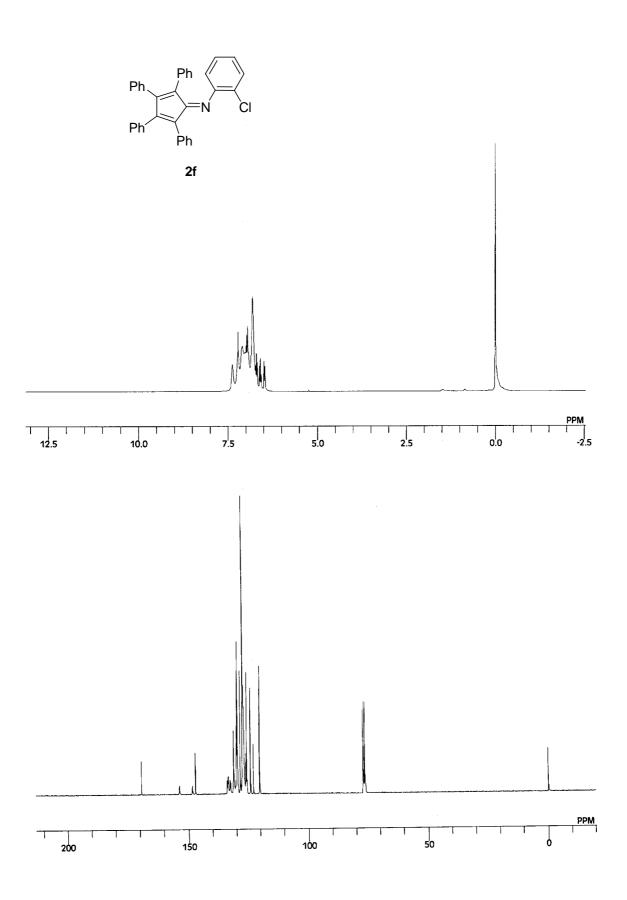

2,3,4-Tripropyl-octa-2,4-dienoic acid (4-fluorophenyl)-amide (4c). White solid in 40% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.80 (t, *J* = 7.5Hz, 3H), 0.90-0.98 (m, 9H), 1.24-1.49 (m, 8H), 1.95-1.99 (m, 2H), 2.11-2.19 (m, 4H), 2.34-2.39 (m, 2H), 5.46 (t, *J* = 7.2Hz, 1H), 7.20-7.43 (m, 5H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.87, 14.11, 14.77, 21.40, 22.26, 22.69, 22.88, 30.21, 32.28, 32.33, 33.08, 115.52 (d, *J* = 22.2Hz, 2C), 121.00 (d, *J* = 7.4Hz, 2C), 130.93, 134.42(d, *J* = 2.5Hz, 1C), 134.70, 139.90, 144.85, 159.15 (d, *J* = 241.1Hz, 1C), 170.13. HRMS calcd for C₂₃H₃₄NOF 359.2624,

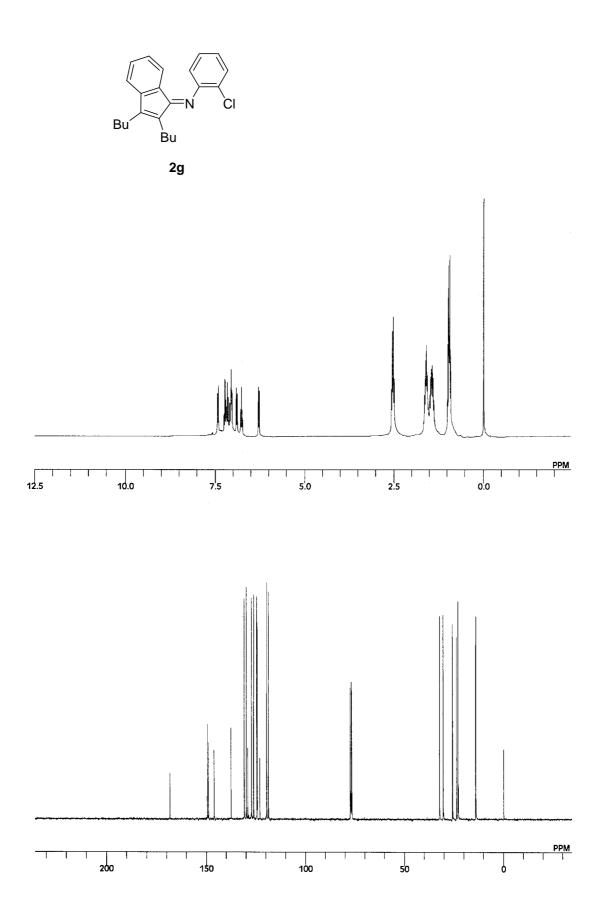

2,3,4-Tripropyl-octa-2,4-dienoic acid (4-methylphenyl)-amide (4d). White solid in 21% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.81 (t, *J* = 7.5Hz, 3H), 0.89-0.97 (m, 9H), 1.23-1.51 (m, 8H), 1.93-1.98 (m, 2H), 2.00-2.18 (m, 4H), 2.29 (s, 3H), 2.34-2.39 (m, 2H), 5.47 (t, *J* = 7.2Hz, 1H), 7.07-7.34 (m, 5H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.90, 14.12, 14.76, 20.84, 21.40, 22.24, 22.62, 22.86, 30.21, 32.34, 33.18, 119.41, 129.39, 130.80, 133.36, 134.91, 135.81, 139.93, 144.41, 170.02. HRMS calcd for C₂₄H₃₇NO 355.2875, found 355.2871.

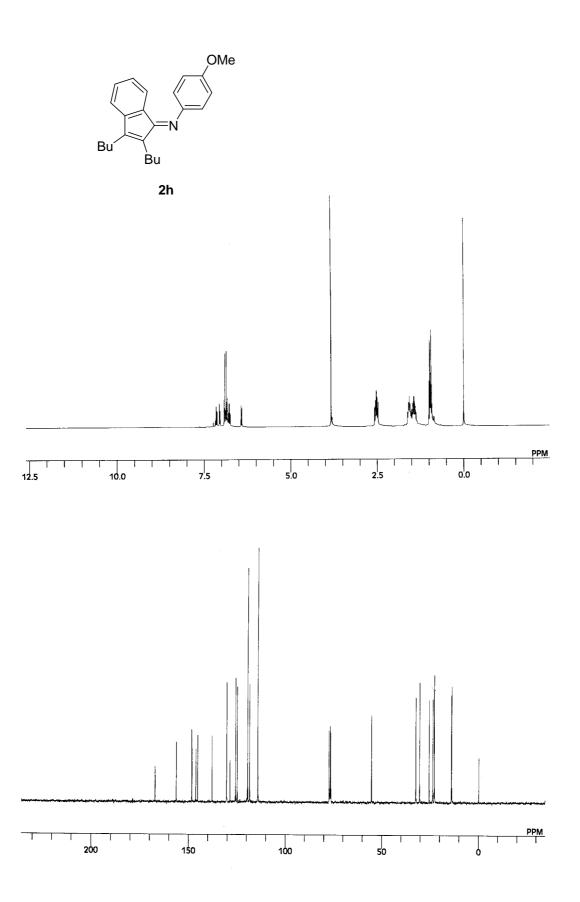

(2Z,4Z)-N1-(4-bromophenyl)-N6-Procedure for the preparation of (2,4-dichlorophenyl)-2,3,4,5-tetrapropylhexa-2,4-dienediamide (3f). 4-Octyne (2.0 mmol) was added into a toluene solution of [Cp₂ZrBu₂] (Negishi reagent), prepared in situ from Cp₂ZrCl₂ (1.0 mmol, 0.29 g) and *n*BuLi (2.0 mmol, 1.3 mL, 1.60M hexane solution) in toluene (10 mL) at -78°C. The reaction mixture was then stirred at room temperature for 1h to afford zirconacyclopentadiene. 4-Bromophenyl isocyanate (1.4 mmol) and EtAlCl₂ (5.8 mmol, 6.2 mL, 0.9M hexane solution) were added to this solution at -78°C and the reaction mixture was stirred at -35°C for 1h. Then, 2,4-dichlorophenyl isocyanate (1.5 mmol) was added to the above reaction mixture at -35°C. After stirring at room temperature for 12h, the above reaction mixture was quenched with 3N HCl and extracted with EtOAc. The extract was washed with water and brine and dried over MgSO₄. The solvent was then evaporated in vacuo to give yellow oil, which was purified by column chromatograph to the products as white solid in 39% isolated yield. ¹H NMR (CDCl₃, Me₄Si): δ 0.79-0.92 (m, 12H), 1.22-1.52 (m, 8H), 2.01-2.22 (m, 6H), 2.42-2.48 (m, 2H), 7.26-7.54 (m, 6H), 7.85 (s, 1H), 8.28 (d, J = 8.7Hz, 1H), 10.36 (s, 1H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.96, 14.23, 14.67, 14.69, 21.26, 21.75, 21.84, 22.57, 32.23, 32.84, 36.91, 37.21, 115.82, 120.83, 122.92, 123.96, 128.08, 128.97, 129.96, 131.65, 131.74, 132.67, 136.12, 138.15, 139.39, 147.15, 169.46, 171.13. HRMS calcd for C₃₀H₃₇BrCl₂N₂O₂ 606.1416, found 606.1421.

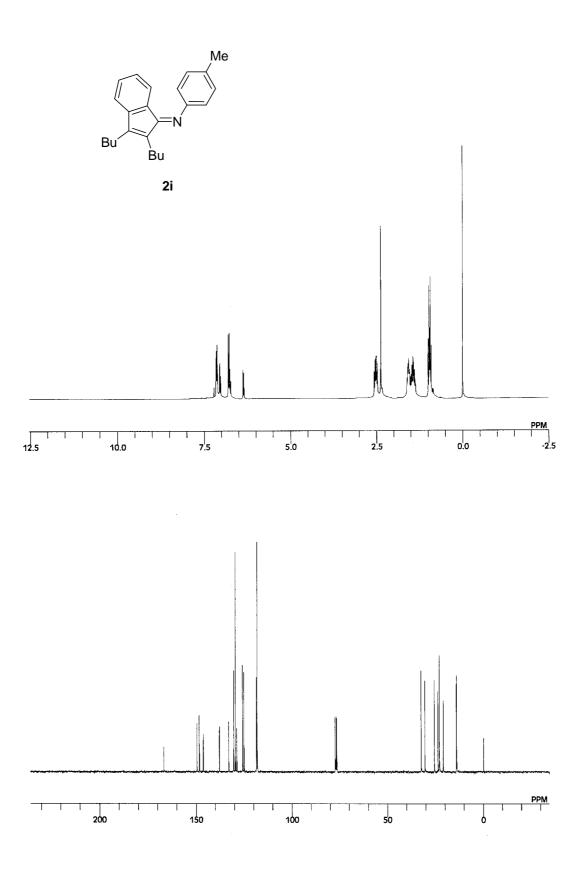

7

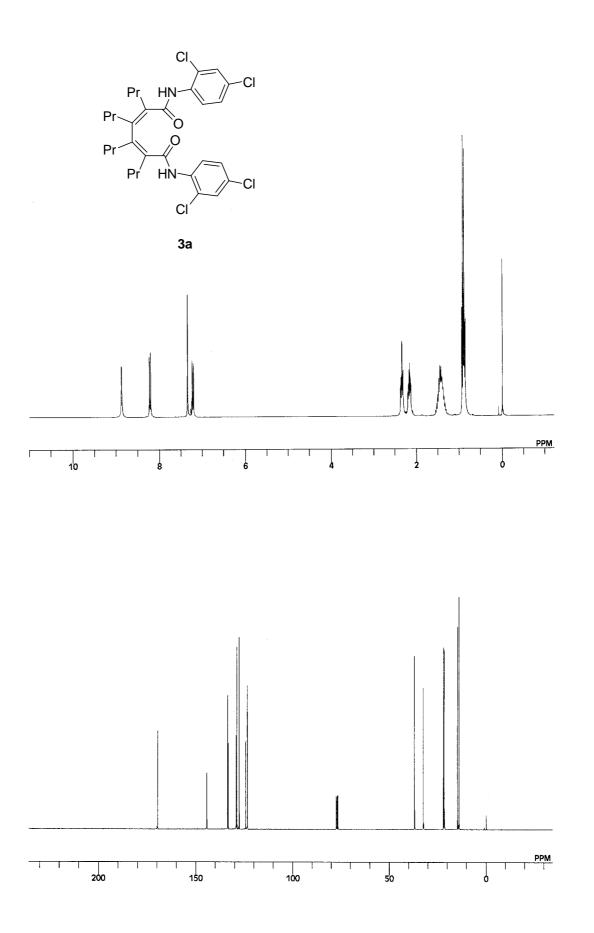

Procedure of (2Z,4E)-4-deutero-(4-bromophenyl)for the preparation 2,3,4-triethylhepta-2,4-dienamide (4D). 3-Hexyne (4.0 mmol) was added into a toluene solution of [Cp₂ZrBu₂] (Negishi reagent), prepared in situ from Cp₂ZrCl₂ (2.0 mmol, 0.58 g) and *n*BuLi (4.0 mmol, 2.6 mL, 1.60M hexane solution) in toluene (20 mL) at -78°C. The reaction mixture was then stirred at room temperature for 1h to afford zirconacyclopentadiene. 4-Bromophenyl isocyanate (4.0 mmol) and EtAlCl₂ (8.0 mmol, 8.8 mL, 0.9M hexane solution) were added to this solution at -78°C. After stirring the reaction mixture at -30°C for 1h, the above reaction mixture was quenched with DCl (0.3ml, 20%) and extracted with Et₂O. The extract was washed with water and brine and dried over MgSO₄. The solvent was then evaporated in vacuo to give yellow oil, which was purified by column chromatograph to the products as yellow oil in 47% isolated yield, D > 90%. ¹H NMR (CDCl₃, Me₄Si): δ 0.84 (t, J = 7.5Hz, 3H), 0.96-1.10 (m, 9H), 1.97-2.06 (m, 2H), 2.15-2.26 (m, 4H), 2.41 (q, J = 7.5Hz, 2H), 7.26-7.41 (m, 5H). ¹³C NMR (CDCl₃, Me₄Si): δ 12.77, 13.68, 13.80, 14.30, 21.17, 22.71, 23.27, 24.35, 116.29, 120.68, 131.92, 132.33, 135.52, 137.41, 140.22, 145.90, 169.93. HRMS calcd for C₁₉H₂₅NOBrD 364.1261, found 364.1252.

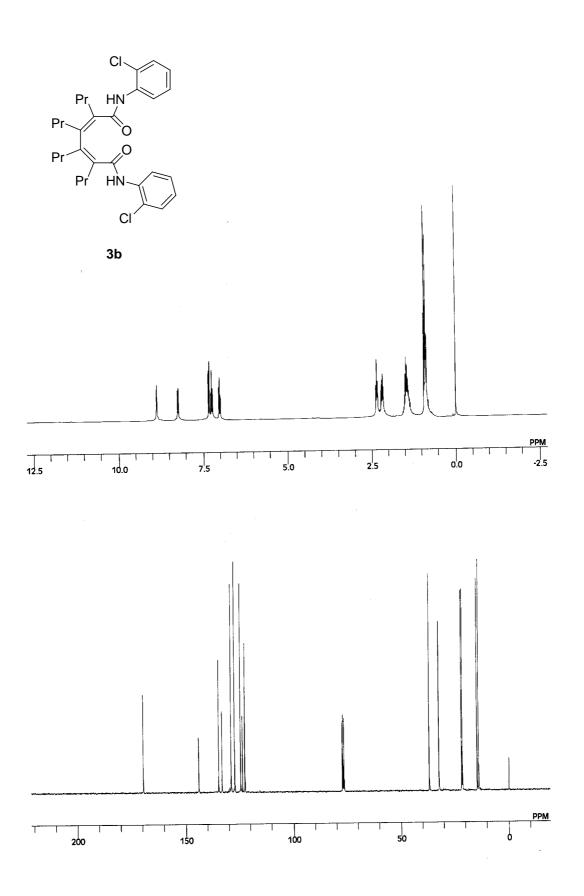


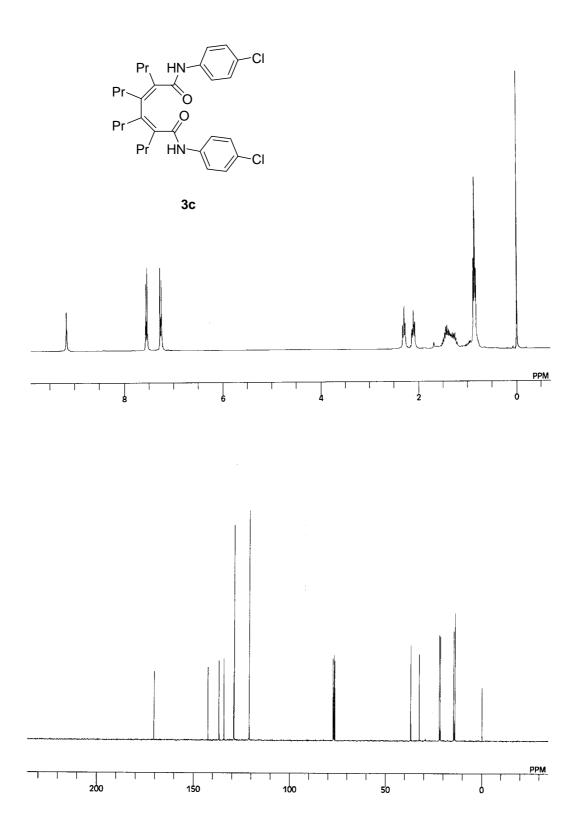


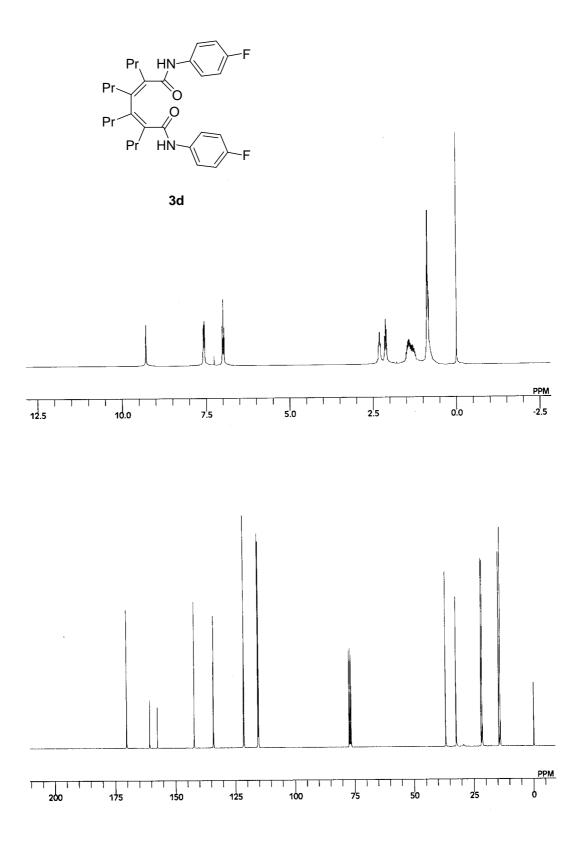


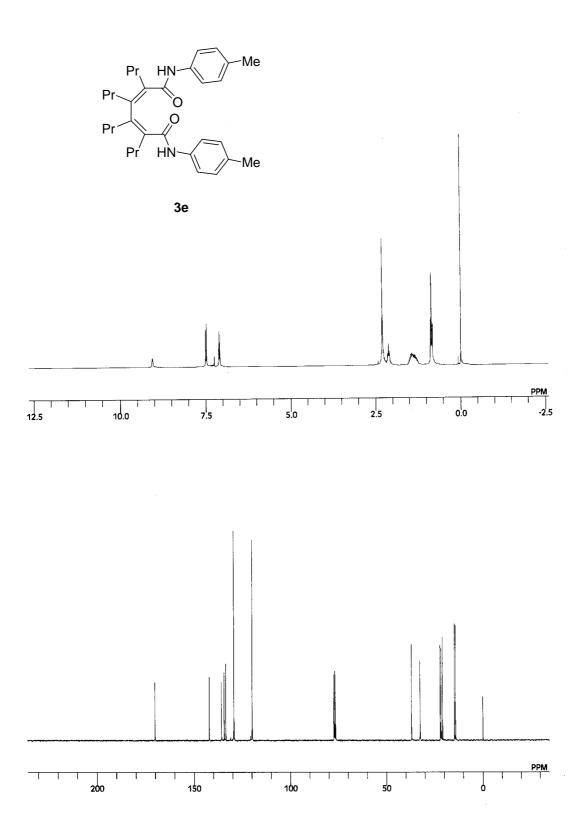


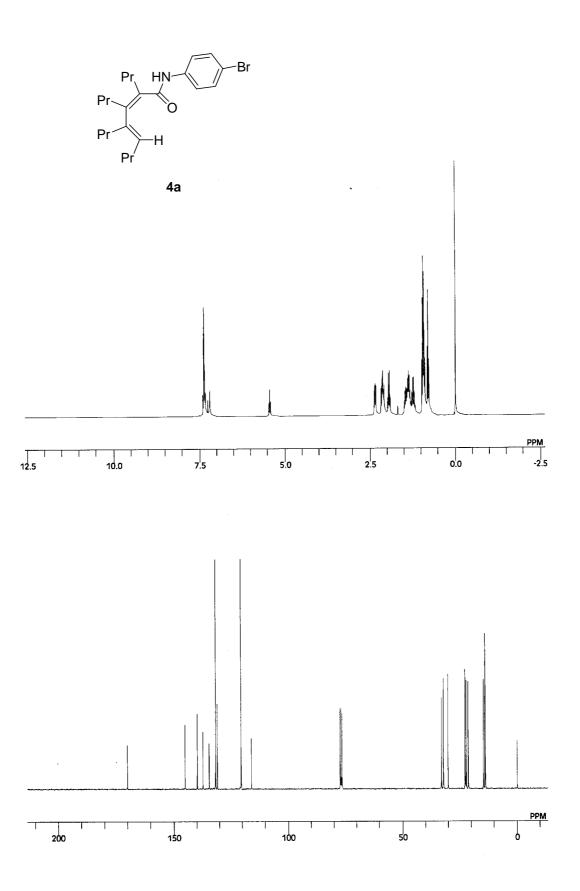


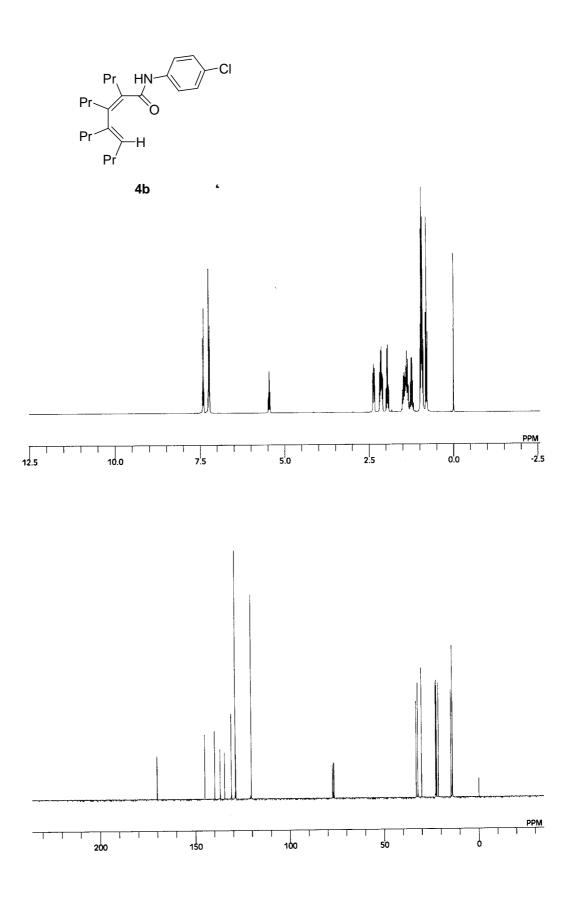


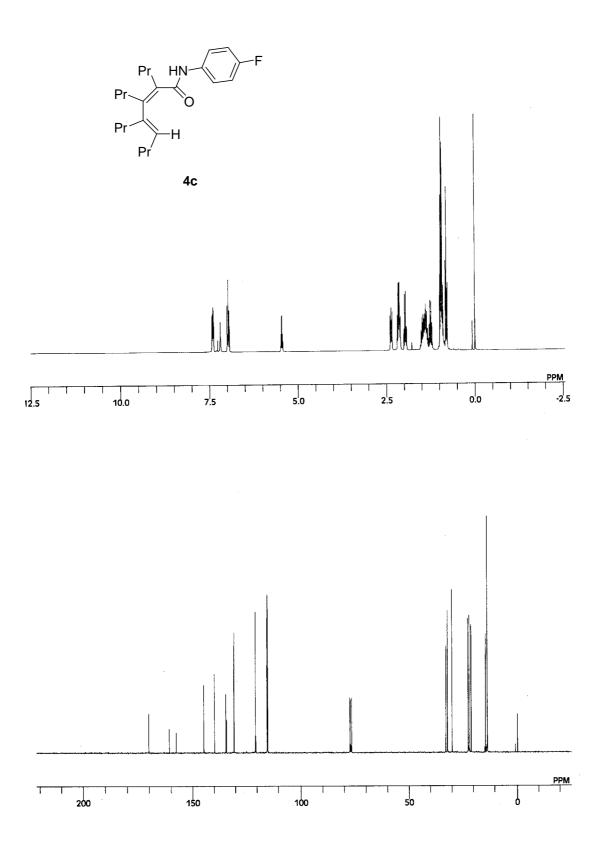


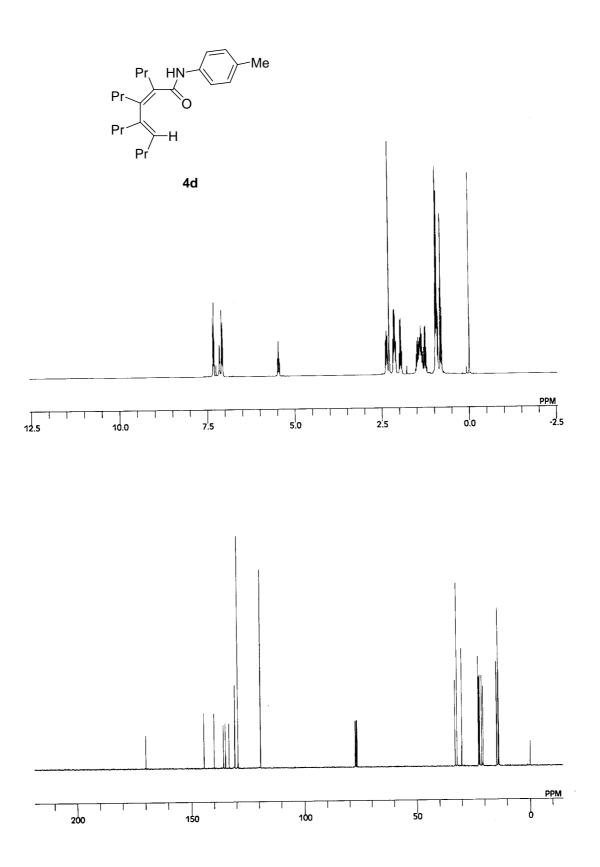


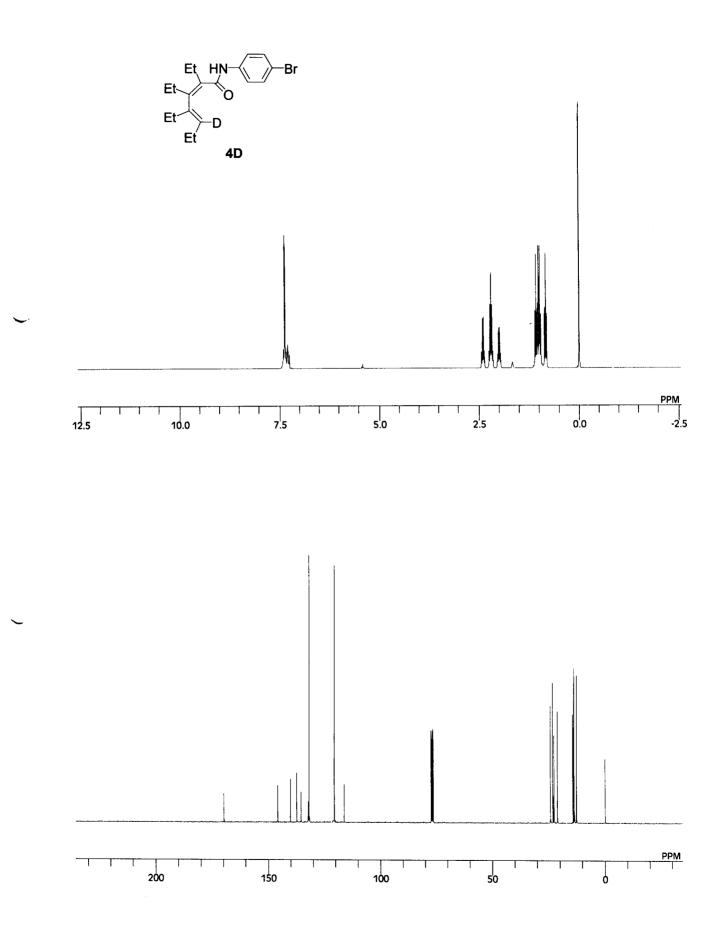


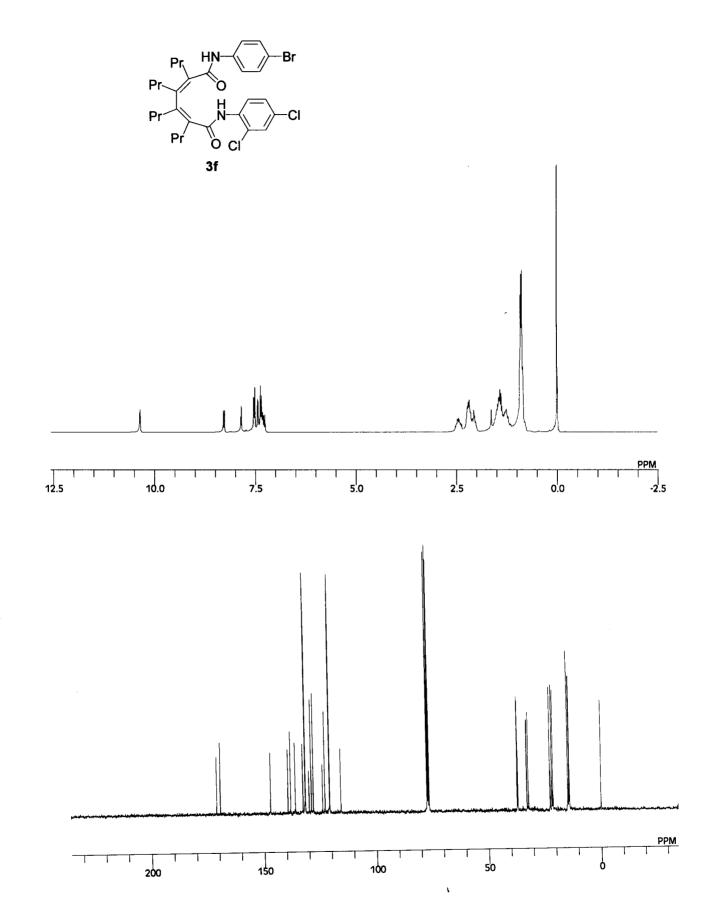












,