Tunable Asymmetric Copper-Catalyzed Allylic Amination and Oxidation Reactions

J. Stephen Clark* and Caroline Roche

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK

Supporting Information

General procedure for asymmetric allylic amination and oxidation reactions

A solution of Cu(MeCN)₄PF₆ (0.1 equiv.) and ligand (0.11 equiv.) in the appropriate solvent (5 mL per mmol peroxycarbamate) was stirred at RT for 10 minutes. The alkene (5 equiv.) was added to the pale blue solution, followed by the addition of the peroxycarbamate **6** (1 equiv.). The reaction mixture was stirred at RT and gradually changed from blue to green or dark brown during the course of the reaction. On completion of the reaction, as indicated by the disappearance of the peroxycarbamate by TLC, it was quenched with a saturated aqueous solution of NaHCO₃ and extracted with ethyl acetate. The combined organic extracts were washed with a saturated aqueous solution of NaHCO₃ and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave the crude product and this was purified by flash column chromatography on silica gel.

Enantiomeric excesses were determined using chiral HPLC (Chiralpak AD or ADH column) and the absolute configuration of the major enantiomer was established by comparison with literature data in cases where this was possible.

N-[(1*S*)-2-Cyclohexen-1-yl]-4-methylbenzenesulfonamide (*S*)-3a¹

Following the general procedure, cyclohexene (100 µL) was reacted with the peroxycarbamate **2a** (57.4 mg) the complex generated from Cu(MeCN)₄PF₆ (7.4 mg) and the ligand (*S*,*S*)-**1b** (7.4 mg) in dichloromethane (1.0 mL) at room temperature over 20 h. Flash column chromatography on silica gel (pet. ether-ether, 100:0 \rightarrow 50:50) afforded the allylic amine **3a** (22 mg, 44%) as an oil. [α]¹⁹_D = -34 (*c* = 0.78, CHCl₃) {Lit. *R*-enantiomer (18% ee) [α]²⁰_D = +11.6 (*c* = 1.0, CHCl₃)}^[1]; HPLC (Chiralpak AD 7%, *i*PrOH-hexane, flow rate 1 mLmin⁻¹) *t*_R(*R*) = 27.6 min, *t*_R(*S*) = 29.4 min,

ee = 51 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.49–1.65 (m, 3 H), 1.70–1.80 (m, 1 H), 1.82–2.00 (m,

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

2 H), 2.43 (s, 3 H), 3.75–3.87 (m, 1 H), 4.47 (d, 1 H), 5.34 (dddd, J = 10.0, 3.4, 2.2, 2.2 Hz, 1 H), 5.76 (dddd, J = 10.0, 3.7, 3.7, 1.8 Hz, 1 H), 7.30 (d, J = 8.5 Hz, 2 H), 7.77 (d, J = 8.5 Hz, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 19.6 (CH₂), 21.8 (CH₃), 24.8 (CH₂), 30.6 (CH₂), 49.3 (CH), 127.3 (CH), 127.4 (CH), 130.0 (CH), 131.8 (CH), 138.7 (C), 143.5 (C); IR (CHCl₃) 3382, 2927, 2864, 1599, 1328, 1154, 884 cm⁻¹; HRMS (EI+) for C₁₃H₁₇NO₂S calcd 251.0980, found 251.0979.

N-[(1*S*)-2-Cyclopenten-1-yl]-4-methylbenzenesulfonamide (*S*)-4a¹

Following the general procedure, cyclopentene (88 μ L) was reacted with the peroxycarbamate **2a** (57.4 mg) the complex generated from Cu(MeCN)₄PF₆ (7.4 mg) and the ligand (*S*,*S*)-**1b** (7.4 mg) in dichloromethane (1.0 mL) at room temperature over 40 h. Flash column chromatography on silica gel (pet. ether-ether, 100:0 \rightarrow 50:50) afforded the allylic amine **3a** (14 mg, 30%) as an oil.

 $[\alpha]^{26}{}_{D} = -21 \ (c = 0.56, \text{ CHCl}_3) \ \{\text{Lit. } R\text{-enantiomer (64\% ee) } [\alpha]^{20}{}_{D} = +15.4 \ (c = 1.0, \text{ CHCl}_3)\}^{[1]};$ ¹H NMR (CDCl₃, 400 MHz) δ 1.42–1.58 (m, 1 H), 2.10–2.27 (m, 2 H), 2.30–2.41 (m, 1 H), 2.43 (s, 3 H), 4.35–4.50 (m, 2 H), 5.41–5.47 (m, 1 H), 5.84–5.90 (m, 1 H), 7.31 (d, J = 8.3 Hz, 2 H), 7.77(d, J = 8.3 Hz, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 21.9 (CH₃), 31.2 (CH₂), 31.9 (CH₂), 60.2 (CH), 127.4 (CH), 129.8 (CH), 130.8 (CH), 135.4 (CH), 138.5 (C), 143.7 (C); IR (CHCl₃) 3374, 2928, 2857, 1599, 1353, 1154, 897 cm⁻¹; HRMS (EI+) for C₁₂H₁₅NO₂S calcd 237.0824, found 237.0834.

N-Benzyl-N-[(1S)-2-cyclopenten-1-yl]-4-methylbenzenesulfonamide

 $[\alpha]^{21}{}_{D} = -11 \ (c = 0.75, \text{CHCl}_3); \text{HPLC}$ (Chiralpak ADH, 7% *i*PrOH-hexane, flow rate 1 mLmin⁻¹) $t_{R}(S) = 38.0 \text{ min}, t_{R}(R) = 40.7 \text{ min}, \text{ ee} = 46 \%; {}^{1}\text{H} \text{ NMR} (\text{CDCl}_3, 400 \text{ MHz}) \delta 1.30-1.42 (m, 1 \text{ H}), 1.91-2.02 (m, 1 \text{ H}), 2.07-2.15 (m, 2 \text{ H}), 2.40 (s, 3 \text{ H}), 4.15 (d, <math>J = 16.2 \text{ Hz}, 1 \text{ H}), 4.22 (d, <math>J = 16.2 \text{ Hz}, 1 \text{ H}), 5.09-5.19 \ (m, 2 \text{ H}), 5.79 \ (dddd, J = 5.5, 2.3, 2.2, 2.1 \text{ Hz}, 1 \text{ H}), 7.17-7.29 \ (m, 5 \text{ H}), 7.30-7.35 \ (m, 2 \text{ H}), 7.70 \ (d, J = 7.3 \text{ Hz}, 2 \text{ H}); {}^{13}\text{C} \text{ NMR} \ (\text{CDCl}_3, 500 \text{ MHz}) \delta 21.9 \ (\text{CH}_3), 27.7 \ (\text{CH}_2), 31.6 \ (\text{CH}_2), 47.6 \ (\text{CH}_2), 65.0 \ (\text{CH}), 127.4 \ (\text{CH}), 127.6 \ (\text{CH}), 127.8 \ (\text{CH}), 128.5 \ (\text{CH}), 129.6 \ (\text{CH}), 130.0 \ (\text{CH}), 136.2 \ (\text{CH}), 138.0 \ (\text{C}), 139.4 \ (\text{C}), 143.5 \ (\text{C}); \text{IR} \ (\text{CHCl}_3) 2926, 2854, 1598, 1342, 1150, 867 \text{ cm}^{-1}; \text{HRMS} \ (\text{EI+}) \text{ for } \text{C}_{19}\text{H}_{21}\text{NO}_2\text{S} \text{ calcd} 327.1293, \text{ found} 327.1291.$

Carbamate (*R*)-5b²

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

 $[α]^{30}_{D}$ = +137 (*c* = 0.68, CHCl₃); HPLC (Chiralpak AD, 3 % *i*PrOH-hexane, flow rate 1 mLmin⁻¹) *t*_R(*R*) = 23.8 min, *t*_R(*S*) = 28.3 min, ee = 61 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.60–1.88 (m, 3 H), 1.90–2.20 (m, 3 H), 5.25–5.32 (m, 1 H), 5.78 (dddd, *J* = 10.0, 3.6, 1.8, 1.8 Hz, 1H), 5.98 (m, *J* = 10.0, 4.1, 3.7, 1.2 Hz, 1 H), 6.52–6.60 (br s, 1 H), 7.03–7.07 (m, 1 H), 7.27–7.33 (m, 2 H), 7.35– 7.41 (m, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 19.1 (CH₂), 25.2 (CH₂), 28.9 (CH₂), 69.2 (CH), 118.9 (CH), 123.6 (CH), 126.1 (CH), 129.4 (CH), 133.2 (CH), 138.4 (C), 153.6 (C); IR (CHCl₃) 3434, 2935, 2868, 1728, 1596 cm⁻¹; HRMS (EI+) for C₁₃H₁₅NO₂ calcd 217.1103, found 217.1099. Anal. calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.70; H, 6.94; N, 6.25.

Carbamate (-)-5c

[α]³⁴_D = -123 (*c* = 0.65, CHCl₃); HPLC (Chiralpak AD, 3 % *i*PrOH-hexane, flow rate 1 mLmin⁻¹) $t_{\rm R}(+) = 27.3$ min, $t_{\rm R}(-) = 30.9$ min, ee = 67 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.60–1.85 (m, 3 H), 1.88–2.18 (m, 3 H), 5.23–5.30 (m, 1 H), 5.77 (dddd, J = 10.0, 3.8, 2.1, 2.1 Hz, 1 H), 5.99 (dddd, J = 10.0, 4.2, 3.2, 1.0 Hz, 1 H), 6.59 (br s, 1 H), 7.26–7.29 (m, 2 H), 7.38–7.42 (m, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 19.1 (CH₂), 25.2 (CH₂), 28.8 (CH₂), 69.5 (CH), 116.1 (C), 120.5 (CH), 125.9 (CH), 132.3 (CH), 133.4 (CH), 137.5 (C), 153.4 (C); IR (CHCl₃) 3433, 2935, 1730, 1590 cm⁻¹; HRMS (EI+) for C₁₃H₁₄NO₂⁸¹Br calcd 297.0187, found 297.0185, for C₁₃H₁₄NO₂⁷⁹Br calcd 295.0208, found 295.0211. Anal. calcd for C₁₃H₁₄NO₂Br: C, 52.72; H, 4.76; N, 4.73. Found: C, 52.26; H, 4.77; N, 4.57.

Carbamate (+)-5d

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

[α]³⁰_D = +110 (*c* = 0.51, CHCl₃); HPLC (Chiralpak AD, 7 % *i*PrOH-hexane, flow rate 1 mLmin⁻¹) $t_{\rm R}(+) = 21.5$ min, $t_{\rm R}(-) = 24.6$ min, ee = 65 %; ¹H NMR (CDCl₃, 500 MHz) δ 1.60–1.85 (m, 3 H), 1.88–2.18 (m, 3 H), 5.26–5.33 (m, 1 H), 5.74–5.81 (m, 1 H), 5.96–6.03 (m, 1 H), 6.98 (s, 1 H), 7.45 (dd, *J* = 8.4, 8.4 Hz, 1 H), 7.68–7.78 (m, 1 H), 7.89 (dd, *J* = 8.4, 2.1 Hz, 1 H), 8.31 (dd, *J* = 2.1, 2.1 Hz, 1 H); ¹³C NMR (CDCl₃, 500 MHz) δ 19.0 (CH₂), 25.2 (CH₂), 28.7 (CH₂), 70.0 (CH), 113.6 (CH), 118.2 (CH), 124.4 (CH), 125.6 (CH), 130.1 (CH), 133.7 (CH), 139.7 (C), 149.0 (C), 153.3 (C); IR (CHCl₃) 3421, 2947, 2869, 2836, 1732, 1623, 1594, 1548, 912 cm⁻¹; LRMS (EI+) 262, 218, 190, 164, 118, 70, 65; HRMS (EI+) for C₁₃H₁₄N₂O₄ calcd 262.0954, found 262.0945. Anal. calcd for C₁₃H₁₄N₂O₄: C, 59.54; H, 5.38; N, 10.68. Found: C, 59.36; H, 5.44; N, 10.54.

Carbamate (+)-5e

Following the general procedure, cyclohexene (100 μ L) was reacted with the peroxycarbamate **2e** (50.8 mg) the complex generated from Cu(MeCN)₄PF₆ (7.4 mg) and the ligand (*R*,*R*)-**1b** (7.4 mg) in ethyl acetate (1.0 mL) at room temperature over 16 h. Flash column chromatography on silica gel (pet. ether-ether, 100:0 \rightarrow 50:50) afforded the carbamate **5e** (34 mg, 65%) as an oil.

 $[α]^{20}_{D}$ = +132 (*c* = 1.05, CHCl₃); HPLC (Chiralpak AD, 7 % *i*PrOH-hexane, flow rate 1 mLmin⁻¹) *t*_R(+) = 25.3 min, *t*_R(-) = 28.8 min, ee = 72 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.61–1.85 (m, 3 H), 1.88–2.20 (m, 3 H), 5.25–5.35 (m, 1 H), 5.76 (dddd, *J* = 10.0, 3.6, 2.2, 2.1 Hz, 1 H), 6.00 (dddd, *J* = 10.0, 4.2, 3.2, 1.0 Hz, 1 H), 7.09 (br s, 1 H), 7.55 (d, *J* = 9.2 Hz, 2 H), 8.18 (d, *J* = 9.2 Hz, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 19.0 (CH₂), 25.2 (CH₂), 28.7 (CH₂), 70.2 (CH), 118.0 (CH), 125.4 (CH), 125.6 (CH), 133.9 (CH), 143.2 (C), 144.4 (C), 152.9 (C); IR (CHCl₃) 3426, 2936, 2869, 1738, 1714, 1613, 1594 cm⁻¹; HRMS (EI+) for C₁₃H₁₄N₂O₄ calcd 262.0954, found 262.0946. Anal. calcd for C₁₃H₁₄N₂O₄: C, 59.54; H, 5.38; N, 10.68. Found: C, 59.55; H, 5.38; N, 10.53.

Carbamate (+)-6b

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

[α]³⁰_D = +144 (c = 0.50, CHCl₃); HPLC (Chiralpak AD, 3% *i*PrOH-hexane, flow rate 1 mLmin⁻¹) $t_{\rm R}(+)$ = 25.5 min, $t_{\rm R}(-)$ = 28.1 min, ee = 76 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.85–1.98 (m, 1 H), 2.30–2.42 (m, 2 H), 2.50–2.63 (m, 1 H), 5.75–5.81 (m, 1 H), 5.88–5.93 (m, 1 H), 6.12–6.17 (m, 1 H), 7.04–7.09 (m, 1 H), 7.28–7.34 (m, 2 H), 7.36–7.40 (m, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 30.3 (CH₂), 31.4 (CH₂), 81.6 (CH), 118.9 (CH), 123.6 (CH), 129.4 (CH), 129.7 (CH), 138.1 (CH), 138.3 (C), 153.8 (C); IR (CHCl₃) 3435, 2933, 2856, 1730, 1603 cm⁻¹; HRMS (EI+) for C₁₂H₁₃NO₂ calcd 203.0946, found 203.0939. Anal. calcd for C₁₂H₁₃NO₂: C, 70.92; H, 6.45; N, 6.89. Found: C, 70.70; H, 6.41; N, 6.87.

Carbamate (+)-6c

[α]³⁴_D = +101 (*c* = 0.70, CHCl₃); HPLC (Chiralpak AD, 3 % *i*PrOH-hexane, flow rate 1 mLmin⁻¹) *t*_R(+) = 38.5 min, *t*_R(-) = 40.5 min, ee = 70 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.85–1.95 (m, 1 H), 2.30–2.42 (m, 2 H), 2.50–2.62 (m, 1 H), 5.73–5.77 (m, 1 H), 5.86–5.90 (m, 1 H), 6.12–6.16 (m, 1 H), 6.56 (br s, 1 H), 7.27 (d, *J* = 7.6 Hz, 2 H), 7.39 (m, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 30.2 (CH₂), 31.4 (CH₂), 81.9 (CH), 116.1 (C), 120.4 (CH), 129.5 (CH), 132.3 (CH), 137.5 (C), 138.4 (CH), 153.6 (C); IR (CHCl₃) 3434, 2933, 2856, 1732, 1591 cm⁻¹; HRMS (CI, NH₃) for C₁₂H₁₂⁸¹BrNO₂+NH₄⁺ calcd 301.0375, found 301.0364, for C₁₂H₁₂⁷⁹BrNO₂+NH₄⁺ calcd 299.0395, found 299.0388. Anal. calcd for C₁₂H₁₂BrNO₂: C, 51.09; H, 4.29; N, 4.96. Found: C, 51.02; H, 4.34; N, 5.17.

Carbamate (+)-6d

 $[\alpha]^{20}{}_{D}$ = +116 (*c* = 0.91, CHCl₃); HPLC (Chiralpak AD, 5 % *i*PrOH-hexane, flow rate 1 mLmin⁻¹) $t_{\rm R}(+)$ = 26.9 min, $t_{\rm R}(-)$ = 30.2 min, ee = 81 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.85–2.00 (m, 1 H), 2.28–2.35 (m, 2 H), 2.50–2.63 (m, 1 H), 5.75–5.81 (m, 1 H), 5.86–5.92 (m, 1 H), 6.13–6.18 (m, 1 H), 6.91 (br s, 1 H), 7.45 (dd, *J* = 8.2, 8.2 Hz, 1 H), 7.70–7.74 (m, 1 H), 7.89 (ddd, *J* = 8.2, 2.2, 1.0 Hz, 1 H), 8.30 (dd, *J* = 2.2, 2.1 Hz, 1 H);¹³C NMR (CDCl₃, 500 MHz) δ 30.2 (CH₂), 31.4 (CH₂),

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005 82.4 (CH), 113.6 (CH), 118.2 (CH), 124.4 (CH), 129.3 (CH), 130.1 (CH), 138.6 (CH), 139.6 (C), 149.1 (C), 153.5 (C); IR (CHCl₃) 3431, 2934, 2856, 1732, 1353 cm⁻¹; HRMS (EI+) for C₁₂H₁₂N₂O₄ calcd 248.0797, found 248.0786. Anal. calcd for C₁₂H₁₂N₂O₄: C, 58.06; H, 4.87; N, 11.29. Found: C, 58.09; H, 4.87; N, 11.27.

Carbamate (+)-6e

Following the general procedure, cyclopentene (88 μ L) was reacted with the peroxycarbamate **2e** (50.8 mg) the complex generated from Cu(MeCN)₄PF₆ (7.4 mg) and the ligand (*R*,*R*)-**1b** (7.4 mg) in ethyl acetate (1.0 mL) at room temperature over 16 h. Flash column chromatography on silica gel (pet. ether-ether, 100:0 \rightarrow 50:50) afforded the carbamate **6e** (24 mg, 48%) as an oil.

[α]²⁰_D = +143 (c = 0.80, CHCl₃); HPLC (Chiralpak ADH, 7 % *i*-PrOH/Hexane, flow rate 1 mLmin⁻¹) $t_{\rm R}(+)$ = 35.0 min, $t_{\rm R}(-)$ = 37.3 min, ee = 85 %; ¹H NMR (CDCl₃, 400 MHz) δ 1.83–1.98 (m, 1 H), 2.25–2.42 (m, 2 H), 2.48–2.62 (m, 1 H), 5.75–5.83 (m, 1 H), 5.85–5.92 (m, 1 H), 6.14–6.21 (m, 1 H), 6.92 (br s, 1 H), 7.53 (d, J = 9.2 Hz, 2 H), 8.19 (d, J = 9.2 Hz, 2 H); ¹³C NMR (CDCl₃, 500 MHz) δ 30.2 (CH₂), 31.5 (CH₂), 82.6 (CH), 117.9 (CH), 125.6 (CH), 129.1 (CH), 138.8 (CH), 143.2 (C), 144.4 (C), 153.1 (C); IR (CHCl₃) 3426, 2930, 2855, 1732, 1611 cm⁻¹; LRMS 248, 204, 138, 118, 67; LRMS (EI+) m/z (rel. intensity) 248 ([M⁺], 2), 67 (100); Anal. calcd C₁₂H₁₂N₂O₄: C, 58.06; H, 4.87; N, 11.29. Found: C, 57.85; H, 4.99; N, 11.01.

1 O'Brien, P.; Rosser, C. M.; Caine, D. Tetrahedron 2003, 59, 9779–9791.

2 Synerholm, M. E.; Gilman, N. W.; Morgan, J. W.; Hill, R. K. J. Org. Chem. 1968, 33, 1111– 1116.