Fabrication of TiO₂ using L-lysine-based organogelators as organic templates: a control of their nanostructures

Masahiro Suzuki,*^a Yasushi Nakajima,^a Teruaki Sato,^a Hirofusa Shirai^b and Kenji Hanabusa^a

^aGraduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan. Fax: +81-268-21-5608; E-mail: msuzuki@giptc.shinshu-u.ac.jp ^bDepartment of Functional Polymer Science, Shinshu University, Ueda, Nagano 386-8567, Japan.

Experimental *Materials*

Methyl 2,6–diisocyanatohexanoate (LDI) prepared by L–lysine was obtained from the Kyowa Hakko Kogyo Co., Ltd. N^{ϵ}-Lauroyl–L–lysine was obtained from the Ajinomoto Co., Inc. N^{α}, N^{ϵ}–Bis(hexylaminocarbonyl)–L–lysine methyl ester was prepared according to the literature.¹ N^{ϵ}–Lauroyl–L–lysine ethyl ester was synthesized by the method reported previously.² The other chemicals were of the highest commercially available grade and were used without further purification. All solvents used in the syntheses were purified, dried, or freshly distilled as required.

Synthesis

 $N^{\varepsilon}, N^{\alpha}$ -Bis(hexylaminocarbonyl)-L-lysine (1)

N^ε–Bis(hexylaminocarbonyl)–L–lysine methyl ester (10 mmol) was dissolved in MeOH–H₂O (400 ml–20 ml) and 4M NaOH (5 ml) was added. The reaction mixture was heated at 70°C for 24 h. The resulting solution was evaporated to ca. 100 ml, and water (600 ml) was added. The aqueous solution was adjusted to ca. pH = 1 by addition of 6M HCl with vigorous stirring. The white precipitate was filtered, washed with water, and then dried. The product was obtained by reacrystallization from MeOH-ethyl acetate (92%). IR (KBr): 3334 cm⁻¹ (vN–H), 1782 cm⁻¹, 1701 cm⁻¹ (vC=O, CO₂H), 1621 cm⁻¹ (vC=O, urea), 1582 cm⁻¹ (\deltaN–H); ¹H-NMR (400 MHz, CDCl₃, TMS): δ = 0.87 (t, J = 6.6Hz, 6H; CH3), 1.27 (br, 14H; alkyl), 1.38–1.51 (m, 6H; CH₂CH₂NHCON^εHCH₂CH₂, N^αHCONHCH₂CH₂), 1.71–1.81 (CH₂CH), 3.11 (br, 6H; CH₂NHCON^εHCH₂, N^αHCONHCH₂), 4.26 (br, 1H; CH), 5.41 (br, 1H; N^αHCONH), 5.64 (br, 1H; NHCON^εH), 5.89 (br, 1H; N^αH), 6.19 (br, 1H; N^εH). Elemental analysis calcd (%) for C₂₀H₄₀N₄O₄ (400.56): C, 59.97; H, 10.07; N, 13.99. Found: C, 60.14; H, 10.22; N, 14.03.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005 N^{α} -(6-Isocyanatehexylaminocarbonyl)- N^{ε} -lauroyl-L-lysine ethyl ester

To a dry toluene-CHCl₃ solution (500ml; toluene 100ml and CHCl₃ 400 ml) of 1,6-hexamethylenediisocyanate (600 mmol), a dry THF solution (200 ml) of N^ε-lauroyl-L-lysine ethyl ester (60 mmol) was slowly added with vigorous stirring. The resulting solution was evaporated to *ca*. 150 ml, and then the ethyl ether (700 ml) was added with stirring. The white precipitate was filtered, washed with ether, and then dried (92%). IR (KBr): 3354 cm⁻¹ (ν N–H, urea), 3296 cm⁻¹ (ν N–H, amide A), 2261 cm⁻¹ (–NCO), 1730 cm⁻¹ (ν C=O, ester), 1641 cm⁻¹ (ν C=O, amide I), 1625 cm⁻¹ (ν C=O, urea), 1562 cm⁻¹ (∂ N–H, urea), 1549 cm⁻¹ (∂ N–H, amide II). ¹H-NMR (400 MHz, CDCl₃, TMS): δ = 0.88 (t, J = 6.6 Hz, 3H, CH₃), 1.25–1.44 (m, 25H, alkyl), 1.45-1.55 (m, 4H, CH₂CH₂CON^εH, CH₂CH₂NCO), 1.58–1.65 (m, 4H, NHCONHCH₂CH₂, N^εHCH₂CH₂), 1.67–1.88 (m, 2H, CH₂CHN^αH), 2.16 (t, J = 6.8 Hz, 2H, CH₂CON^εH), 3.14-3.26 (m, 4H, NHCH₂, N^εHCH₂), 3.29 (t, J = 6.6 Hz, 2H, CH₂NCO), 4.18 (q, J = 7.1 Hz, 2H, OCH₂), 4.38–4.43 (m, 1H, CH), 4.91 (t, J = 5.6 Hz, 1H, NH), 5.34 (d, J = 7.6 Hz, 1H, N^εH), 5.82 (t, J = 5.6 Hz, 1H, N^αH). Elemental analysis calcd (%) for C₂₈H₅₂N₄O₅ (524.74): C, 64.09; H, 9.99; N, 10.68. Found: C, 64.17; H, 10.21; N, 10.69.

Sodium N^{α} -[6-(2-ureidoethylsulfonate) hexylaminocarbonyl]- N^{ε} -lauroyl-L-lysine ethyl ester(2)

To a dry CHCl₃ solution (200ml) of A (20 mmol), a dry DMSO solution (20 ml) of taurine sodium salt (21 mmol) was added, and then the reaction mixture was heated at 100°C for 10 min. The resulting solution was evaporated to dryness. The product was obtained by reacrystallization from MeOH–ether (93%). IR (KBr): 3355 cm⁻¹ (ν N–H, urea), 3294 cm⁻¹ (ν N–H, amide A), 1731 cm⁻¹ (ν C=O, ester), 1640 cm⁻¹ (ν C=O, amide I), 1621 cm⁻¹ (ν C=O, urea), 1565 cm⁻¹ (∂ N–H, urea), 1551 cm⁻¹ (∂ N–H, amide II). ¹H-NMR (400 MHz, DMSO–d₆, TMS): $\delta = 0.85$ (t, J = 6.6 Hz, 3H, CH₃), 1.17 (t, J = 7.1 Hz, 3H; CH₃ in ester), 1.23 (br, 22H, alkyl), 1.30–.39 (m, 6H; N[§]HCH₂CH₂, N^αHCONHCH₂CH₂, CH₂CH₂NH), 1.42–1.61 (m, 4H, CH₂CH₂CON[§]H, CH₂CH), 2.02 (t, J = 7.3 Hz, 2H, CH₂CON[§]H), 2.49–2.51 (m, 2H; CH₂SO₃Na), 2.82–3.01 (m, 6H, NHCH₂, N^αHCONHCH₂, N[§]HCH₂), 3.24 (q, J = 6.0 Hz, 2H, NHCH₂CH₂SO₃K), 4.04–4.10 (m, 3H, CH, OCH₂), 5.85 (t, J = 5.6 Hz, 1H, NH), 5.96 (t, J = 5.8 Hz, 1H; N^αHCONH), 6.11–6.14 (m, 2H, NHCH₂CH₂SO₃Na, N^αH), 5.82 (t, J = 5.6 Hz, 1H, N[§]H). Elemental analysis calcd (%) for C₃₀H₅₈N₅NaO₈S (671.86): C, 53.63; H, 8.70; N, 10.42. Found: C, 53.99; H, 8.94; N, 10.43.

Apparatus for measurements

The elemental analyses were performed using a Perkin-Elmer series II CHNS/O analyzer 2400. The FT-IR spectra were recorded on a JASCO FS-420 spectrometer. The FE-SEM

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005 observation was carried out using a Hitachi S-5000 field emission scanning electron microscope. The ¹H-NMR spectra were measured using a Bruker AVANCE 400 spectrometer.

Gelation test

A mixture of a weighed gelator in solvent (1ml) in a sealed test tube was heated until a clear solution appeared. After allowing the solutions to stand at 25°C for 6h, the state of the solution was evaluated by the "stable to inversion of a test tube" method.²

Field emission scanning electron micrograph (FE-SEM)

The samples were dried overnight in a vacuum before the observation. The dried gels were sputtered using a gold target.

FT-IR study

The FT-IR spectroscopy was performed using the spectroscopic cell with a CaF₂ window and 50 μ m spacers operating at a 2 cm⁻¹ resolution with 32 scans.

Organogelation test

Table S1 Organogelation properties of 1 and 2 at 25 °C		
Solvent	1	2
Methanol	Loose gel	Gel (50)
Ethanol	Gel (30)	Insoluble
1-Propanol	Gel (50)	Gel (10)
1-Butanol	Viscous solution	Gel (15)
Ethyl acetate	Loose gel	Insoluble
Acetone	Loose gel	Insoluble
Cyclohexanone	Loose gel	Gel (5)
THF	Partial gel	Insoluble
1,4-Dioxane	Loose gel	Insoluble
Benzene	Gel (50)	Insoluble
Toluene	Viscous solution	Insoluble
Chlorobenzene	Partial gel	Gel (12)
Nitrobenzene	Loose gel	Gel (5)
DMF	Solution	Solution
DMSO	Solution	Insoluble
Chloroform	Solution	Insoluble
Acetonitrile	Loose gel	Insoluble

Values denote minimum gel concentration (MGC, g/L). Partial gel consists of gel phase and solution phase.

FT-IR spectra

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Fig. S1 FT–IR spectra of ethanol gels of 1 (dashed line) and 1+C₃H₆NH₂ (solid line)

References

- 1 M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai and K. Hanabusa, *Langmuir*, 2003, **19**, 8622.
- 2 M. Suzuki, M. Yumoto, M. Kimura, H. Shirai and K. Hanabusa, *Chem. Commun.*, 2002, 884.
- 3 M. Suzuki, S. Owa, H. Shirai and K. Hanabusa, *Macromol. Rapid Commun.*, 2005, 26, 803.