Supplementary Information

NaNO₂-Activated, Iron-TEMPO Catalyst System for Aerobic Alcohol Oxidation

under Mild Conditions

Naiwei Wang, Renhua Liu*, Jiping Chen, Xinmiao Liang*

Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian, 116023, People's Republic of China

*To whom correspondence should be address.

E-mail: liangxm@dicp.ac.cn; renhua@dicp.ac.cn

- 1. Experimental Section (2 page).
- 2. Experimental Data (1 page).
- 3. GC diagram (50 figures)

NaNO₂-Activated, Iron-TEMPO Catalyst System for Aerobic Alcohol Oxidation under

Mild Conditions

Naiwei Wang, Renhua Liu*, Jiping Chen, Xinmiao Liang*, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian, 116023, People's Republic of China

*To whom correspondence should be address.

E-mail: <u>liangxm@dicp.ac.cn</u>; <u>renhua@dicp.ac.cn</u>

Experimental Section

General. Equipment and Material

Experimental Section

General Equipment and Material GC analysis of determination of conversions and selectivities was performed on a GC-9790. Benzyl alcohol, 1-octanol, 2-octanol, 4-chloro-benzyl, 4-methyl-benzyl alcohol, 2-pyridinyl methanol, cyclohexanol, 3-Methyl-but-2-en-1-ol, dichloromethane, trifluorotoluene were domestic reagent without further purification. TEMPO, methyl phenyl sulfide, α -methyl-benzyl alcohol, and 2-thionyl methanol are purchased from Acros directly used for oxidation without further purification.

General procedure of TEMPO-catalyzed aerobic oxidation under air: The oxidation of alcohols was carried out under air in a 50ml three-necked round-bottom flask equipped a magnetic stirrer. Typically, the alcohol (10.0mmol) and TEMPO (0.5mmol) were dissolved in 10ml trifluorotoluene. FeCl₃·6H₂O(0.5mmol) was added followed by NaNO₂(0.5mmol). The resulting mixture was stirred at room temperature and ambient pressure. The conversion and selectivity of the reaction was detected by GC without any purification.

General procedure of TEMPO-catalyzed aerobic oxidation under oxygen: All experiments were carried out in a closed Teflon-lined 316L stainless steel autoclave (300 mL), the initial atmospheric air in the autoclave did not exchange for all oxidations. To a Teflon-lines 316L stainless steel autoclave (300 mL), added 10.00 mL of CH_2Cl_2 , 135.2mg of FeCl₃·6H₂O (0.5mmol), 15.6 mg of TEMPO (0.1 mmol), 34.5mg of NaNO₂ (0.5 mmol) and 10.0 mmol of alcohol substrate. Then closed the autoclave and charged oxygen to 0.1MPa. Put the autoclave into the oil bath, which was preheated to 80 . A heating period of autoclave to desired temperature was excluded. After the reaction complete, cooled to room temperature and carefully depressurized the autoclave. Diluted the sample with CH_2Cl_2 and detected the conversion and selectivity by GC without any purification. the liquid in the autoclave was transferred into a separation funnel, carefully

washed the autoclave with CH_2Cl_2 , combined all organic solutions. The organic mixture was washed with aqueous $Na_2S_2O_3$ to remove the residual oxidants and TEMPO. The organic layer was dried over anhydrous Na_2SO_4 , concentrated to dryness. The yield was calculated based on 10.0 mmol of substrate.

General GC conditions: HP-5 column, 30m x 0.32mm (id); FID detector, 250 °C;

injection: 250 $^{\circ}$ C; carrier gas: nitrogen; carrier gas rate: 0.8 mL / min; area normalization. The products were detected under a condition as: column temperature: 40 for 10 minutes, raising to 250 in a rate of 10 / min. TEMPO and solvent were also detected under this condition, and their corresponding peak areas were deleted in the GC diagrams.

	ruble 1 1 eel3 edialy	Sed Oxidution of Oeta		,iie
Entry	FeCl ₃	TEMPO	NaNO ₂	Conversion(%)
1	No	Yes	Yes	trace
2	Yes	No	Yes	trace.
3	Yes	Yes	No	1.7
4	Yes	Yes	Yes	45.3

Table 1 FeCl₃-catalysed oxidation of Octan-2-ol to 2-Octanone

Reaction conditions: alcohol (10 mmol), CH₃CN (10 mL), 80 (oil bath temperature), FeCl₃·6H₂O(0.5mmol), TEMPO (0.5 mmol), NaNO₂ (0.5 mmol), 0.1 MPa oxygen pressure, 1h.

FeCl₂-catalysed oxidation of Octan-2-ol to 2-Octanone

Reaction conditions: alcohol (10 mmol), CH₃CN (10 mL), 80 (oil bath temperature), FeCl₂ (0.5mmol), TEMPO (0.5 mmol), NaNO₂ (0.8 mmol), 0.1 MPa oxygen pressure.

CuCl₂-catalysed oxidation of Octan-2-ol to 2-Octanone

Reaction conditions: alcohol (10 mmol), CH₃CN (10 mL), 80 (oil bath temperature), CuCl₂ (0.5mmol), TEMPO (0.5 mmol), NaNO₂ (0.8 mmol), 0.1 MPa oxygen pressure

Entry	Substrate	Mathad	Time	Conv ^b	Yield
		Method	(h)	(%)	$(\%)^{c}$
1	Benzyl alcohol	А	1	100	95
		В	6	100	-
		\mathbf{B}^{d}	8	100	-
2	1-Phenyl ethanol	А	1	100	96
3	4-Chloro-Benzyl alcohol	А	1	100	96
4	4-Methyl-Benzyl alcohol	А	1	100	95
5	Cinnamyl alcohol	В	6	100	97
6	3-Methyl-but-2-en-1-ol	В	6	100	83
7	2-pyridinal alcohol	B ^e	6	100	89
8	Cyclohexanol	В	6	100	91
9	2-Thiophenemethol	В	6	100	92
10	PhCHO + PhSCH ₃	В	8	100	-
11	2- Octanol	С	6	100	89
12	1- Octan-ol	С	6	$100^{\text{ f}}$	-

 Table 2.
 Catalytic Aerobic Alcohols Oxidation under oxygen^a

^aReaction conditions: alcohol (10 mmol), FeCl₃·6H₂O (0.5 mmol), CH₂Cl₂ (10 mL), 80 (oil bath temperature). Method A: TEMPO (0.1 mmol), NaNO₂ (0.5 mmol), 0.1 MPa oxygen pressure; Method B: TEMPO (0.2 mmol), NaNO₂ (0.5 mmol), 0.2 MPa oxygen pressure, room temperature; Method C: TEMPO (0.5 mmol), NaNO₂ (0.8 mmol), 0.1 MPa oxygen pressur, CH₃CN(10ml). ^bConversions and selectivities are based on the gas chromatography (GC) with area normalization ^c.Selectivities >99%(GC). All yields are for pure, isolated products. ^d a balloon filled with oxygen instead of 0.1Mpa oxygen pressure. ^e 1mL CH₃COOH was added. ^fSelectivity 71.0, acid (22.7) and ester (6.3) was formed. Figure List

- Figure 1—Figure 24: solvent: PhCF₃
- Figure 1: GC diagram of TEMPO
- Figure 2: GC diagram of trifluorotoluene
- Figure 3: GC diagram of benzyl alcohol
- Figure 4: GC diagram of oxidation of benzyl alcohol under air
- Figure 5: GC diagram of 4-methyl-benzyl alcohol
- Figure 6: GC diagram of oxidation of 4-methyl-benzyl alcohol under air
- Figure 7: GC diagram of 4-chloro-benzyl alcohol
- Figure 8: GC diagram of oxidation of 4-chloro-benzyl alcohol under air
- Figure 9: GC diagram of -methyl-benzyl alcohol
- Figure 10: GC diagram of oxidation of -methyl-benzyl alcohol under air
- Figure 11: GC diagram of 2-octanol
- Figure 12: GC diagram of oxidation of 2-octanol under air
- Figure 13: GC diagram of cyclohexanol
- Figure 14: GC diagram of oxidation of cyclohexanol under air
- Figure 15: GC diagram of 2-thiophene methanol.
- Figure 16: GC diagram of oxidation of 2-thiophene methanol under air
- Figure 17: GC diagram of 2-pyridinal alcohol
- Figure 18: GC diagram of oxidation of 2-pyridinal alcohol under air
- Figure 19: GC diagram of Cinnamyl alcohol
- Figure 20: GC diagram of oxidation of Cinnamyl alcohol under air
- Figure 21: GC diagram of methyl phenyl sulfide
- Figure 22: GC diagram of oxidation of 2-octanol and methyl phenyl sulfide under air
- Figure 23: GC diagram of methyl phenyl sulfide
- Figure 24: GC diagram of oxidation of benzyl alcohol and methyl phenyl sulfide under air
- Figure 25—Figure 46: All experiments were carried out in a closed Teflon-lined 316L stainless steel autoclave (300 mL)
- Figure 25: GC diagram of benzyl alcohol
- Figure 26: GC diagram of oxidation of benzyl alcohol under oxygen
- Figure 27: GC diagram of 4-methyl-benzyl alcohol
- Figure 28: GC diagram of oxidation of 4-methyl-benzyl alcohol under oxygen
- Figure 29:GC diagram of 4-chloro-benzyl alcohol
- Figure 30:GC diagram of oxidation of 4-chloro-benzyl alcohol under oxygen
- Figure 31: GC diagram of -methyl-benzyl alcohol
- Figure 32: GC diagram of oxidation of -methyl-benzyl alcohol under oxygen
- Figure 33: GC diagram of 1-octanol
- Figure 34: GC diagram of oxidation of 1-octanol under oxygen
- Figure 35: GC diagram of 2-octanol
- Figure 36 GC diagram of oxidation of 2-octanol under oxygen
- Figure 37: GC diagram of cyclohexanol
- Figure 38: GC diagram of oxidation of cyclohexanol under oxygen

- Figure 39: GC diagram of 2-thiophene methanol.
- Figure 40: GC diagram of oxidation of 2-thiophene methanol under oxygen
- Figure 41: GC diagram of 2-pyridinal alcohol
- Figure 42: GC diagram of oxidation of 2-pyridinal alcohol under oxygen
- Figure 43: GC diagram of Cinnamyl alcohol
- Figure 44: GC diagram of oxidation of Cinnamyl alcohol under oxygen
- Figure 45: GC diagram of 2-octanol
- Figure 46 GC diagram of oxidation of 2-octanol under oxygen (CuCl₂ in place of FeCl₃)
- Figure 47: GC diagram of 2-octanol of 3-Methyl-but-2-en-1-ol
- Figure 48: GC diagram of 2-octanol of 3-Methyl-but-2-en-1-ol under oxygen
- Figure 49: GC diagram of benzyl alcohol and methyl phenyl sulfide
- Figure 50: GC diagram of oxidation of benzyl alcohol and methyl phenyl sulfide under oxygen

Figure 1: GC diagram of TEMPO

Figure 2: GC diagram of trifluorotoluene

Figure 4: GC diagram of oxidation of benzyl alcohol under air

 Totals:
 60435.4
 1971912.1
 100.0000

 Figure 5: GC diagram of 4-methyl-benzyl alcohol
 100.0000
 100.0000

Figure 6: GC diagram of oxidation of 4-methyl-benzyl alcohol under air

<u>S</u>10

Figure 7: GC diagram of 4-chloro-benzyl alcohol

Figure 8: GC diagram of oxidation of 4-chloro-benzyl alcohol under air

-methyl-benzyl alcohol under air

Figure 12: GC diagram of oxidation of 2-octanol under air

Figure 14: GC diagram of oxidation of cyclohexanol under air

 Totals:
 23912.6
 671550.8
 100.0000

 Figure 15: GC diagram of 2-thiophene methanol.

Figure 16: GC diagram of oxidation of 2-thiophene methanol under air

Figure 18: GC diagram of oxidation of 2-pyridinal alcohol under air

Figure 20: GC diagram of oxidation of Cinnamyl alcohol under air

Figure 22: GC diagram of oxidation of 2-octanol and methyl phenyl sulfide under air (Methyl phenyl sulfide corresponding peak areas was deleted in the GC diagrams)

Figure 23: GC diagram of methyl phenyl sulfide

Figure 24: GC diagram of oxidation of benzyl alcohol and methyl phenyl sulfide under air (Methyl phenyl sulfide corresponding peak areas was deleted in the GC diagrams)

 Totals:
 35150.7
 933000.6
 100.0000

 Figure 25: GC diagram of benzyl alcohol
 100.0000

Figure 26: GC diagram of oxidation of benzyl alcohol under oxygen

Figure 27: GC diagram of 4-methyl-benzyl alcohol

Figure 28: GC diagram of oxidation of 4-methyl-benzyl alcohol under oxygen

Figure 29: GC diagram of 4-chloro-benzyl alcohol

Figure 30: GC diagram of oxidation of 4-chloro-benzyl alcohol under oxygen

Figure 32: GC diagram of oxidation of

-methyl-benzyl alcohol under oxygen

Totals:

Figure 33: GC diagram of 1-octanol

Figure 34: GC diagram of oxidation of 2-octanol under oxygen

04.5 100.0000

Figure 42: GC diagram of oxidation of 2-pyridinal alcohol under oxygen

Figure 44: GC diagram of oxidation of Cinnamyl alcohol under oxygen

Peak	RetTime (min)	Height	Area	Area %
1	5.08	$6.125*10^4$	3.096*10 ⁵	100.00
Totals:		6.125*10 ⁴	3.096*10 ⁵	100.00

```
Figure 48: GC diagram of 2-octanol of 3-Methyl-but-2-en-1-ol under oxygen
```


Figure 50: GC diagram of oxidation of benzyl alcohol and methyl phenyl sulfide under oxygen

2	22.10	$2.661*10^3$	1.156*10 ⁴	0.47
Totals:		3.539*10 ⁵	$2.473*10^{6}$	100.00