Direct Asymmetric Aldol-Tishchenko Reaction of Aliphatic Ketones Catalyzed by syn-Aminoalcohol-Yb(III)-Complexes

Jacek Mlynarski, ${ }^{\text {J }}$ Joanna Jankowska and Bartosz Rakiel
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, POLAND
mlynar@icho.edu.pl

General: Ytterbium (III) triflate prepared from ytterbium(III) oxide (Aldrich) and trifluoromethanesulfonic acid (Fluka) was dried 24 hours at $200{ }^{\circ} \mathrm{C}$ under vacuum. All reactions were carried out under argon. Optical rotations were measured with a JASCO Dip360 Digital Polarimeter at room temperature. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian-400 and Bruker-500 spectrometers in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. High resolution mass spectra were taken on a Mariner PerSeptive Biosystems mass spectrometer with time-offlight (TOF) detector. IR spectra were taken with a Perkin Elmer FT-IR-1600 spectrophotometer. Reactions were controlled using TLC on silica [Merck alu-plates (0.2 $\mathrm{mm})$]. All reagents and solvents were purified and dried according to common methods. All organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Reaction products were purified by flash chromatography using Merck's Kieselgel 60 (240-400 mesh). HPLC analysis were performed on Knauer-HPLC system equipped with Daicel columns with chiral stationary phase, detection at 254 nm .

Typical procedure for the aldol-Tishchenko condensation of aldehydes with 3-pentanone Ytterbium (III) triflate (125 mg 0.20 mmol) was placed in an oven-dried flask with a magnetic stirring bar and the flask was heated at $200^{\circ} \mathrm{C}$ for 10 min in vacuo and then flushed with argon. After the flask was cooled down to rt a solution of ligand $13(164 \mathrm{mg}, 0.80 \mathrm{mmol})$ in DME (2 mL) was added. The resulting solution was stirred for 30 min at rt under argon atmosphere. To a solution of the catalyst 3-pentanone ($100 \mu \mathrm{~L}, 0.95 \mathrm{mmol}$) and benzaldehyde ($101 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) were added successively. The resulting solution was stirred for 20 h at rt , then dissolved with MTBE and washed with water and brine. Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and submitted to column chromatography (hexane-ethyl acetate, 9:1).

1-Hydroxy-2-methyl-1-phenylpentyl benzoate (14a) and 3-hydroxy-2-methyl-1phenylpentyl benzoate (14b) ${ }^{1,2}$

14a

14b

First fraction contained ester 14a: yield 42 \%; oil; $[\alpha]_{\mathrm{D}}+3.3$ (c 1.00 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 72 \%$ ee); ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.75(\mathrm{~d}, 3 \mathrm{H}, J 6.9 \mathrm{~Hz}), 0.99(\mathrm{t}, 3 \mathrm{H}, J 7.4 \mathrm{~Hz}), 1.55-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ 2.12 (m, 2H), 3.71 (d, 1H, J $3.8 \mathrm{~Hz}, \mathrm{OH}$), 4.19 (dd, 1H, J 3.6, 9.8 Hz), 5.62 (ddd, 1H, J 1.5, 5.6, 8.7 Hz), 7.20-7.64 (m, 8H, Ar), 8.10 (d, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz) 8: 9.9, 10.5, 25.7, $44.3,75.7,75.8,127.0,127.6,128.3,128.4,129.7,130.2,133.2,142.8,167.6$.
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{i} \operatorname{PrOH}(9: 1), 1$ $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=12.3 \mathrm{~min}, \mathrm{t}_{2}=21.6 \mathrm{~min}$ (major).
Second fraction contained ester 14b: yield 39%; $[\alpha]_{\mathrm{D}}-8.5\left(c 0.75\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 73 \%$ ee); ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.75(\mathrm{~d}, 3 \mathrm{H}, J 6.9 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}), 1.24-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.02-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.75(\mathrm{t}, 1 \mathrm{H}, J 6.5 \mathrm{~Hz}), 5.95(\mathrm{~d}, 1 \mathrm{H}, J 9.8 \mathrm{~Hz}), 7.20-7.68(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{Ar}), 8.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 8.9,10.8,27.3,43.0,71.2,78.8,127.4$, 128.1, 128.3, 128.4, 129.7, 129.9, 133.1, 139.4, 166.5.

Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{i} \operatorname{PrOH}$ (97:3), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=23.2 \mathrm{~min}$ (major), $\mathrm{t}_{2}=24.3 \mathrm{~min}$; Chiralpak OD-H column: hexane ${ }^{-} \mathrm{PrOH}$ (97:3), $1 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{1}=8.1 \mathrm{~min}, \mathrm{t}_{2}=8.7 \mathrm{~min}$ (major).

2-Methyl-1-phenylpentane-1,3-diol (14c) ${ }^{1}$

A solution of monoester $\mathbf{1 4 a} / \mathbf{b}(150 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was treated with catalytic amount of sodium. The mixture was stirred overnight, then evaporated with silica gel and purified on silica gel column (hexane-ethyl acetate, 3:2) to yield diol 14c as an oil in quantitative yield: $[\alpha]_{\mathrm{D}}-36.2\left(c 0.60\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \% e e\right)$; ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta: 0.87(\mathrm{~d}, 3 \mathrm{H}$, $J 7.1 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J 7.4 \mathrm{~Hz}), 1.39-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dq}, 1 \mathrm{H}, J 2.1$, $7.0 \mathrm{~Hz}), 2.46(\mathrm{~d}, 1 \mathrm{H}, J 4.9 \mathrm{~Hz}, \mathrm{OH}), 3.09(\mathrm{~d}, 1 \mathrm{H}, J 4.1 \mathrm{~Hz}, \mathrm{OH}), 3.70-3.75(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dd}$, $1 \mathrm{H}, J 4.1,6.6 \mathrm{~Hz}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta: 10.6$, 11.3, 26.7, 43.4, 74.0, 78.3, 126.3, 127.4, 128.4, 143.9.

Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\mathrm{PrOH}(9: 1), 1$ $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=7.8 \mathrm{~min}, \mathrm{t}_{2}=10.1 \mathrm{~min}$ (major).

Discussion on diol stereochemistry

To double check the structure of compounds $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ its deprotected forms were prepared by ester saponification. Structure of prepared diol $\mathbf{1 4 c}$ was confirmed by comparison with known NMR data. ${ }^{1,2}$ Chemical shift of $\mathrm{H}-1(4.72 \mathrm{ppm})$ as well as $J_{1,2}$ coupling constant (6.6 Hz) are characteristic values for 1,2-anti-1,3-anti configuration of tree continuous stereocenters in this system. ${ }^{13} \mathrm{C}$ NMR data are in good agreement with those published by Mahrwald ${ }^{1}$ and Fang ${ }^{2}$ (in this paper, however, one carbon signal was missed (78.3 ppm) and replaced by one from CDCl_{3} triplet (76.6 ppm). In two papers all sets of signals published for compound $\mathbf{1 4 c}$ seems to be not correct. ${ }^{3,4}$ This concerns ${ }^{1} \mathrm{H}$ NMR data published by Hayashi ${ }^{4}$ (reverse sequence of doublet and triplet of both CH_{3} groups and large coupling constant $J_{1,2}$ suggest rather 1,2-anti-1,3-syn configuration) ${ }^{8}$ and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR presented by Badia. ${ }^{3}$ In the latter, presented spectra do not fit the postulated 1,2-anti-1,3-anti configuration. Published $J_{1,2}$ value (2.2 Hz) is obviously too small for 1,2-anti relationship and presented ${ }^{13} \mathrm{C}$ NMR includes signal at 3.8 ppm which is not characteristic for discussed structures (see ref. [1] and [2]).

Additional prove for structure of obtained diol 14c was analysis of its rigid di-Oisopropylidene derivative 14d. Large $J_{1,2}$ value (8.3 Hz) confirms 1,2-anti relationship. Characteristic signals of isopropylidene ring in ${ }^{13} \mathrm{C}$ NMR (23.6, 24.8 and 100.9 ppm) are in full agreement with rules presented by Rychnowski ${ }^{5}$ for 1,3-anti diols. ${ }^{5}$

We have not detected the formation of 1,2-anti-1,3-syn co-products in the reaction mixture as it took place in the case of reaction promoted by titanium complexes. ${ }^{1}$ Instead, some traces of 1,2-syn-1,3-anti analogues were detected in the reaction mixtures ($2-5 \%$). Its structure was confirmed after ester saponification as 1,3 -diol by comparison with known NMR data. ${ }^{6,8}$ The same 1,2-syn-1,3-anti diol - analogue of $\mathbf{1 4 c}$ was detected as admixture in the racemic sample prepared according to literature procedure. ${ }^{2}$

1,3-O-isopropylidene-2-methyl-1-phenylpentane-1,3-diol (14d)

The 1,3-diol $\mathbf{1 4 c}(97 \mathrm{mg}, 0.5 \mathrm{mmol})$ was dissolved in 5 mL of a (4:1) mixture of acetone and 2,2-dimethoxypropane. To the solution was added camphorosulfonic acid (small crystal) at rt . The mixture was stirred at ambient temperature for 1 h , then quenched with one drop of $\mathrm{Et}_{3} \mathrm{~N}$, concentrated under reduced pressure and purified by flash chromatography (hexane-ethyl acetate, $9: 1$) to yield diacetonide $\mathbf{1 4 d}$ as an oil: ($113 \mathrm{mg}, 93 \%$); $[\alpha]_{\mathrm{D}}-40.1$ (c 0.65 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 43 \%ee); ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta: 0.88(\mathrm{~d}, 3 \mathrm{H}, J 6.8 \mathrm{~Hz}), 0.97(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}), 1.43$ and 1.45 $\left(2 \mathrm{~s}, 2 \times 3 \mathrm{H}, \mathrm{O}^{i} \operatorname{Pr}\right), 1.39-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.07(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (ddd, $1 \mathrm{H}, J$ $2.1,4.6,6.8 \mathrm{~Hz}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, 1 \mathrm{H}, J 8.3 \mathrm{~Hz}), 7.26-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta: 10.6,11.3,23.6,24.0,24.8,41.7,71.1,77.6,100.9,126.9,127.6,128.4,142.0$; IR (film): 2984, 2966, 2937, 2878, 1496, 1455, 1378, $1223 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ $[\mathrm{M}]^{+} 234.1619$, found 234.1618. Detection of enantiomers ratio: HPLC on Chiralpak AS-H column: hexane- $\operatorname{PrOH}(99: 1), 1 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{1}=3.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=3.6 \mathrm{~min}$.

1-Hydroxy-2-methyl-1-(4-methoxyphenyl)pentyl 4-methoxybenzoate (15a) and 3-hydroxy-2-methyl-1-(4-methoxyphenyl)pentyl 4-methoxybenzoate (15b)

Based on the general procedure of aldol-Tishchenko reaction p-anizaldehyde was reacted with 3-pentanone in 1 mmol scale to yield after column chromatography (hexane-ethyl acetate, 4:1) two esters. First fraction contained ester 15a: oil; yield 9%; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.72$ $(\mathrm{d}, 3 \mathrm{H}, J 7.0 \mathrm{~Hz}), 0.98(\mathrm{t}, 3 \mathrm{H}, J 7.5 \mathrm{~Hz}), 1.60-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.00(\mathrm{~m}$, $1 \mathrm{H}), 3.79$ (s, 3H, OMe), 3.81 (d, 1H, OH, $J 3.7 \mathrm{~Hz}$), 3.88 (s, $3 \mathrm{H}, \mathrm{OMe}$), 4.13 (dd, 1H, 3.7 , 9.8 Hz), 5.57 (ddd, $1 \mathrm{H}, J 1.7,4.9,8.8 \mathrm{~Hz}$), 6.85 (d, 2H Ar), 6.97 (d, 2H, Ar), 7.22 (d, 2H Ar), 8.05 (d, 2H Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 9.9,10.6,25.7,44.4,55.2,55.5,75.2,75.5,77.3$, 113.6, 113.7, 122.3, 128.1, 131.8, 135.0, 159.0, 163.6, 167.5; IR (film): 2491, 2965, 2937, 2838, 1710, 1607, 1513, $1254 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 381.1672$ found, 381.1674 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- -PrOH (4:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=14.0 \mathrm{~min}, \mathrm{t}_{2}=24.1 \mathrm{~min}$ (major).
Second fraction contained ester 15b: yield 49\%; oil; ${ }^{1}$ H NMR (400 MHz) $\delta: 0.73$ (d, $3 \mathrm{H}, J$ $7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J 7.4 \mathrm{~Hz}), 1.31-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.17(\mathrm{~m}, 1 \mathrm{H})$, $3.67-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.87(\mathrm{~d}, 1 \mathrm{H}, J 10.2 \mathrm{~Hz}), 6.90(\mathrm{~d}, 4 \mathrm{H}$ Ar), 7.35 (d, 2H Ar), 8.00 (d, 2H Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 8.9,10.9,27.2,43.0,55.1$, $55.3,71.2,78.2,113.6,113.8,122.3,128.6,131.7,159.3,163.5,166.5$; IR (film): 3491, 3965, 2937, 1710, 1607, $1168 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 381.1674$ found, 381.1672.

Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\mathrm{PrOH}(4: 1), 1$ $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=17.7 \mathrm{~min}, \mathrm{t}_{2}=23.7 \mathrm{~min}$ (major).

1-Hydroxy-2-methyl-1-(4-methylphenyl)pentyl 4-methylbenzoate (16a) and 3-hydroxy-2-methyl-1-(4-methylphenyl)pentyl 4-methylbenzoate (16b)

First fraction contained ester 16a: yield 25%; oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.73(\mathrm{~d}, 3 \mathrm{H}, J 7.0$ $\mathrm{Hz}), 0.98(\mathrm{t}, 3 \mathrm{H}, J 7.4 \mathrm{~Hz}), 1.59-70(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J 9.7 \mathrm{~Hz}), 5.59$ (ddd, 1H, $J 1.6,4.8,8.8 \mathrm{~Hz}$), 7.11-7.19 (m, 4H,

Ar), 7.28 (d, 2H, J 7.9 Hz, Ar), $7.99(\mathrm{~d}, 2 \mathrm{H}, J 8.2 \mathrm{~Hz}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 9.9,10.6$, 21.1, 21.6, 25.7, 44.3, 75.5, 75.6, 126.9, 127.2, 129.0, 129.1, 129.8, 137.2, 139.8, 143.9, 167.7; IR (film): $3475,2971,2923,1714,1694,1278,1109 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 349.1765$, found 349.1774 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\operatorname{PrOH}$ (9:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=14.1 \mathrm{~min} ., \mathrm{t}_{2}=21.1 \mathrm{~min}$.
Second fraction contained ester 16b: yield 51%; oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.74(\mathrm{~d}, 3 \mathrm{H}, J$ $6.8 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}), 1.36-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.34$ $(\mathrm{s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.71$ (ddd, 1H, $J 1.8,5.1,8.3 \mathrm{~Hz}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J 9.9 \mathrm{~Hz}), 7.16-7.24(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J 8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J 8.2 \mathrm{~Hz}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) 8: 9.0, $10.9,21.1,21.6,27.2,43.0,71.2,78.6,127.2,127.3,129.1,129.2,129.8,136.6,137.8,143.9$, 166.7; IR (film): $3509,2972,2937,1718,1701,1274,1107 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 349.1793$, found 349.1774.
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\operatorname{PrOH}$ (9:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=18.0 \mathrm{~min} ., \mathrm{t}_{2}=21.0 \mathrm{~min}$.

1-Hydroxy-2-methyl-1-(4-chlororphenyl)pentyl 4-chlorobenzoate (17a) and 3-hydroxy-2-methyl-1-(4-chlorophenyl)pentyl 4-chlorobenzoate (17b)

First fraction contained ester 17a: yield 37%; oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.73(\mathrm{~d}, 3 \mathrm{H}, J 7.0$ $\mathrm{Hz}), 0.98(\mathrm{t}, 3 \mathrm{H}, J 7.2 \mathrm{~Hz}), 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.85-2.01(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J 9.6 \mathrm{~Hz}), 5.57$ (ddd, $1 \mathrm{H}, J 1.6,5.0,8.9 \mathrm{~Hz}$), 7.21-7.24 (m, 2H, Ar), 7.28-7.31 (m, 2H, Ar), 7.44-7.47 (m, 2H, Ar), 8.00-8.03 (m, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 9.8,10.5,25.6,44.4,75.1,76.1,128.2$, 128.3, 128.5, 128.8, 131.1, 133.3, 139.8, 141.2, 166.8; IR (film): 3485, 2973, 2938, 1715, $1700,1275 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$389.0692, found 389.0682.
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- -PrOH (9:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=13.2 \mathrm{~min} ., \mathrm{t}_{2}=19.8 \mathrm{~min}$.
Second fraction contained ester 17b: yield 39%; oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.72(\mathrm{~d}, 3 \mathrm{H}, J$ $7.2 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J 7.6 \mathrm{~Hz}), 1.39-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.12(\mathrm{~m}, 1 \mathrm{H})$, $3.70-3.74(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J 10.0 \mathrm{~Hz}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.40-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 7.94-7.98 (m, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 8.8,10.8,27.4,42.8,71.2,78.3,128.2,128.7$, 128.8 (2C), 131.0, 134.0, 137.9, 139.8, 165.5; IR (film): 3513, 2968, 2938, 1720, 1594, 1270, $1092 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 389.0698$ found 389.0682 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{-} \mathrm{PrOH}$ (9:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=15.5 \mathrm{~min}$., $\mathrm{t}_{2}=19.0 \mathrm{~min}$.

1-Hydroxy-2-ethyl-1-phenylhexyl benzoate (18a) and 3-hydroxy-2-ethyl-1-phenylhexyl benzoate (18b)

18a

18b

First fraction contained ester 18a: colorless oil; yield 23%; oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.77$ (t, 3H, $J 7.5 \mathrm{~Hz}$), $0.91(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}), 1.23-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.84-1.97(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}, J$ $4.4 \mathrm{~Hz}, \mathrm{OH}$), $4.50(\mathrm{dd}, 1 \mathrm{H}, J 4.4,8.5 \mathrm{~Hz}$), 5.60 (ddd, $1 \mathrm{H}, J 1.8,4.5,9.2 \mathrm{~Hz}$), 7.26-7.35 (m, $5 \mathrm{H}, \mathrm{Ar}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.58-7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.07-8.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 12.9,13.8,19.0,19.3,30.0,50.9,74.4,74.6,77.3,126.9,127.5,128.3,128.5,129.7$, 130.0, 133.2, 142.8, 167.4; IR (film): 3479, 2961, 2874, 1715, 1695, $1278 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 349.1774$ found 349.1775 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{i} \operatorname{PrOH}(9: 1), 1$ $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=10.2 \mathrm{~min}, \mathrm{t}_{2}=21.1 \mathrm{~min}$ (major).
Second fraction contained ester 18b: colorless oil; yield $54 \%,{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.84(\mathrm{t}$, $3 \mathrm{H}, J 7.4 \mathrm{~Hz}), 0.97(\mathrm{t}, 3 \mathrm{H}, J 7.1 \mathrm{~Hz}$), 1.25-1.61 (m, 7H), 1.86-1.91 (m, 1H), 3.87 (ddd, 1H, J $2.7,4.4,8.7 \mathrm{~Hz}$), 6.15 (d, 1H, $J 7.8 \mathrm{~Hz}$), 7.30-7.48 (m, 7H, Ar), 7.55-7.61 (m, 1H, Ar), 8.038.09 (d, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 13.0,13.9,17.9,19.6,36.6,50.2,70.3,77.8,126.9$, $128.0,128.4,128.5,129.6,129.8,133.2$, 139.4, 166.0; IR (film): 3500, 2961, 2874, 1720, 1704, $1273 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 349.1774$ found 349.1798 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\operatorname{PrOH}$ (9:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=10.7 \mathrm{~min}$ (major), $\mathrm{t}_{2}=11.6 \mathrm{~min}$.
(1S,2S,3S)-3-Hydroxy-2-methyl-1,3-diphenylpropyl benzoate (19b) ${ }^{2}$

19b
Colorless oil; yield 85%, ${ }^{1}$ H NMR (400 MHz) $\delta: 0.62(\mathrm{~d}, 3 \mathrm{H}, J 6.9 \mathrm{~Hz}$), $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.80$ (d, 1H, J $4.0 \mathrm{~Hz}, \mathrm{OH}$), 5.10 (dd, 1H, J 2.2, 3.9 Hz), 6.08 (d, 1H, J 9.9 Hz), 7.20-7.25 (m, 1H, Ar), 7.29-7.40 (m, 7H, Ar), 7.43-7.49 (m, 4H, Ar), 7.55-7.62 (m, 1H, Ar), 8.08-8.11 (m, 2H, $\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 8.9,45.9,71.4,78.9,125.6,126.8,127.4,128.1,128.2,128.4$, 128.5, 129.7, 129.9, 133.3, 139.2, 142.8, 166.6; IR (film): 3498, 1719, 1703, 1451, $1272 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 369.1461$ found 369.1466.
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{i} \operatorname{PrOH}(9: 1), 1$ $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=10.5 \mathrm{~min}, \mathrm{t}_{2}=16.8 \mathrm{~min}$ (major).

(1S,3S)-2-Methyl-1,3-diphenyl-propane-1,3-diol (21) ${ }^{8,9}$

A solution of monoester $\mathbf{1 9 b}(100 \mathrm{mg})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was treated with catalytic amount of sodium. The mixture was stirred overnight, then evaporated with silica gel and purified on silica gel column (hexane-ethyl acetate, 3:2) to yield diol 21 as an oil in quantitative yield: $[\alpha]_{\mathrm{D}}-13.0$ (c 0.60 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$ ee), lit.[9]: $[\alpha]_{\mathrm{D}}-12.1$ (c 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 84 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta: 0.71(\mathrm{~d}, 3 \mathrm{H}, J 7.1 \mathrm{~Hz}), 2.14(\mathrm{dq}, 1 \mathrm{H}, J 2.5,7.14 \mathrm{~Hz}), 3.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}), 4.64$ (dd, $1 \mathrm{H}, J 3.6,6.6 \mathrm{~Hz}), 4.96(\mathrm{t}, 1 \mathrm{H}, J 3.18 \mathrm{~Hz}), 7.20-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 11.2,45.7,74.3,77.7,125.9,126.2,126.9,127.5,127.9,128.3,142.5,143.4$.
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{i} \mathrm{PrOH}$ (9:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=11.3 \mathrm{~min}, \mathrm{t}_{2}=14.5 \mathrm{~min}$ (major).
(1S,2S,3S)-3-Hydroxy-2-methyl-3-phenyl-1-(4-chlorophenyl)propyl 4-chlorobenzoate (20a) and ($1 S, 2 S, 3 S$)-1-Hydroxy-2-methyl-3-phenyl-1-(4-chlorophenyl)propyl 4chlorobenzoate (20b)

First fraction contained ester 20a: colorless oil; yield 40%; oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.61$ (t, 3H, J 7.0 Hz), 2.25-2.48 (m, 1H), 2.57 (d, 1H, J 4.1 Hz, OH), 5.07 (dd, 1H, J 2.6, 3.9 Hz), $6.00(\mathrm{~d}, 1 \mathrm{H}, J 9.9 \mathrm{~Hz}), 7.20-7.43(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}), 8.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 8.9$, 45.6, 71.5, 78.3, 125.6, 127.0, 128.2, 128.7, 128.8, 131.0, 134.1, 137.6, 139.8, 142.6, 165.4; IR (film): $3500,2978,1720,1594,1490,1270 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 437.0687$ found 437.0689 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\operatorname{PrOH}$ (4:1), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=21.0 \mathrm{~min}, \mathrm{t}_{2}=29.9 \mathrm{~min}$ (major).
Second fraction contained ester 20b: colorless oil; yield 29%, ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.67(\mathrm{t}$, $3 \mathrm{H}, J 7.0 \mathrm{~Hz}$), 2.15-2.33 (m, 1H), 3.15 (brs, 1H, OH), 4.39 (dd, 1H, J 3.3, 9.3 Hz), 6.70 (d, $1 \mathrm{H}, J 2.4 \mathrm{~Hz}), 7.20-7.50(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}), 8.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 9.8,47.3$, $75.1,75.3,125.6,127.4,128.2,128.3,128.5,128.7,128.9,131.1,133.5,139.3,140.0,141.0$, 165.5; IR (film): $3486,1723,1595,1488,1272 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 437.0687$ found 437.0690 .
Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- $-\mathrm{PrOH}(4: 1), 1$ $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=15.2 \mathrm{~min}, \mathrm{t}_{2}=16.4 \mathrm{~min}$ (major).

(1S,2S,3S)-1-(4-Chlorophenyl)-2-methyl-3-phenylpropane-1,3-diol (22) ${ }^{9}$

A solution of monoester 20a/b (100 mg) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was treated with catalytic amount of sodium. The mixture was stirred overnight, then evaporated with silica gel and purified on silica gel column (hexane-ethyl acetate, 3:2) to yield diol 22 as an oil in quantitative yield: $[\alpha]_{\mathrm{D}}+1.1$ (c 0.50 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$ ee), lit.[9]: $[\alpha]_{\mathrm{D}}+1.3$ (c 1.75 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$ ee); ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 0.75(\mathrm{~d}, 3 \mathrm{H}, J 7.1 \mathrm{~Hz}$), $2.18(\mathrm{dq}, 1 \mathrm{H}, J 2.7,6.7 \mathrm{~Hz}), 3.00(\mathrm{~d}, 1 \mathrm{H}, J 3.6 \mathrm{~Hz}, \mathrm{OH})$, $3.30(\mathrm{~d}, 1 \mathrm{H}, J 4.1 \mathrm{~Hz}, \mathrm{OH}), 4.67$ (dd, 1H, $J 4.3,6.6 \mathrm{~Hz}$), $5.00(\mathrm{t}, 1 \mathrm{H}, J 2.9 \mathrm{~Hz}$), 7.12-7.40 (m, $9 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta: 11.3,45.5,74.4,77.0,125.9,127.1,127.5,128.0,128.4$, 133.0, 141.9, 142.1.

Detection of enantiomers ratio: HPLC on Chiralpak AD-H column: hexane- ${ }^{i} \operatorname{PrOH}$ (95:5), 1 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{1}=22.8 \mathrm{~min}, \mathrm{t}_{2}=28.8 \mathrm{~min}$ (major).

References:

[1] Mahrwald, R.; Costisella, B. Synthesis, 1996, 1087-1089.
[2] Lu, L.; Chang, H.-Y.; Fang, J.M. J. Org. Chem. 1999, 64, 843-853.
[3] Vicario, J.L.; Badía, D.; Domínguez, E.; Rodríguez, M.; Carrillo, L. J. Org. Chem. 2000, 65, 3754-3760.
[4] Hayashi, T. Tetrahedron Lett. 1991, 32, 5369-5372.
[5] Rychnovsky, S.D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511-3515.
[6] Bodnar, P.M.; Shaw, J.T.; Woerpel, K.A. J. Org. Chem. 1997, 62, 5674-5675.
[7] Mahrwald, R.; Zimmer, B. Tetrahedron 1999, 55, 14005-14012.
[8] Bartoli, G.; Bellucci, M.C.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Sambri, L. Chem. Eur. J. 2000, 6, 2590-2598.
[9] Gnanadesikan, V.; Horiuchi, Y.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7782-7783

