Stereospecific change in conformation upon complexation of an exoditopic tetraamide host with a bis(ammonium) guest: chiral recognition and strong CD signaling

Ryo Katoono, Hidetoshi Kawai, Kenshu Fujiwara and Takanori Suzuki*

1a : R₁ = R₂ = ^{*n*}Bu

1a

To a solution of $Pd(PPh_3)_4$ (28 mg, 0.024 mmol) and CuI (6.3 mg, 0.033 mmol) in Et₃N (30 mL), under an argon atmosphere, was added a solution of **5a** (59 mg, 0.12 mmol) and **6a** (100 mg, 0.11 mmol) in THF (10 mL) over 12 h at 40-45°C by using a syringe pump. After removal of precipitates by filtration and evaporation of the solvent, the remaining solid was suspended in 1N HCl aq and extracted with CH₂Cl₂. The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) and gel permeation chromatography (CHCl₃, detected by UV 254 nm) gave **1a** (23 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from AcOEt.

mp 295.0-297.0 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.318 (8H, d, J = 8.4 Hz), 7.142 (8H, s), 7.136 (8H, s), 6.855 (8H, d, J = 8.4 Hz), 3.887 (8H, t, J = 7.2 Hz), 1.544 (8H, qn, J = 7.2 Hz), 1.335 (8H, sx, J = 7.2 Hz), 0.896 (12H, t, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 169.47, 143.07, 137.41, 132.15, 131.17, 127.97, 127.43, 122.66, 121.08, 89.84, 89.82, 49.89, 29.69, 20.12, 13.78; IR (KBr) 3040, 2956, 2929, 2870, 2217, 1638, 1599, 1518, 1384, 1296, 837 cm⁻¹; FD-MS m/z 1100 (M⁺, BP), 550 (M²⁺), 367 (M³⁺), 275 (M⁴⁺); UV-Vis (CH₂Cl₂) λ_{max} 317 (log ε 4.99); FD-HRMS Calcd for C₇₆H₆₈N₄O₄ 1100.5241, Found 1100.5214

1b : R₁ = R₂ = ^{*n*}Bu

1b

To a solution of $Pd(PPh_3)_4$ (25 mg, 0.022 mmol) and CuI (6 mg, 0.032 mmol) in Et₃N (30 mL), under an argon atmosphere, was added a suspension of **5a** (50 mg, 0.10 mmol) and **6b** (98 mg, 0.10 mmol) in THF (8 mL) and DMF (2 mL) at 50-55°C. After removal of precipitates by filtration and evaporation of the solvent, the remaining solid was suspended in 1N HCl aq and extracted with CH₂Cl₂. The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) and gel permeation chromatography (CHCl₃, detected by UV 254 nm) gave **1b** (6 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from AcOEt.

mp >300 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.307 (8H, d, J = 8.4 Hz), 7.146 (8H, s), 6.984 (4H, s), 6.856 (8H, d, J = 8.4 Hz), 3.890 (8H, t, J = 7.5 Hz), 2.290 (12H, s), 1.536 (8H, qn, J = 7.5 Hz), 1.341 (8H, sx, J = 7.5 Hz), 0.903 (12H, t, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 169.39, 142.95, 137.36, 136.82, 132.21, 131.98, 128.07, 127.37, 1222.44, 121.51, 93.01, 89.21, 49.98, 29.71, 20.15, 20.03, 13.80; IR (KBr) 3040, 2955, 2929, 2871, 2206, 1648, 1599, 1511, 1384, 1294, 1217, 1121, 837 cm⁻¹; FD-MS m/z 1156 (M⁺, BP); UV-Vis (CH₂Cl₂) λ_{max} 317 (log ε 4.96); FD-HRMS Calcd for C₈₀H₇₆N₄O₄ 1156.5867, Found 1156.5886

(R,R,R,R)-1c

To a solution of Pd(PPh₃)₄ (47 mg, 0.041 mmol) and CuI (11 mg, 0.058 mmol) in Et₃N (40 mL), under an argon atmosphere, was added a solution of (R,R)-**5c** (108 mg, 0.19 mmol) and (R,R)-**6c** (184 mg, 0.19 mmol) in THF (10 mL) over 12 h at 40-45°C by using a syringe pump. After removal of precipitates by filtration and evaporation of the solvent, the remaining solid was suspended in 1N HCl aq and extracted with CH₂Cl₂. The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) and gel permeation chromatography (CHCl₃, detected by UV 254 nm) gave (R,R,R,R)-**1c** (70 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene/cyclohexane.

mp >300 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.373-7.268 (20H, m), 7.123 (8H, d, J = 8.7 Hz), 7.095 (8H, s), 7.045 (8H, s), 6.382 (8H, d, J = 8.7 Hz), 6.349 (4H, q, J = 7.2 Hz), 1.421 (12H, d, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 170.24, 140.90, 139.29, 137.70, 131.43, 131.12, 130.11, 128.44, 127.91, 127.71, 127.39, 122.63, 121.72, 90.08, 89.94, 53.13, 16.52; IR (KBr) 3086, 3063, 3035, 2975, 2933, 2216, 1645, 1598, 1517, 1330, 837, 699 cm⁻¹; FD-MS m/z 1293.6 (M⁺, BP); UV-Vis (CH₂Cl₂) λ_{max} 306 (log ε 4.98); [α]²⁰_D = -1250 (c 0.072, CHCl₃); CD (CH₂Cl₂) λ 333 (Δε -68.1), 311 (-48.8), 291 (-70.4), 267 (-6.85), 249 (-67.4) nm; FD-HRMS Calcd for C₉₂H₆₈N₄O₄ 1292.5241, Found 1292.5215

$$(S,S,S,S)$$
-1c : R₁ = R₂ = (S) -CH(CH₃)Ph

(*S*,*S*,*S*,*S*)-1c

To a solution of Pd(PPh₃)₄ (42 mg, 0.036 mmol) and CuI (14 mg, 0.074 mmol) in Et₃N (40 mL), under an argon atmosphere, was added a solution of (*S*,*S*)-**5c** (111 mg, 0.19 mmol) and (*S*,*S*)-**6c** (188 mg, 0.19 mmol) in THF (10 mL) over 12 h at 40-45°C by using a syringe pump. After removal of precipitates by filtration and evaporation of the solvent, the remaining solid was suspended in 1N HCl aq and extracted with CH_2Cl_2 . The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) and gel permeation chromatography (CHCl₃, detected by UV 254 nm) gave (*S*,*S*,*S*,*S*)-**1c** (33 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene/cyclohexane.

mp >300 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.373-7.268 (20H, m), 7.123 (8H, d, J = 8.7 Hz), 7.095 (8H, s), 7.045 (8H, s), 6.382 (8H, d, J = 8.7 Hz), 6.350 (4H, q, J = 7.2 Hz), 1.421 (12H, d, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 170.22, 140.91, 139.32, 137.72, 131.44, 131.12, 130.12, 128.44, 127.92, 127.69, 127.40, 122.64, 121.73, 90.08, 89.95, 53.15, 16.53; IR (KBr) 3062, 2978, 2939, 2217, 1645, 1517, 1387, 1332, 840, 698, 581 cm⁻¹; FD-MS m/z 1293.5 (M⁺, BP); UV-Vis (CH₂Cl₂) λ_{max} 306 (log ε 4.98); [α]²⁰_D = -1240 (c 0.085, CHCl₃); CD (CH₂Cl₂) λ 333 ($\Delta\varepsilon$ +68.3), 313 (+49.0), 290 (+71.0), 267 (+7.97), 251 (+67.0) nm; FD-HRMS Calcd for C₉₂H₆₈N₄O₄ 1292.5241, Found 1292.5271

$$(R,R)$$
-1d : R₁ = (R) -CH(CH₃)Ph, R₂ = ⁿBu

(*R*,*R*)-1d

To a solution of $Pd(PPh_3)_4$ (15 mg, 0.013 mmol) and CuI (3 mg, 0.016 mmol) in Et₃N (15 mL), under an argon atmosphere, was added a solution of (*R*,*R*)-**5c** (37 mg, 0.065 mmol) and **6a** (58 mg, 0.066 mmol) in THF (10 mL) over 12 h at 40-45°C by using a syringe pump. After removal of precipitates by filtration and evaporation of the solvent, the remaining solid was suspended in 1N HCl aq and extracted with CH₂Cl₂. The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) and gel permeation chromatography (CHCl₃, detected by UV 254 nm) gave (*R*,*R*)-**1d** (7 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene/hexane.

mp >300 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.320-7.287 (14H, m), 7.136 (4H, s), 7.130 (4H, d, J = 8.7 Hz), 7.115 (8H, s), 7.043 (4H, s), 6.854 (4H, d, J = 8.4 Hz), 6.401 (4H, d, J = 8.7 Hz), 6.346 (2H, q, J = 6.9 Hz), 3.959-3.807 (4H, m), 1.542 (4H, qn, J = 7.2 Hz), 1.453 (6H, d, J = 6.9 Hz), 1.306 (4H, sx, J = 7.2 Hz), 0.893 (6H, t, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 170.16, 169.47, 143.10, 140.81, 139.27, 137.65, 137.46, 132.16, 131.42, 131.16, 131.15, 130.18, 128.39, 127.99, 127.92, 127.67, 127.41, 122.71, 122.60, 121.80, 121.03, 90.19, 89.96, 89.85, 89.70, 53.23, 49.92, 29.70, 20.12, 16.74, 13.79; IR (KBr) 2926, 2934, 2874, 2213, 1653, 1517, 1386, 841 cm⁻¹; FD-MS m/z 1196 (M⁺, BP); UV-Vis (CH₂Cl₂) λ_{max} 313 (log ε 4.95); [α]¹³_D = -601.5 (c 0.060, CHCl₃); CD (CH₂Cl₂) λ 337 ($\Delta\varepsilon$ -30.1), 318 (-16.1), 299 (-28.9), 269 (-0.716), 250 (-26.2) nm; FD-HRMS Calcd for C₈₄H₆₈N₄O₄ 1196.5241, Found 1196.5247

$$\bigcirc H_{2} \bigcirc H_{2} \bigcirc H_{2} \bigcirc H_{2} \bigcirc E(BF_{4}^{-}) E(BAr_{4}^{-}) \qquad (S,S)-2 (BF_{4}^{-})(BAr_{4}^{-}) [Ar = 3,5-(CF_{3})_{2}C_{6}H_{3}]$$

(S,S)-2 $(BF_4)(BAr_4) [Ar = 3,5-(CF_3)_2C_6H_3]$

A mixture of (S,S)-**2** (BF₄⁻)₂ (108 mg, 0.21 mmol) and NaBAr₄ (184 mg, 0.21 mmol) was dissolved in MeOH (5 mL). After evaporation of the solvent in vacuo, the remaining solid was suspended in CH₂Cl₂ (15 mL). Removal of NaBF₄ by filtration and concentration of the filtrate gave a colorless solid of (S,S)-**2** (BF₄⁻)(BAr₄⁻). mp could not be measured due to its hygroscopicity; ¹H NMR (300 MHz, CD₂Cl₂) δ /ppm 7.715 (8H, s), 7.552-7.425 (14H, m), 7.334 (4H, s), 4.440 (2H, q, *J* = 6.9 Hz), 4.077 (2H, d, *J* = 12.9 Hz), 3.956 (2H, d, *J* = 12.9 Hz), 1.779 (6H, d, *J* = 6.9 Hz); IR (KBr) 3197, 2990, 2832, 1611, 1459, 1356, 1279, 1124, 887, 838, 682 cm⁻¹; FD-MS m/z 1209

 $[M-(BF_{4}^{-})]^{+}(74), 433 [M-(BAr_{4}^{-})]^{+}(50), 345 [M-(BF_{4}^{-})-(BAr_{4}^{-})]^{+}(BP); UV-Vis (CH_{2}Cl_{2}) \lambda_{max} 274 (log <math>\varepsilon 3.59$), 269 (log $\varepsilon 3.70$), 261 (log $\varepsilon 3.65$); $[\alpha]^{17}{}_{D} = +12.9$ (c 0.147, CHCl_{3}); CD (CH_{2}Cl_{2}) \lambda 268 ($\Delta\varepsilon +0.61$), 261 (+0.68), 255 (+0.51) nm; Anal. Calcd for C₅₆H₄₂N₂B₂F₂₈ H₂O : C, 51.17, H, 3.37, N, 2.13. Found : C, 51.09, H, 3.64, N, 2.54.

$$\bigcirc H_2 \\ N_2 \\ \bullet \\ H_2 \\ H_2 \\ O \\ H_2 \\ H_2 \\ O \\ H_2 \\ H$$

achiral guest (Ph-CH₂-NH₂⁺-CH₂-p-C₆H₄-CH₂-NH₂⁺-CH₂-Ph) (BAr₄⁻)₂ [Ar = 3,5-(CF₃)₂C₆H₃]

A mixture of achiral guest $(BF_4^{-})_2$ (61.8 mg, 0.126mmol) and NaBAr₄ (222 mg, 0.251 mmol) was dissolved in MeOH (20 mL). After evaporation of the solvent in vacuo, the remaining solid was suspended in CH₂Cl₂ (50 mL). Removal of NaBF₄ by filtration and concentration of the filtrate gave a colorless solid of achiral guest $(BAr_4^{-})_2$. mp 111.0-113.0 °C; ¹H NMR (300 MHz, CD₂Cl₂) δ /ppm 7.715 (16H, br. s), 7.707-70362 (22H, m), 4.378 (8H, br. s); IR (KBr) 1703, 1610, 1356, 1281, 1141, 886, 838, 713, 681, 671 cm⁻¹; FD-MS m/z 1181 [M-(BAr_4^{-})]⁺ (BP), 317 [M-(BAr_4^{-})_2]⁺ (15), 227 (22); UV-Vis (CH₂Cl₂) λ_{max} 270.5 (log ϵ 3.93), 278 (log ϵ 3.92); Anal. Calcd for C₈₆H₅₀N₂B₂F₄₈ (H₂O)₂ : C, 49.64, H, 2.62, N, 1.35. Found : C, 49.93, H, 2.87, N, 1.40.

$$\begin{array}{c} \textcircled{\begin{tabular}{c} H_2 \\ N \\ \textcircled{\begin{tabular}{c} M \\ \textcircled{\begin{tabular}{c} M \\ H_2 \end{array}}} \begin{array}{c} \textcircled{\begin{tabular}{c} \mathbb{E}(\mathsf{BF}_4^-)_2 \end{array} \end{array} (S,S) - 2 (\mathsf{BF}_4^-)_2 \end{array}$$

(S,S)-2 $(BF_4)_2$

To a solution of (1-phenylethyl)-{4-[(1-phenylethylamino)methyl]benzyl}amine (0.921 g, 2.67 mmol) in MeOH (15 mL) was added 42% HBF₄ aq (0.81 mL, 5.35 mmol). After evaporation of solvent, the remaining solid was purified by recrystallization from CH₃CN/benzene to give (*S*,*S*)-**2** (BF₄⁻)₂ (0.96 g) as colorless crystals in 69% yield. mp 243.5-244.0 °C; ¹H NMR (300 MHz, CD₃CN) δ /ppm 7.478 (10H, s), 7.405 (4H, s), 4.456 (2H, q, *J* = 6.9 Hz), 4.135 (2H, d, *J* = 13.2 Hz), 3.935 (2H, d, *J* = 13.2 Hz), 1.681 (6H, d, *J* = 6.9 Hz); ¹³C NMR (75 MHz, CD₃CN) δ /ppm 136.35, 132.92, 131.48, 130.74, 130.28, 128.80, 60.64, 50.35, 19.37; IR (KBr) 3183, 3128, 2955, 1609, 1453, 1429, 1388, 1058, 766, 700, 553, 521 cm⁻¹; FAB-MS m/z 433 [M-(BF₄⁻)]⁺ (4.4), 345 [M-(BF₄⁻)₂]⁺ (23), 224 (16), 105 (BP); [α]²⁴_D = +2.51 (c 0.271, CH₃CN); Anal. Calcd for C₂₄H₃₀N₂B₂F₈ : C, 55.42, H, 5.81, N, 5.39. Found : C, 55.64, H, 5.95, N, 5.44.

$$\bigcirc H_2 \bigcirc H_2 \bigcirc H_2 \bigcirc H_2 \bigcirc H_2 \bigcirc (R,R)-2 (BF_4)_2$$
 (R,R)-2 (BF₄)₂

(R,R)-2 $(BF_4)_2$

To a solution of (1-phenylethyl) {4-[(1-phenylethylamino)methyl]benzyl} amine (1.051 g, 3.05 mmol) in MeOH (17 mL) was added 42% HBF₄ aq (0.93 mL, 6.11 mmol). After evaporation of solvent, the remaining solid was purified by recrystallization from CH₃CN/benzene to give (*R*,*R*)-**2** (BF₄⁻)₂ (1.24 g) as colorless crystals in 78% yield. mp 246.0-246.5 °C; ¹H NMR (300 MHz, CD₃CN) δ /ppm 7.489 (10H, s), 7.410 (4H, s), 4.465 (2H, q, *J* = 6.9 Hz), 4.142 (2H, d, *J* = 13.2 Hz), 3.939 (2H, d, *J* = 13.2 Hz), 1.685 (6H, d, *J* = 6.9 Hz); ¹³C NMR (75 MHz, CD₃CN) δ /ppm 136.26, 132.84, 131.51, 130.76, 130.29, 128.81, 60.67, 50.34, 19.32; IR (KBr) 3182, 3127, 2929, 2778, 2420, 1607, 1455, 1428, 1388, 1059, 766, 700, 553, 522 cm⁻¹; FAB-MS m/z 433 [M-(BF₄⁻)]⁺ (2.7), 345 [M-(BF₄⁻)₂]⁺ (12), 224 (9.3), 105 (BP); [α]²⁴_D = -2.62 (c 0.663, CH₃CN); Anal. Calcd for C₂₄H₃₀N₂B₂F₈ : C, 55.42, H, 5.81, N, 5.39. Found : C, 55.49, H, 5.84, N, 5.41.

$$\bigcirc H_2 \bigcirc H$$

achiral guest (Ph-CH₂-NH₂⁺-CH₂-*p*-C₆H₄-CH₂-NH₂⁺-CH₂-Ph) (BF₄⁻)₂

To a solution of benzyl-{(4-benzylaminomethyl)benzyl}amine (0.884 g, 2.79 mmol) in MeOH (25 mL) was added 42% HBF₄ aq (0.85 mL, 5.61 mmol). After evaporation of solvent, the remaining solid was purified by recrystallization from CH₃CN/benzene to give achiral guest (BF₄⁻)₂ (1.06 g) as a colorless crystals in 77% yield. mp 257.0-293.0 °C (decomp.); ¹H NMR (300 MHz, CD₃CN) δ /ppm 7.542 (4H, s), 7.510-7.403 (10H, m), 7.151 (4H, s), 4.266 (8H, s); ¹³C NMR (75 MHz, CD₃CN) δ /ppm 132.83, 131.69, 131.14, 130.72, 129.99, 52.56, 51.75; IR (KBr) 3191, 3134, 2941, 2791, 2715, 2590, 1554, 1457, 1418, 10.5, 698 cm⁻¹; FAB-MS m/z 405.2 [M-(BF₄⁻)]⁺ (2.1), 317 [M-(BF₄⁻)-1]⁺ (25), 210 (43), 107 (2.2), 91 (BP); Anal. Calcd for C₂₂H₂₆N₂B₂F₈ : C, 53.70, H, 5.33, N, 5.69. Found : C, 53.65, H, 5.42, N, 5.67.

$$O^{\bullet}_{H_2} O^{\bullet}_{H_2} O^{\bullet}_{H_2} O^{\bullet}_{H_4} O^{\bullet$$

(S)-3 (BF₄⁻)

To a solution of (*S*)-benzyl-(1-phenylethyl)amine (1.082 g, 5.12 mmol) in MeOH (2 mL) was added 42% HBF₄ aq (0.78 mL, 5.15 mmol). After evaporation of solvent, the remaining solid was purified by recrystallization from benzene/hexane to give (*S*)-**3** (BF₄⁻) as a white solid in quantitative yield.

mp 97.0-98.0 °C; ¹H NMR (300 MHz, CD₂Cl₂) δ/ppm 7.527-7.295 (10H, m), 4.307-4.198 (1H, m), 4.073-3.870 (2H, m), 1.667 (3H, d, J = 6.9 Hz); ¹³C NMR (75 MHz, CD₂Cl₂) δ/ppm 135.10, 130.38, 130.28, 130.12, 129.79, 129.70, 127.82, 59.02, 50.26, 19.95; IR (KBr) 3190, 3117, 3040, 2931, 2824, 2797, 2761, 2653, 2420, 1588, 1496, 1460, 1446, 1066, 696, 521 cm⁻¹; FAB-MS m/z 212 [M-(BF₄⁻)]⁺ (79), 105 (BP), 91 (35), 77 (6.5); UV-Vis (CH₂Cl₂) λ_{max} 268 (log ε 2.49), 262 (log ε 2.69), 257 (log ε 2.68); [α]²²_D = -60.7 (c 1.45, CHCl₃); CD (CH₂Cl₂) λ 268 ($\Delta\varepsilon$ +0.18), 261 (+0.21), 255 (+0.13) nm; Anal. Calcd for C₁₅H₁₈NBF₄ : C, 60.23, H, 6.07, N, 4.68. Found : C, 60.11, H, 6.05, N, 4.71.

4a

To a solution of butyl-4-iodoaniline (5.956 g, 21.7 mmol) and Et_3N (3.0 mL, 21.6 mmol) in THF (150 mL), under an argon atmosphere, was added terephthaloyl chloride (2.198 g, 10.8 mmol). After evaporation of the solvent, the remaining solid was suspended in H₂O and filtration of the precipitates gave **4a** (6.892 g) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene.

mp 193.0-193.5 °C; ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.515 (4H, d, *J* = 8.4 Hz), 7.083 (4H, s), 6.672 (4H, d, *J* = 8.4 Hz), 3.821 (4H, t, *J* = 7.5 Hz), 1.536 (4H, qn, *J* = 7.5 Hz), 1.320 (4H, sx, *J* = 7.5 Hz), 0.890 (6H, t, *J* = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.28, 142.83, 138.31, 137.09, 129.53, 128.10, 91.58, 50.12, 29.71, 20.10, 13.77; IR (KBr) 2957, 2926, 2862, 1632, 1581, 1564, 1500, 1483, 1406, 1308, 1006, 608 cm⁻¹; FD-MS m/z 680 (M⁺, BP); Anal. Calcd for C₂₈H₃₀N₂O₂I₂ : C, 49.43, H, 4.44, N, 4.12, I, 37.31. Found : C, 49.60, H, 4.41, N, 4.03, I, 37.37.

(R,R)-4c : R = (R)-CH(CH₃)Ph

(*R*,*R*)-4c

To a solution of (*R*)-*N*-(1-phenylethyl)-4-iodoaniline (2.55 g, 7.89 mmol) and Et₃N (1.1 mL, 7.91 mmol) in THF (50 mL), under an argon atmosphere, was added terephthaloyl chloride (0.963 g, 4.74 mmol). After evaporation of the solvent, the remaining solid was suspended in H₂O and filtration of the precipitates gave (*R*,*R*)-4c (2.67 g) as a white solid.

mp 89.5-91.0 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.346 (4H, d, J = 7.8 Hz), 7.316-7.220 (10H, m), 7.003 (4H, s), 6.316 (2H, q, J = 7.2 Hz), 6.192 (4H, d, J = 7.8 Hz), 1.433 (6H, d, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 169.64, 140.63, 138.80, 137.52, 137.20, 132.01, 128.38, 127.90, 127.70, 127.65, 92.91, 53.12, 16.53; IR (KBr) 3087, 3060, 3030, 2974, 2933, 2875, 1645, 1484, 1324, 1007, 720, 577 cm⁻¹; FD-MS m/z 776 (M⁺, BP); $[\alpha]_{D}^{25}$ = -222.8 (c 0.840, CHCl₃); FD-HRMS Calcd for C₃₆H₃₀N₂O₂I₂ 776.0397, Found 776.0420

(S,S)-4c : R = (S)-CH(CH₃)Ph

(*S*,*S*)-4c

To a solution of (*S*)-*N*-(1-phenylethyl)-4-iodoaniline (5.255 g, 16.3 mmol) and Et₃N (2.26 mL, 16.2 mmol) in THF (80 mL), under an argon atmosphere, was added terephthaloyl chloride (1.65 g, 8.13 mmol). After evaporation of the solvent, the remaining solid was suspended in H₂O and filtration of the precipitates gave (*S*,*S*)-4c (4.99 g) as a white solid.

mp 89.5-91.0 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.380-7.180 (14H, m), 7.003 (4H, s), 6.384-6.250 (2H, br), 6.190 (4H, d, J = 7.8 Hz), 1.431 (6H, d, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 169.70, 140.70, 138.86, 137.58, 137.26, 132.07, 128.47, 127.97, 127.76, 127.71, 92.94, 53.16, 16.57; IR (KBr) 3087, 3060, 3030, 2975, 2935, 2875, 1645, 1484, 1324, 1007, 720, 577 cm⁻¹; FD-MS m/z 776 (M⁺, BP); [α]²⁵_D = +219.6 (c 0.840, CHCl₃); FD-HRMS Calcd for C₃₆H₃₀N₂O₂I₂ 776.0397, Found 776.0382

5a (TMS-protected) : R = ⁿBu

5a (TMS-protected)

To a suspension of **4a** (4.16 g, 6.12 mmol) and ethynyltrimethylsilane (8.6 mL, 60.9 mmol) in Et₃N (150 mL) and benzene (85 mL), under an argon atmosphere, was added Pd(PPh₃)₄ (710 mg, 0.615 mmol) and CuI (117 mg, 0.614 mmol), and the mixture was allowed to warm 55°C. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave TMS-protected **5a** (3.557 g) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from EtOH.

mp 195.5-196.0 °C; ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.278 (4H, d, *J* = 8.4 Hz), 7.043 (4H, s), 6.833 (4H, d, *J* = 8.4 Hz), 3.841 (4H, t, *J* = 7.5 Hz), 1.524 (4H, qn, *J* = 7.5 Hz), 1.318 (4H, sx, *J* = 7.5 Hz), 0.881 (6H, t, *J* = 7.5 Hz), 0.240 (18H, s); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.30, 143.09, 137.12, 132.76, 128.08, 127.43, 121.52, 103.95, 95.46, 49.95, 29.76, 20.11, 13.77, -0.12; IR (KBr) 2958, 2932, 2872, 2157, 1646, 1600, 1504, 864, 840 cm⁻¹; FD-MS m/z 620 (M⁺, BP); Anal. Calcd for C₃₈H₄₈N₂O₂Si₂ : C, 73.50, H, 7.79, N, 4.51. Found : C, 73.31, H, 7.77, N, 4.53.

(R,R)-5c (TMS-protected) : R = (R)-CH(CH₃)Ph

(R,R)-5c (TMS-protected)

To a suspension of (R,R)-4c (2.60 g, 3.35 mmol) and ethynyltrimethylsilane (4.7 mL, 33.3 mmol) in Et₃N (80 mL) and benzene (40 mL), under an argon atmosphere, was added Pd(PPh₃)₄ (390 mg, 0.338 mmol) and CuI (64 mg, 0.336 mmol), and the mixture was allowed to warm 50°C. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave TMS-protected (*R*,*R*)-5c (1.80 g) as a white solid.

mp 103.5-104.0 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.330-7.219 (10H, m), 7.108 (4H, d, J = 8.4 Hz), 6.960 (4H, s), 6.458-6.250 (6H, m), 1.430 (6H, d, J = 6.9 Hz), 0.230 (18H, s); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 169.65, 140.75, 139.14, 137.20, 131.97, 130.08, 128.32, 127.93, 127.62, 127.58, 122.07, 103.93, 95.68, 53.16, 16.56, -0.18; IR (KBr) 3064, 3034, 2958, 2899, 2157, 1653, 1599, 1504, 1323, 1250, 865, 843, 699 cm⁻¹; FD-MS m/z 716 (M⁺, BP); $[\alpha]^{25}_{D} = -317.1$ (c 0.920, CHCl₃); FD-HRMS Calcd for C₄₆H₄₈N₂O₂Si₂ 716.3254, Found 716.3243

(S,S)-5c (TMS-protected) : R = (S)-CH(CH₃)Ph

(S,S)-5c (TMS-protected)

To a suspension of (S,S)-4c (4.78 g, 6.16 mmol) and ethynyltrimethylsilane (8.70 mL, 61.6 mmol) in Et₃N (150 mL) and benzene (75 mL), under an argon atmosphere, was added Pd(PPh₃)₄ (711 mg, 0.616 mmol) and CuI (134 mg, 0.704 mmol), and the mixture was allowed to warm 42°C. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave TMS-protected (*S*,*S*)-5c (3.90 g) as a white solid.

mp 103.5-104.0 °C; ¹H NMR (300 MHz, CDCl₃) δ/ppm 7.330-7.216 (10H, m), 7.109 (4H, d, J = 8.4 Hz), 6.961 (4H, s), 6.480-6.240 (6H, br), 1.429 (6H, d, J = 7.2 Hz), 0.230 (18H, s); ¹³C NMR (75 MHz, CDCl₃) δ/ppm 169.70, 140.81, 139.19, 137.25, 132.03, 130.13, 128.37, 127.98, 127.67, 127.65, 122.12, 103.97, 95.74, 53.20, 16.60, -0.13; IR (KBr) 3064, 3034, 2959, 2899, 2158, 1653, 1600, 1504, 1322, 1250, 865, 843, 699 cm⁻¹; FD-MS m/z 716 (M⁺, BP); $[\alpha]^{25}_{D}$ = +318.9 (c 0.950, CHCl₃); FD-HRMS Calcd for C₄₆H₄₈N₂O₂Si₂ 716.3254, Found 716.3243

5a : R = ^{*n*}Bu

5a

To a solution of TMS-protected **5a** (2.74 g, 4.40 mmol) in THF (100 mL) was added a 1M solution of TBAF (2.20 mL, 2.20 mmol) in THF. The mixture was diluted by 1N HCl aq. (120 mL) and extracted with ether (200 mL). The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) gave **5a** (1.93 g) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene.

mp 180.0-180.5 °C; ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.305 (4H, d, *J* = 8.4 Hz), 7.070 (4H, s), 6.860 (4H, d, *J* = 8.4 Hz), 3.847 (4H, t, *J* = 7.5 Hz), 3.093 (2H, s), 1.557 (4H, qn, *J* = 7.5 Hz), 1.323 (4H, sx, *J* = 7.5 Hz), 0.888 (6H, t, *J* = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.29, 143.42, 137.13, 132.92, 128.11, 127.49, 120.49, 82.59, 78.25, 50.03, 29.76, 20.11, 13.79; IR (KBr) 3296, 2950, 2872, 2108, 1634, 1601, 1506, 1312, 1131, 848, 604 cm⁻¹; FD-MS m/z 476 (M⁺, BP); Anal. Calcd for C₃₂H₃₂N₂O₂ : C, 80.64, H, 6.77, N, 5.88. Found : C, 80.69, H, 6.72, N, 5.72.

(R,R)-**5c** : R = (R)-CH(CH₃)Ph

(*R*,*R*)-5c

To a solution of TMS-protected (R,R)-**5c** (1.74 g, 2.43 mmol) in THF (50 mL) was added a 1M solution of TBAF (1.20 mL, 1.20 mmol) in THF. The mixture was diluted by 1N HCl aq. (30 mL) and extracted with ether (50 mL). The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) gave (R,R)-**5c** (1.04 g) as a white solid.

mp 156.0-164.0 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.350-7.195 (10H, br), 7.128 (4H, d, J = 8.4 Hz), 6.987 (4H, s), 6.399 (4H, d, J = 8.4 Hz), 6.322 (2H, q, J = 6.6 Hz), 3.089 (2H,s), 1.440 (6H, d, J = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.64, 140.71, 139.50, 137.23, 132.13, 130.09, 128.33, 127.88, 127.63, 127.60, 121.09, 82.52, 78.55, 53.25, 16.61; IR (KBr) 3276, 3252, 3060, 2977, 2936, 1640, 1601, 1502, 1326, 837, 698 cm⁻¹; FD-MS m/z 572 (M⁺, BP); [α]²⁵_D = -318.7 (c 0.610, CHCl₃); FD-HRMS Calcd for C₄₀H₃₂N₂O₂ 572.2464, Found 572.2478

(S,S)-5c : R = (S)-CH(CH₃)Ph

(*S*,*S*)-5c

To a solution of TMS-protected (*S*,*S*)-**5c** (3.71 g, 5.17 mmol) in THF (110 mL) was added a 1M solution of TBAF (2.60 mL, 2.60 mmol) in THF. The mixture was diluted by 1N HCl aq. (200 mL) and extracted with ether (250 mL). The organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CHCl₃) gave (*S*,*S*)-**5c** (2.32 g) as a white solid.

mp 151.0-163.0 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.348-7.212 (10H, m), 7.128 (4H, d, J = 8.7 Hz), 6.987 (4H, s), 6.398 (4H, d, J = 8.7 Hz), 6.323 (2H, q, J = 6.9 Hz), 3.090 (2H,s), 1.440 (6H, d, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.72, 140.78, 139.57, 137.29, 132.20, 130.15, 128.40, 127.95, 127.70, 127.67, 121.15, 82.58, 78.55, 53.31, 16.66; IR (KBr) 3276, 3252, 3060, 2977, 2936, 1640, 1601, 1502, 1326, 837, 698 cm⁻¹; FD-MS m/z 572 (M⁺, BP); [α]²⁵_D = +323.5 (c 0.580, CHCl₃); FD-HRMS Calcd for C₄₀H₃₂N₂O₂ 572.2464, Found 572.2444

6a

To a solution of 1,4-diiodobenzene (1.99 g, 6.02 mmol) in Et_3N (50 mL), under an argon atmosphere, was added $Pd(PPh_3)_4$ (70 mg, 0.061 mmol) and CuI (13 mg, 0.068 mmol), and the mixture was allowed to warm 55°C. To the mixture was added a solution of **5a** (287 mg, 0.602 mmol) in THF (50 mL) over 21 h. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave **6a** (355 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene.

mp 227.5-228.0 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.655 (4H, d, *J* = 8.4 Hz), 7.336 (4H, d, *J* = 8.4 Hz), 7.199 (4H, d, *J* = 8.4 Hz), 7.078 (4H, s), 6.879 (4H, d, *J* = 8.4 Hz), 3.860 (4H, t, *J* = 7.5 Hz), 1.554 (4H, qn, *J* = 7.5 Hz), 1.331 (4H, sx, *J* = 7.5 Hz), 0.888 (6H, t, *J* = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.39, 143.12, 137.57, 137.21, 133.01, 132.36, 128.06, 127.65, 122.38, 121.29, 94.42, 89.77, 89.51, 49.94, 29.80, 20.13, 13.78; IR (KBr) 2954, 2857, 1633, 1601, 1510, 1316, 1005, 816 cm⁻¹; FD-MS m/z 880 (M⁺, BP); Anal. Calcd for C₄₄H₃₈N₂O₂I₂ : C, 60.01, H, 4.35, N, 3.18, I, 28.82. Found : C, 60.47, H, 4.53, N, 3.33, I, 28.42.

6b

To a solution of 2,5-diiodo-*p*-xylene (708 mg, 1.98 mmol) in Et_3N (60 mL), under an argon atmosphere, was added Pd(PPh₃)₄ (57 mg, 0.049 mmol) and CuI (10 mg, 0.053 mmol), and the mixture was allowed to warm 45-50°C. To the mixture was added a solution of **5b** (240 mg, 0.495 mmol) in THF (50 mL) over 21 h. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave **6b** (192 mg) as a white solid. An analytical sample was obtained as colorless crystals by recrystalization from benzene.

mp 230.0-231.0 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.669 (2H, s), 7.334 (4H, d, J = 8.4 Hz), 7.275 (2H,s), 7.100 (4H, s), 6.885 (4H, d, J = 8.4 Hz), 3.863 (4H, t, J = 7.5 Hz), 2.375 (6H, s), 2.334 (6H, s), 1.560 (4H, qn, J = 7.5 Hz), 1.333 (4H, sx, J = 7.5 Hz), 0.891 (6H, t, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.39, 142.95, 137.36, 136.82, 132.21, 131.98, 128.07, 127.37, 122.44, 121.51, 93.01, 89.21, 49.98, 29.71, 20.15, 20.03, 13.80; IR (KBr) 3046, 2950, 2869, 2212, 1633, 1602, 1510, 1396, 1315, 1113, 948, 847, 739, 611 cm⁻¹; FD-MS m/z 936 (M⁺, BP); Anal. Calcd for C₂₈H₃₀N₂O₂I₂ : C, 61.55, H, 4.95, N, 2.99, I, 27.10. Found : C, 62.28, H, 5.01, N, 3.02, I, 29.88.

(R,R)-6c : R = (R)-CH(CH₃)Ph

(*R*,*R*)-6c

To a solution of 1,4-diiodobenzene (1.70 g, 5.15 mmol) in Et_3N (45 mL), under an argon atmosphere, was added Pd(PPh₃)₄ (61 mg, 0.053 mmol) and CuI (11 mg, 0.058 mmol), and the mixture was allowed to warm 45-50°C. To the mixture was added a solution of (*R*,*R*)-**5c** (300 mg, 0.524 mmol) in THF (45 mL) over 10 h. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave (*R*,*R*)-**6c** (276 mg) as a white solid.

mp 249.0-250.0 °C; ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.643 (4H, d, *J* = 8.7 Hz), 7.334-7.230 (10H, m), 7.181 (4H, d, *J* = 8.7 Hz), 7.167 (4H, d, *J* = 8.4 Hz), 6.993 (4H, s), 6.414 (4H, d, *J* = 8.4 Hz), 6.323 (2H, q, *J* = 7.2 Hz), 1.449 (6H, d, *J* = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.79, 140.72, 139.21, 137.54, 137.33, 132.92, 131.57, 130.31, 128.36, 127.93, 127.67, 127.54, 122.23, 121.83, 94.49, 89.81, 89.78, 53.23, 16.66; IR (KBr) 3060, 3030, 2973, 2933, 1648, 1600, 1508, 1321, 1005, 698 cm⁻¹; FD-MS m/z 976 (M⁺, BP); [α]¹⁷_D = -358.0 (c 0.500, CHCl₃); FD-HRMS Calcd for C₅₂H₃₈N₂O₂I₂ 976.1023, Found 976.1025

(*S*,*S*)-6c

To a solution of 1,4-diiodobenzene (1.81 g, 5.48 mmol) in Et₃N (60 mL), under an argon atmosphere, was added Pd(PPh₃)₄ (72 mg, 0.062 mmol) and CuI (30 mg, 0.158 mmol), and the mixture was allowed to warm 45°C. To the mixture was added a solution of (*S*,*S*)-**5c** (347 mg, 0.607 mmol) in THF (60 mL) over 16 h. After removal of precipitates by filtration and evaporation of the solvent, chromatographic separation on silica gel (CHCl₃) gave (*S*,*S*)-**6c** (253 mg) as a white solid.

mp 249.0-250.5 °C; ¹H NMR (300 MHz, CDCl₃) δ /ppm 7.641 (4H, d, *J* = 8.4 Hz), 7.334-7.213 (10H, m), 7.180 (4H, d, *J* = 8.4 Hz), 7.167 (4H, d, *J* = 8.4 Hz), 6.993 (4H, s), 6.414 (4H, d, *J* = 8.4 Hz), 6.323 (2H, q, *J* = 7.2 Hz), 1.449 (6H, d, *J* = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ /ppm 169.77, 140.71, 139.20, 137.53, 137.32, 132.90, 131.56, 130.29, 128.35, 127.92, 127.65, 127.52, 122.22, 121.83, 94.48, 89.81, 89.78, 53.23, 16.65; IR (KBr) 3061, 3029, 2974, 2934, 1632, 1600, 1509, 1324, 1005, 697 cm⁻¹; FD-MS m/z 976 (M⁺, BP); [α]¹⁶_D = +360.5 (c 0.193, CHCl₃); FD-HRMS Calcd for C₅₂H₃₈N₂O₂I₂ 976.1023, Found 976.1049

Ć

(R)-N-(1-phenylethyl)-4-iodoaniline

(R)-N-(1-phenylethyl)-4-iodoaniline

To a suspension of 1,4-diiodobenzene (1.00 g, 3.03 mmol), CuI (58 mg, 0.305 mmol), L-proline (70 mg, 0.606 mmol) and K_2CO_3 (840 mg, 6.09 mmol) in DMSO (6 mL) was added (*R*)-alpha-methylbenzylamine (0.58 mL, 4.55 mmol). The mixture was allowed to warm 84°C. The mixture was diluted with H₂O (30 mL) and AcOEt (40 mL). After extraction with AcOEt (30 mL ×3), the combined organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CH₂Cl₂/hexane 1 : 4) to give (*R*)-*N*-(1-phenylethyl)-4-iodoaniline (520 mg) as a white solid.

mp 71.0-72.0 °C; ¹H NMR (300 MHz, CD₂Cl₂) δ /ppm 7.404-7.164 (7H, m), 6.303 (2H, d, J = 9.0 Hz), 4.427 (1H, q, J = 6.6 Hz), 4.226 (1H, s), 1.494 (3H, d, J = 6.6 Hz); ¹³C NMR (75 MHz, CD₂Cl₂) δ /ppm 147.29, 145.20, 137.88, 128.99, 127.32, 126.13, 115.86, 77.74, 53.59, 25.07; IR (KBr) 3412, 3058, 3029, 2978, 2964, 2918, 2863, 1591, 1494, 1315, 1295, 813, 763, 703, 509 cm⁻¹; EI-MS m/z 324 (17), 323 (M⁺, 100), 308 (40), 219 (34), 105 (89); [α]²⁶_D = +30.11 (c 1.10, CHCl₃); Anal. Calcd for C₁₄H₁₄NI : C, 52.03, H, 4.37, N, 4.33, I, 39.27. Found : C, 51.97, H, 4.29, N, 4.23, I, 39.42.

Ø

(S)-N-(1-phenylethyl)-4-iodoaniline

(S)-N-(1-phenylethyl)-4-iodoaniline

To a suspension of 1,4-diiodobenzene (10.0 g, 30.3 mmol), CuI (577 mg, 3.03 mmol), L-proline (699 mg, 6.08 mmol) and K_2CO_3 (8.36 g, 60.6 mmol) in DMSO (60 mL) was added (*S*)-alpha-methylbenzylamine (5.8 mL, 45.5 mmol). The mixture was allowed to warm 100°C. The mixture was diluted with H₂O (200 mL) and AcOEt (200 mL). After extraction with AcOEt (60 mL ×3), combined organic layer was washed with brine and dried over MgSO₄. Chromatographic separation on silica gel (CH₂Cl₂/hexane 1 : 4) to give (*S*)-*N*-(1-phenylethyl)-4-iodoaniline (5.807 g) as a white solid.

mp 71.5-72.5 °C; ¹H NMR (300 MHz, CD₂Cl₂) δ /ppm 7.328-7.213 (7H, m), 6.303 (2H, d, J = 9.0 Hz), 4.428 (1H, q, J = 6.6 Hz), 4.237 (1H, s), 1.493 (3H, d, J = 6.6 Hz); ¹³C NMR (75 MHz, CD₂Cl₂) δ /ppm 147.27, 145.19, 137.88, 128.98, 127.32, 126.12, 115.86, 77.74, 53.59, 25.06; IR (KBr) 3412, 3058, 3029, 2977, 2964, 2918, 2862, 1591, 1494, 1315, 1295, 813, 763, 703, 509 cm⁻¹; EI-MS m/z 324 (16), 323 (M⁺, 100), 308 (40), 219 (28), 105 (68); [α]²⁶_D = -29.9 (c 1.07, CHCl₃); Anal. Calcd for C₁₄H₁₄NI : C, 52.03, H, 4.37, N, 4.33, I, 39.27. Found : C, 52.13, H, 4.29, N, 4.27, I, 39.00.