Synthesis of the Ru-bathophenanthroline-complex 1

The synthesis was carried out according to Scheme 1:

Scheme 1

Starting from commercially available disodium(1,10-phenanthroline-4,7-
diyl)bis(benzenesulfonate) (Fluka) ($460 \mathrm{mg}, 0.78 \mathrm{mmol}$) and $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(100 \mathrm{~g}, 0.38 \mathrm{mmol})$ we have synthesized $\mathrm{Ru}\left(\mathrm{L}^{1}\right)_{2} \mathrm{Cl}_{2}$ according to [1] in quantitative yield. This $(1.34 \mathrm{~g}, 1.07$ mmol) was then reacted with L^{2} according to [2] with modified work-up conditions, i.e., instead of precipitation, the complex was purified by column chromatography over silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+\right.$ TFA 75:25 $\left.+0.05 \%\right)$ to yield the desired Ru-bathophenanthrolinecomplex 1 ($1.44 \mathrm{~g}, 0.88 \mathrm{mmol}, 80$ \%yield).
Activation of the Ru complex as O-succinimide ester with TSTU was also carried out according to [2] in 62% yield, and the progress of the reaction was monitored by LC-MS. The analytical data are in accordance with [1] and [2].

Synthesis of the donor Fmoc amino acid $\mathbf{3}$

The synthesis was carried out according to Scheme 2.

3

5

Scheme 2

The starting compound $\mathbf{2}$ was synthesized from 2-chloro-6,7-dimethoxy-3-(4-methoxyphenyl) quinoline according to [3] and from 5 g of the starting material, we obtained $4.38 \mathrm{~g}(93 \%)$ of 2. The spectroscopic data were in accordance with the ones reported in [3].

Synthesis of 4

To a suspension of $\mathbf{2}(883 \mathrm{mg}, 2.84 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF (10 ml) was added KHMDS $(0.5 \mathrm{M}$ in toluene, $6.8 \mathrm{ml}, 3.4 \mathrm{mmol}, 1.2 \mathrm{eq})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , the mixture was allowed to reach room temperature. Allylbromide ($0.75 \mathrm{ml}, 8.5 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added and the white suspension was placed in a microwave oven ($15 \mathrm{~min}, 120^{\circ} \mathrm{C}$, max. $15 \mathrm{bar}, 200 \mathrm{~W}$). The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(70 \mathrm{ml})$ was added. The phases were separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 70 \mathrm{ml})$, the combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed under
reduced pressure. Column chromatography of the crude product over silica ($\mathrm{CH} / \mathrm{EE} 2: 1$) yielded 4 ($828 \mathrm{mg}, 2.36 \mathrm{mmol}, 83 \%$).

Analytical data:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.84\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.96(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OCH}_{3}\right), 5.02\left(2 \mathrm{H}, \mathrm{dt},{ }^{3} J=4.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 5.20\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\text {trans }}=17.2 \mathrm{~Hz},{ }^{2} J=1.1\right.$ $\left.\mathrm{Hz},=\mathrm{C} H_{2}\right), 5.26\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\text {cis }}=10.4 \mathrm{~Hz},{ }^{2} J=1.1 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 6.00\left(1 \mathrm{H}, \mathrm{ddt},{ }^{3} J_{\text {trans }}=17.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\text {cis }}=10.4 \mathrm{~Hz},{ }^{3} J=5.2 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{s}, 5-H), 6.95\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 3^{\prime}-H, 5^{\prime}-\right.$ $H), 6.99(1 \mathrm{H}, \mathrm{s}, 8-H), 7.70\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 2^{\prime}-H, 6^{\prime}-H\right), 7.71(1 \mathrm{H}, \mathrm{s}, 4-H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=45.66,55.40,56.15,56.28,97.98,109.36,113.62,114.43$, 117.23, 129.27, 129.54, 130.17, 132.35, 134.47, 135.60, 145.23, 151.68, 159.40, 161.18.
$\operatorname{MS}\left(70 \mathrm{eV}\right.$, $\left.\operatorname{EI} 198^{\circ} \mathrm{C}\right) ; m / z(\%): 351(95)\left[\mathrm{M}^{+}\right], 336(100)\left[\left(\mathrm{M}^{2}-\mathrm{CH}_{3}\right)^{+}\right]$.

HRMS (ESI): $m / z=352.15442$, calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{1}{ }^{+}: 352.15434$.

Synthesis of 5

A mixture consisting of $4(5.00 \mathrm{~g}, 14.2 \mathrm{mmol}, 1.0 \mathrm{eq})$, Boc- $D, L-p$-bromophenylalanine-OMe [4] ($7.63 \mathrm{~g}, 21.3 \mathrm{mmol}, 1.5 \mathrm{eq}), \operatorname{Pd}(\mathrm{OAc})_{2}(0.48 \mathrm{~g}, 2.15 \mathrm{mmol}, 0.15 \mathrm{eq}), \mathrm{PPh}_{3}(1.12 \mathrm{~g}, 4.25$ mmol, 0.3 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.89 \mathrm{~g}, 42.6 \mathrm{mmol}, 3.0 \mathrm{eq})$ was suspended in DMF $(100 \mathrm{ml}) / \mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{ml})$ under argon. After heating at $115^{\circ} \mathrm{C}$ for 13 h , a saturated NaCl solution (750 ml) was added and the pH of the mixture adjusted to 2 with 2 N HCl . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 750 \mathrm{ml})$, the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$ and dried over MgSO_{4}. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography over silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right.$, then $\left.80: 20\right)$ in four portions. Under the reaction conditions, cleavage of the methyl ester took place and the unsaturated carboxylic acid intermediate was obtained as a light yellow powder (3.66 g, 5.95 mmol, 42\%).

Analytical data:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.94-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}-\right)$, $3.84\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 4.47-4.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}-\mathrm{CH}-$ $\mathrm{COOH}), 4.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{br},{ }^{3} J=7.0 \mathrm{~Hz}, \mathrm{NH}\right), 5.17\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=5.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}-\right), 6.30(1 \mathrm{H}, \mathrm{dt}$, $\left.{ }^{3} J_{\text {trans }}=16.1 \mathrm{~Hz},{ }^{3} J=5.8 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\right), 6.57\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\text {trans }}=16.0 \mathrm{~Hz},=\mathrm{CH}-\mathrm{Ph}\right), 6.90(1 \mathrm{H}, \mathrm{s}$, $5-H), 6.95\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime},{ }^{3} J_{\text {app. }}=8.8 \mathrm{~Hz}, 3^{\prime}-H, 5^{\prime}-H\right), 7.01(1 \mathrm{H}, \mathrm{s}, 8-H), 7.07\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}\right.$, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime},{ }^{3} J_{\text {app. }}=8.1 \mathrm{~Hz}$, arom. Ph $), 7.22\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},{ }^{3} J_{\text {app. }}=8.1 \mathrm{~Hz}\right.$, arom. Ph$), 7.69$ $\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime},{ }^{3} J_{\text {app. }}=8.8 \mathrm{~Hz}, 2^{\prime}-H, 6^{\prime}-H\right), 7.74(1 \mathrm{H}, \mathrm{s}, 4-H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=28.49,37.77,45.62,54.63,55.54,56.38,56.45,80.19$, 98.11, 109.60, 113.81, 114.78, 123.64, 126.64, 128.60, 129.40, 129.64, 129.91, 130.35, $132.72,134.60,135.03,136.10,145.56,152.02,155.80,159.57,161.52,176.33$.

MS (LC/ESI, $400 \mu \mathrm{l} / \mathrm{min}) ; ~ m / z(\%): 637$ (8), 615 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): $m / z=615.27002$, calculated for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{~N}_{2}{ }^{+}: 615.27009$.

This intermediate ($2.11 \mathrm{~g}, 3.4 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(60 \mathrm{ml})$ under argon and Pd / C $\left(10 \% \mathrm{Pd}\right.$ on charcoal, $318 \mathrm{mg}, 15 \% \mathrm{~m} / \mathrm{m}$) was added to the solution. Then, $\mathrm{H}_{2}(1 \mathrm{bar})$ was bubbled through the mixture for 16 h . The catalyst was removed by filtration over kieselguhr and the solvent distilled at reduced pressure. Column chromatography of the crude mixture over silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1\right.$, then $\left.80: 20\right)$ yielded 5 ($1.96 \mathrm{~g}, 3.1 \mathrm{mmol}, 92 \%$).

Analytical data:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.10\left(2 \mathrm{H}, \mathrm{tt},{ }^{3} J_{1,2}=7.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.78\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.03-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}-\right), 3.79$ $\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH} H_{3}\right), 4.31\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}-\right)$, 4.49-4.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}-\mathrm{CH}-\mathrm{COOH}), 5.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{br},{ }^{3} J=4.8 \mathrm{~Hz}, \mathrm{~N} H\right), 6.53(1 \mathrm{H}, \mathrm{s}, 5-H), 6.92-$ $6.96\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-H, 5^{\prime}-H, 8-H\right), 7.12\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},{ }^{3} J_{\text {app. }}=8.1 \mathrm{~Hz}\right.$, arom. Ph), $7.18(2 \mathrm{H}$, $\mathrm{m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},{ }^{3} J_{\text {app. }}=8.1 \mathrm{~Hz}$, arom. Ph), $7.66\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 2^{\prime}-H, 6^{\prime}-H\right), 7.67(1 \mathrm{H}, \mathrm{s}, 4-$ H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=28.38,28.58,32.98,37.58,42.87,54.47,55.42,56.19$, $56.32,80.28,97.28,109.63,113.70,114.75,128.75,129.30,129.52,129.69,130.21,134.04$, $134.08,135.67,140.02,145.37,151.96,155.51,159.47,161.42,174.33$.

MS (LC/ESI, $400 \mu \mathrm{l} / \mathrm{min}) ; m / z(\%): 639$ (10), 617 (100) [M+H] ${ }^{+}, 561$ (13), 517 (10), 275 (10).

HRMS (ESI): $m / z=617.28575$, calculated for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{~N}_{2}{ }^{+}: 617.28574$.

Synthesis of $\mathbf{3}$

Compound $5(0.70 \mathrm{~g}, 1.14 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, TFA $(10 \mathrm{ml})$ and triisopropylsilane $(0.5 \mathrm{ml})$ were added, and the solution stirred for 2 h at room temperature. TLC-control $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1\right)$ showed complete conversion. The mixture was concentrated to dryness under reduced pressure after addition of $\mathrm{CH}_{3} \mathrm{CN}(3 \times 30 \mathrm{ml})$ and the solid residue suspended in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. After washing of the aqueous phase with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{x}$ $20 \mathrm{ml})$ and re-extraction of the $\mathrm{Et}_{2} \mathrm{O}$ phase with water (20 ml), the combined aqueous layers were evaporated to dryness by azeotropic destillation with $\mathrm{CH}_{3} \mathrm{CN}$ under reduced pressure. The crude intermediate was used without further purification.

The N -deprotected amino acid ($1.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) was suspended in an aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(9 \%, 20 \mathrm{ml})$ and cooled in an ice-bath. To this mixture, a suspension of Fmoc-OSu $(0.58 \mathrm{~g}, 1.70 \mathrm{mmol}, 1.5 \mathrm{eq})$ in acetone $(10 \mathrm{ml})$ was added dropwise. After 1 h of stirring the ice-bath was removed, more acetone (20 ml) was added and the suspension stirred for a further 3 h . Then, conc. HCl was used to neutralise the mixture and the solvent was removed under reduced pressure. The residue was resuspended in a NaCl solution spiked with 2 N $\mathrm{HCl}(60 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{x} 40 \mathrm{ml})$. The combined organic layers were reextracted with a saturated NaCl solution $(40 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, warmed to $40^{\circ} \mathrm{C}$ and filtered. Column chromatography of the crude mixture over silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1\right.$, then 90:10) yielded the desired carbostyril-derivative 3 ($0.82 \mathrm{~g}, 0.11 \mathrm{mmol}, 97 \%$).

Analytical data:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=2.08\left(2 \mathrm{H}, \mathrm{tt},{ }^{3} J_{1}=7.5 \mathrm{~Hz},{ }^{3} J_{2}=7.3 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$, $2.78\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.13,\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{Ph}-\mathrm{CH} H_{2}-\mathrm{CH}-\right), 3.79\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right)$, $3.83\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{1,2}=6.7 \mathrm{~Hz}\right.$, Fmoc-CH-), 4.24-4.33 ($3 \mathrm{H}, \mathrm{m}$, Fmoc-C $\mathrm{H}_{2}-$, N-CH 2^{-}), $4.44\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=10.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}\right.$, Fmoc-C $H_{2}-$), 4.66 $\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{NH}-\mathrm{C} H-\mathrm{COOH}\right), 5.34\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=8.1 \mathrm{~Hz}, \mathrm{~N} H\right), 6.51(1 \mathrm{H}, \mathrm{s}, 5-H), 6.93-6.96(3 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-H, 5^{\prime}-H, 8-H\right), 7.10\left(2 H, \mathrm{~m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},{ }^{3} J_{\text {app. }}=7.5 \mathrm{~Hz}\right.$, arom. Ph), $7.17\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$, ${ }^{3} J_{\text {app. }}=7.5 \mathrm{~Hz}$, arom. Ph), 7.24-7.29 ($2 \mathrm{H}, \mathrm{m}$, arom. Fmoc), $7.36\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{t}}, \mathrm{ABCD},{ }^{3} J_{\text {app. }}=7.4\right.$ Hz , arom. Fmoc), 7.51-7.54 (2H, m, arom. Fmoc), 7.63-7.66 (3H, m, 2’-H, 6’-H, 4-H), 7.71 $\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{d}}, \mathrm{ABCD},{ }^{3} J_{\text {app. }}=7.5 \mathrm{~Hz}\right.$, arom. Fmoc $)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=28.41,32.89,37.54,42.89,47.13,54.76,55.33,56.02$, $56.16,67.03,97.01,109.32,113.64,114.68,119.93,125.03,127.02,127.68,128.70,129.41$, $129.52,129.68,130.17,133.86,133.88,135.84,139.91,141.25,143.72,145.29,151.88$, $155.80,159.38,161.39,174.10$.

MS (LC/ESI, $400 \mu \mathrm{l} / \mathrm{min}$); $m / z(\%): 739$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): $m / z=739.30139$, calculated for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{~N}_{2}{ }^{+}: 739.30139$.

References:

[1] D. Garcia-Fresnadillo and G. Orellana, Helv. Chim. Acta 2001, 84, 2708-2730.
[2] W. Bannwarth, D. Schmidt, R.L. Stallard, C. Hornung, R. Knorr, and F. Müller, Helv. Chim. Acta 1988, 71, 2085-2099.
[3] M. A. Alonso, M. del Mar Blanco, C. Avendano, and J.C: Menéndez, Heterocycles 1993, 36, 2315-2325; G. Uray, K. S. Niederreiter, F. Belaj and W. M. F. Fabian, Helv. Chim. Acta, 1999, 82, 1408-1417.
[4] M. Bayle-Lacoste, J. Moulines, N. Collignon, A. Boumekouez, E. de Tinguy-Moreaud, E. Neuzil, Tetrahedron 1990, 46, 7793-7802.

