Supplementary Information

A Missing Allene of Heavy Group-14 Elements. 2-Germadisilaallene

Takeaki Iwamoto, Takashi Abe, Chizuko Kabuto, and Mitsuo Kira*

Department of Chemistry, Graduate School of Science, Tohoku University

Aoba-ku, Sendai, 980-8578, Japan

Contents

- 1. Details of X-ray analysis
- 2. UV-vis and NMR spectra of 4
- 3. Plots of ln([**4X**]/[**4A**]) vs 1/T
- 4. Details of reaction with dialkylsilylene 5 with GeCl₄
- 5. Details of theoretical study

1. Details of X-ray analysis

Table S1. Crystal	l data and str	ucture refine	ment for 2-g	ermadisilaal	ene ^a		
Crystal	А	В	В	В	В	С	С
Temperature/K	223	123	173	223	273	93	223
Crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic
Space group	P-1(#2)	P-1(#2)	P-1(#2)	P-1(#2)	P-1(#2)	P-1(#2)	P-1(#2)
Unit cell dimensions							
a/Å	11.783(3)	11.709(3)	11.7571(2)	11.777(3)	11.792(2)	11.683(3)	11.787(3)
b/Å	12.317(2)	12.239(2)	12.2792(1)	12.315(3	12.365(2)	12.214(3)	12.318(2)
c/Å	18.638(4)	18.548(4)	18.5740(5)	18.633(5)	18.719(4)	18.607(4)	18.634(4)
$\alpha / ^{\circ}$	73.548(8)	73.464(7)	73.558(5)	73.588(8)	73.572(6)	73.588(7)	73.594(6)
$eta\!\!/^\circ$	87.246(10)	87.139(8)	87.309(7)	87.260(9)	87.166(8)	87.156(8)	87.201(7)
γ°	72.204(8)	71.999(7)	72.299(5)	72.249(8)	72.153(6)	71.628(7)	72.174(6)
Volume	2467.8(9)	2421.2(9)	2447.83(13)	2466.8(10)	2489.9(8)	2414.8(9)	2468.9(9)
Z	2	2	2	2	2	2	2
Density (calcd)/(mg m-3)	1.101	1.123	1.110	1.102	1.092	1.126	1.101
Absorption coeff. (mm ⁻¹)	0.883	0.900	0.890	0.884	0.875	0.903	0.883
F(000)	888	888	888	888	888	888	888
Crystal size	0.30 mm	0.30 mm	0.30 mm	0.30 mm	0.30 mm	0.30 mm	0.30 mm
(max, mid, min)	0.15 mm	0.30 mm	0.30 mm	0.30 mm	0.30 mm	0.20 mm	0.20 mm
	0.10 mm ³	0.10 mm	0.10 mm	0.10 mm	0.10 mm	0.10 mm	0.10 mm
θ for data collection	3.29 to 27.48°	3.31 to 28.28°	3.30 to 27.48°	3.29 to 27.48°	3.27 to 27.50°	3.31 to 27.48°	3.29 to 27.48°
Index Range	-15<=h<=15,	-15<=h<=15,	-14<=h<=15,	-15<=h<=11,	-15<=h<=15,	-15<=h<=15,	-15<=h<=15,
	-14<=k<=15,	-15<=k<=16,	-15<=k<=15,	-15<=k<=15,	-16<=k<=16,	-15<=k<=15,	-15<=k<=15,
	-23<=l<=24	-24<=l<=24	-19<=l<=24	-24<=l<=22	-24<=l<=23	-24<=l<=24	-24<=l<=24
Reflection Collected	20066	38183	19094	19021	23225	37880	28393
Independent refl.	10288[0.0000	11049[0.0277	10527[0.0515	10558[0.0240	10992[0.0632	10992[0.0546	11079[0.0367
[R(int)]]]]]]]]
Completeness to $\theta=25.0^{\circ}$	94.6 %	99.7 %	96.6 %	96.4 %	97.7 %	99.7 %	97.8 %
Max./min. transmittion	0.9169/0.7775	0.9154/0.7740	0.9162/0.7760	0.9168/0.7775	0.9176/	0.9152/0.7735	0.9169/0.7776
					0.7792		
Data/restraints/parameter	10288/55/443	11049/34/433	10527/55/443	10558/61/ 443	10992/103/44	10992/28/433	110/9/61/443
s					3		
Goodness-of-fit on F ²	1.189	1.13/	1.125	1.145	1.204	1.144	1.177
Final R indices $[I > 2\sigma(I)]$	R1=0.0938,	KI = 0.0461,	R1 = 0.0588,	RI = 0.0706,	R1 = 0.0869,	KI = 0.0411,	R1 = 0.0760,
	wR2=0.1679	wR2 = 0.0976	wR2 = 0.1262	wR2 = 0.1439	wR2 = 0.1661	wR2 = 0.0815	wR2 = 0.1474
R indices (all data)	R1=0.1362,	RI = 0.0510,	RI = 0.0718,	RI = 0.0880,	RI = 0.1141,	RI = 0.0460,	RI = 0.0973,
	wR2=0.1921	wR2 = 0.1001	wR2 = 0.1338	wR2 = 0.1550	wR2 = 0.1807	wR2 = 0.0838	wR2 = 0.1582
Largest diff. Peak/hole e.Å ⁻³	0.361/-0.375	0.788/-0.515	0.604/-0.532	0.449/-0.444	0.324/-0.326	0.419/-0.363	0.408/-0.398

a) Molecular formula: C32H80GeSi10; Formula Weight: 818.43; Refinement Method: Full-matrix least-squares on F².

2. UV-vis and NMR spectra of 4

1) UV-vis spectrum of 4

UV-vis spectrum of 2-germadisilaallene **4** was measured using a sealed glass apparatus equipped with a quartz cell (light path 10 mm).

Fig. S1. UV-vis spectrum of 4 in hexane at room temperature.

2) NMR spectra of 4 at 293 K

(a) 1 H NMR

²⁹Si NMR. Signals marked * are due to silicone grease.

3) NMR spectra of 4 at 193 K

(a) 1 H NMR

Fig. S3. NMR spectrum of **4** in toluene- d_8 at 193 K. (a) ¹H NMR. (b) ¹³C NMR. (c) ²⁹Si NMR. Signals marked * are due to silicone grease.

Supplementary Material (ESI) for Chemical Communications # This journal is ${\mathbb C}$ The Royal Society of Chemistry 2005

Supplementary Information A Missing Group-14 Element Trimetallaallene. 2-Germadisilaallene T. Iwamoto, T. Abe, C. Kabuto and M. Kira

3. Plots of ln([4X]/[4A]) vs 1/T

Figure S4. van't Hoff plot (ln K_{AX} vs 1/T) for the equilibrium between isomer **4A** and **4X** (X = B, C or D) in the crystals of 2-germadisilaallene **4**; $K_{AX} = [4X]/[4A]$. K_{AX} values is the ratio of the site occupancy factor (sof) of Ge1X (X=B, C, or D) to that of Ge1A. The data of ln K_{AB} are represented by solid circles, K_{AC} by solid triangles, and K_{AD} by solid squares. The linear lines are obtained by the least squares fitting (the correlation coefficients *R* are 0.999 (K_{AB}), 0.997 (K_{AC}), and 0.999 (K_{AD}), respectively).

Isomer	$\Delta H_{\rm AX}$ (kcal mol ⁻¹)	$\Delta S_{\rm AX}$ (cal mol ⁻¹ K ⁻¹)
4A	0.00	0.00
4B	0.52	0.25
4 C	0.95	1.65
4D	1.55	1.89

Table S2. Relative Enthalpy (ΔH_{AX}) and Entropy (ΔS_{AX}) among Isomers **4A-4D**

4. Experimental details of the reaction of dialkylsilylene 2 with GeCl₄

A mixture of THF (15 ml) and germanium tetrachloride (1.80 g, 8.40 mmol) was added through vacuum line to dialkylsilylene **5** (0.90 g, 2.41 mmol) in a Schlenk flask. The resulting solution was stirred for 3 hours at -30 °C. After removal of the volatiles, recrystallization from hexane gave 1-chloro-2,2,5,5-tetrakis(trimethylsilyl)-1-trichlorogermyl-1-silacyclopentane (**7**, 1.03g, 1.76 mmol, 73% yield).

7: colourless crystals; mp 78–80 °C (dec); $\delta_{\rm H}$ (C₆D₆, 400 MHz) 0.24 (s, 18 H, SiMe₃), 0.29 (s, 18 H, SiMe₃), 1.80-1.90 (m, 4 H, CH₂), $\delta_{\rm C}$ (C₆D₆, 100 MHz) 3.6 (Si(<u>CH₃</u>)₃), 4.0 (Si(<u>CH₃</u>)₃), 14.0 (<u>C</u>(SiMe₃)₂), 32.7 (<u>CH₂</u>), $\delta_{\rm Si}$ (C₆D₆, 79 MHz) 3.9 (<u>Si</u>Me₃), 7.5 (<u>Si</u>Me₃), 45.9 (<u>Si</u>), *m*/*z* 572 (M⁺-15, 7%), 407 (70), 73 (100). Found: C, 32.68; H, 6.80. Calc. for C₁₆H₄₀Cl₄GeSi₁₀: C, 32.72; H, 6.86%.

5. Details of a theoretical study of tetramethyl-2-germadisilaallene 8

All DFT calculations were carried out using a Gaussian 98 program. Geometry optimization was carried out at the B3LYP level using 6-31+G(d,p) basis set. During optimization of **8B**, the coordinates of allenic silicon and germanium atoms and carbon atoms bound to the allenic silicon atoms were fixed to the value observed by X-ray analysis of compound **4**. Relative energies are shown in Table S3. Molecular structures and atomic coordinates of optimized structures of **8L**, **8B**, **8Z'**, **8Z**, and **8C** are shown in Figures S5-S9 and Tables S4-S8, respectively. No imaginary frequencies were found at the optimized structures of **8Z**, **8Z'**, and **8C**, while **8B** and **8L** have one and two imaginary frequencies at the optimized structure, respectively. The corresponding important structural parameters are given in Table S3.

		_			
Compound	E(+ZPE)/a.u. ^a	$\Delta E/(\text{kcal/mol})$	Si-Ge distance/Å	angle Si–Ge–Si/°	$\delta_{\mathrm{Si}}{}^{\mathrm{b}}$
8 L (D _{2d})	-2813.497619	+16.6	2.151	180.00	+98.4
8B (C_1)	-2813.502148	+13.8	2.228, 2.230	134.08	+231.4, +231.0
8Z' (C _s)	-2813.522378	+1.1	2.312	70.48	+184.5
8Z (C_2)	-2813.523212	+0.6	2.290	93.22	+378.5
8C (<i>C</i> ₂)	-2813.524120	+0.0	2.496	54.18	-50.0

 Table S3.
 Relative Energies among Isomers of Tetramethyl-2-germadisilaallene (8) Calculated at the B3LYP/6-31+G(d,p) Level

a) including zero-point energy. b) GIAO/B3LYP/6-311+G(2df,p)//B3LYP/6-31+G(d,p) level.

Figure S5. Molecular structure of 8L (D_{2d} symmetry).

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	14	0	0.00000	0.00000	-2.151253	
2	14	0	0.00000	0.00000	2.151253	
3	6	0	0.00000	1.583382	-3.181675	
4	6	0	-1.583382	0.00000	3.181675	
5	6	0	0.00000	-1.583382	-3.181675	
6	6	0	1.583382	0.00000	3.181675	
7	32	0	0.00000	0.00000	0.00000	
8	1	0	0.00000	2.463110	-2.533310	
9	1	0	-0.886575	1.625370	-3.824708	
10	1	0	0.886575	1.625370	-3.824708	
11	1	0	-2.463110	0.00000	2.533310	
12	1	0	-1.625370	-0.886575	3.824708	
13	1	0	-1.625370	0.886575	3.824708	
14	1	0	0.00000	-2.463110	-2.533310	
15	1	0	0.886575	-1.625370	-3.824708	
16	1	0	-0.886575	-1.625370	-3.824708	
17	1	0	2.463110	0.00000	2.533310	
18	1	0	1.625370	0.886575	3.824708	
19	1	0	1.625370	-0.886575	3.824708	

Table S4.	Atomic Coo	rdinates of	8L ($(D_{2d} s)$	ymmetry)
-----------	------------	-------------	------	--------------	----------

Figure S6. Molecular structure of 8B (C1 symmetry).

Center Number	Atomic Number	Atomic Type	C X	oordinates Y	(Angstroms) Z	
1	14	0	-2.051954	0.288991	-0.050671	
2	14	0	2.051792	0.291614	0.050764	
3	6	0	-3.346596	-0.756055	-0.957757	
4	6	0	3.187371	1.341943	-1.050812	
5	6	0	-3.186232	1.334216	1.060507	
6	6	0	3.340972	-0.766543	0.958795	
7	32	0	0.001541	-0.579230	-0.003188	
8	1	0	-2.908430	-1.508739	-1.619185	
9	1	0	-3.957544	-0.081671	-1.571543	
10	1	0	-4.023743	-1.261011	-0.257796	
11	1	0	2.674682	2.088151	-1.663116	
12	1	0	3.894969	1.856523	-0.389987	
13	1	0	3.764102	0.682755	-1.709866	
14	1	0	-2.672679	2.076120	1.677281	
15	1	0	-3.762508	0.670722	1.715603	
16	1	0	-3.894041	1.853375	0.403539	
17	1	0	2.894434	-1.521490	1.611908	
18	1	0	4.019158	-1.269796	0.258659	
19	1	0	3.951478	-0.099421	1.580835	

Figure S7. Molecular structure of 8Z' (C_s symmetry).

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	14	0	-0.080430	-0.304643	1.335024	
2	14	0	-0.080430	-0.304643	-1.335024	
3	6	0	1.322253	-0.425552	2.613630	
4	6	0	-1.216332	-1.800913	-1.662152	
5	6	0	-1.216332	-1.800913	1.662152	
6	6	0	1.322253	-0.425552	-2.613630	
7	32	0	0.00000	1.581221	0.00000	
8	1	0	2.016789	0.413548	2.518196	
9	1	0	1.888516	-1.355444	2.478635	
10	1	0	0.919756	-0.430911	3.634887	
11	1	0	-0.730044	-2.755729	-1.431068	
12	1	0	-2.161981	-1.748341	-1.120693	
13	1	0	-1.442545	-1.798872	-2.735949	
14	1	0	-2.161981	-1.748341	1.120693	
15	1	0	-1.442545	-1.798872	2.735949	
16	1	0	-0.730044	-2.755729	1.431068	
17	1	0	1.888516	-1.355444	-2.478635	
18	- 1	0	0.919756	-0.430911	-3.634887	
19	1	0 0	2 016789	0 413548	-2 518196	
±-/	± 		2.010709			

Table S6.	Atomic	Coordinates	of 8Z'	$(C_{\rm s} {\rm symmetry})$)
-----------	--------	-------------	---------------	-------------------------------	---

Figure S8. Molecular structure of 8Z (C_2 symmetry).

Table S7.	Atomic	Coordinates	of 8Z ($(C_2 \text{ symmetry})$
-----------	--------	-------------	---------	--------------------------

Center Number	Atomic Number	Atomic Type	C X	oordinates Y	(Angstroms) Z	
1	14	0	0.00000	1.664022	-0.273524	
2	14	0	0.00000	-1.664022	-0.273524	
3	6	0	-0.231843	3.453223	0.314808	
4	6	0	-0.471327	-1.809727	-2.111636	
5	6	0	0.471327	1.809727	-2.111636	
6	6	0	0.231843	-3.453223	0.314808	
7	32	0	0.00000	0.000000	1.299598	
8	1	0	-0.516238	3.496680	1.369844	
9	1	0	-1.012787	3.950716	-0.275073	
10	1	0	0.689541	4.035173	0.181564	
11	1	0	-0.743216	-0.856055	-2.566960	
12	1	0	0.357134	-2.249290	-2.682410	
13	1	0	-1.325918	-2.491536	-2.210223	
14	1	0	0.743216	0.856055	-2.566960	
15	1	0	1.325918	2.491536	-2.210223	
16	1	0	-0.357134	2.249290	-2.682410	
17	1	0	0.516238	-3.496680	1.369844	
18	1	0	-0.689541	-4.035173	0.181564	
19	1	0	1.012787	-3.950716	-0.275073	

Figure S9. Molecular structure of **8**C (C_2 symmetry).

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
1	14	0	1.012884	0.516114	-0.578215	
2	14	0	-1.012884	-0.516114	-0.578215	
3	6	0	0.883221	2.418880	-0.668968	
4	6	0	-2.645873	0.125071	-1.298065	
5	6	0	2.645873	-0.125071	-1.298065	
6	6	0	-0.883221	-2.418880	-0.668968	
7	32	0	0.00000	0.00000	1.644127	
8	1	0	0.00000	2.802126	-0.145039	
9	1	0	0.816185	2.754643	-1.710372	
10	1	0	1.765704	2.883305	-0.214817	
11	1	0	-2.698176	1.216588	-1.241997	
12	1	0	-2.743147	-0.165214	-2.350761	
13	1	0	-3.498638	-0.285647	-0.745641	
14	1	0	2.698176	-1.216588	-1.241997	
15	1	0	3.498638	0.285647	-0.745641	
16	1	0	2.743147	0.165214	-2.350761	
17	1	0	0.00000	-2.802126	-0.145039	
18	1	0	-1.765704	-2.883305	-0.214817	
19	1	0	-0.816185	-2.754643	-1.710372	

Table S8. Atomic Coordinates of 8C (C_2 symmetry)