Electronic Supplementary Information

Multifunctional cadmium single source precursor for the selective deposition of CdO or CdS films from a solution route

Graziella Malandrino,^{*a} Sebastiana T. Finocchiaro,^a Patrizia Rossi,^b Paolo Dapporto,^b and Ignazio L. Fragalà^a

 ^aDipartimento di Scienze Chimiche, Università di Catania, and INSTM, UdR Catania, V.le Andrea Doria 6, I-95125 Catania, Italy
^b Dipartimento Energetica "S. Stecco", Università di Firenze, Via Santa Marta 3, I-50139 Firenze, Italy

E-mail: gmalandrino@dipchi.unict.it

Experimental. Elemental microanalyses were performed in the Analytical Laboratories of the University of Catania. ¹H NMR spectra were recorded on a Varian Inova 500 spectrometer. Infrared spectra were recorded on a Perkin Elmer FTIR 1720 spectrometer as nujol mulls between NaCl plates. Thermogravimetric analyses were performed by using a Mettler Toledo TGA/SDTA 851^e. Weights of the samples were between 10-15 mg (TGA). Analyses were made under prepurified nitrogen using a 5°C/min heating rate.

The ¹H NMR spectrum of the Cd(tta)₂•tmed adduct shows a singlet at $\delta = 6.12$ ppm, whose integration accounts for the two protons, one for each tta ring. The multiplets at $\delta = 7.07$, $\delta = 7.47$ and $\delta = 7.60$ represents the resonance of the protons of the tiophene ring. In addition, multiplets at $\delta = 2.51$ and $\delta = 2.63$ represent resonances of the six and four protons, respectively, of the tmed methylic and methylenic groups.

The ¹³C NMR spectrum of the Cd(TTA)₂•tmed adduct shows a singlet at $\delta = 47.06$ and a singlet at $\delta = 56.82$, associated with carbons of the methylic and methylenic groups, respectively, of the

^{*} E-mail: gmalandrino@dipchi.unict.it

tmed. Singlet at $\delta = 90.30$ represents the resonance of the alchenic C of the tta ring, while the singlets between $\delta = 128$ and $\delta = 132$ represent the resonances of the carbons of the tiophene ring of the same ligand. The singlet at $\delta = 147.11$ is associated with the resonance of the thiophene carbons linked to the carbonilic groups, while the quartet at $\delta = 119.89$ (¹J = 286.2 Hz) is associated with the resonance of carbons of the -CF₃ groups. Finally, the singlet at $\delta = 185.27$ and the quartet at $\delta = 173.04$ (²J=31.4 Hz) represent resonances of the carbonilic carbons linked, respectively, to the thiophene ring and to the -CF₃ group.

Details of film deposition. Films were deposited through spin coating of a 0.3 M solution of $Cd(tta)_2$ •tmed complex on glass or Si substrates. Afterwards the films were treated under different temperatures and atmosphere, reactive using O_2 or inert using N_2 . The experimental conditions are summarized in Table S1.

Temperature	Atmosphere	Treatment Time	Phase nature assessed through XRD	Elements of the films detected through EDX
300-700°C	O ₂	1 h	CdO	Cd, O
300-450 °C	N_2	1 h	CdF ₂	Cd, F, S
450-550°C	N ₂	1 h	CdS, CdF ₂	Cd, F, S
550-600 °C	N ₂	1 h	CdS	Cd, S

Table S1. Relationship between conditions of thermal treatments and nature of Cd containing films.

Table S2. Crystal data and structure refinement parameters for $Cd(tta)_2$ ·tmed.

Empirical formula	$C_{22}H_{24}CdF_6N_2O_4S_2\\$	
М	670.95	
T (K)	293	
λ (Å)	0.71069	
Crystal system, space group	Monoclinic, P2 ₁ /c	
Unit cell dimensions (Å, °)	a = 17.582(5)	
	$b = 8.335(2), \beta = 92.61(3)$	
	c = 18.610(7)	
Volume (Å ³)	2724.4(14)	
Z, d_{calc} (g/cm ³)	4, 1.636	
$\mu (mm^{-1})$	1.026	
F(000)	1344	
2θ range for data collection (°)	5-50.	
Reflections collected / unique	4804 / 4640 [R(int) = 0.0327]	
Data / parameters	4640 / 339	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0510, wR2 = 0.1414	
R indices (all data)	R1 = 0.0553, wR2 = 0.1469	

Table S3. Selected bond lengths [Å] and angles $[\circ]$ for $Cd(tta)_2$ ·tmed.

Cd(1)-O(1)	2.284(3)
Cd(1)-O(2)	2.281(3)
Cd(1)-O(3)	2.255(3)
Cd(1)-O(4)	2.258(3)
Cd(1)-N(1)	2.393(4)
Cd(1)-N(2)	2.401(4)
O(1)-Cd(1)-O(2)	79.61(12)
O(1)-Cd(1)-O(3)	97.24(12)
O(1)-Cd(1)-O(4)	167.77(13)
O(1)-Cd(1)-N(1)	94.25(13)
O(1)-Cd(1)-N(2)	97.98(14)
O(2)-Cd(1)-O(3)	103.57(14)
O(2)-Cd(1)-O(4)	88.97(13)
O(2)-Cd(1)-N(1)	165.52(15)
O(2)-Cd(1)-N(2)	90.43(16)
O(3)-Cd(1)-O(4)	81.08(12)
O(3)-Cd(1)-N(1)	90.15(15)
O(3)-Cd(1)-N(2)	160.94(15)
O(4)-Cd(1)-N(1)	97.86(14)
O(4)-Cd(1)-N(2)	86.38(14)
N(1)-Cd(1)-N(2)	77.35(17)

Figure S1. EDX spectra of films obtained under different processing conditions: (a) CdO obtained at 600°C under O_2 , (b) CdF₂ obtained at 350°C under N_2 , (c) CdS obtained at 600°C under N_2 .

