# ELECTRONIC SUPPORTING INFORMATION

### **Dynamic Multivalent Recognition of Cyclodextrin Vesicles**

Choon Woo Lim, Bart Jan Ravoo\* and David N. Reinhoudt\*

Laboratory of Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. E-mail: b.j.ravoo@utwente.nl; d.n.reinhoudt@utwente.nl

#### S-1. Location of NBD-Chol 2 in CD vesicles.

 ${\rm Co}^{2^+}$  is a powerful quencher for NBD fluorescence. However, if NBD is buried in a bilayer membrane, quenching by the hydrophilic  ${\rm Co}^{2^+}$  ion is not efficient. Chattopadhyay and London (*Biochim. Biophys. Acta*, **1998**, *938*, 24-34; *Biochemistry*, **1987**, *26*, 39-45) have proposed a correlation of the localization of NBD dyes in a bilayer membrane with the  ${\rm Co}^{2^+}$  quenching efficiency. Compared with their results, our experiments ( ${\rm K}_{\rm sv} = 8.09 \pm 0.85 \ {\rm M}^{-1}$ ) show that the localization of NBD-Chol **2** in the CD vesicles is similar to the localization of NBD in 6-NBD-phosphatidyl choline and 12-NBD-phosphatidyl choline, indicating that NBD-Chol **2** resides deeply in the CD vesicle membrane.



Quenching (F/F<sub>0</sub>) of NBD-Chol **2** in vesicles of  $\beta$ -CD **1b** by the addition of Co<sup>2+</sup> ion. Experiments were carried out in 10mM Tris buffer, 150mM NaCl, pH = 7.2.

# S-2. Addition of LRB-Ad2 3 and LRB to vesicles of cyclodextrin 1b



Fluorescence emission spectra ( $\lambda_{ex} = 450$ nm) of vesicles of  $\beta$ -CD **1b** (10  $\mu$ M) containing 1 mol % NBD-Chol **2** (0.1  $\mu$ M) upon adding (a) divalent guest LRB-Ad<sub>2</sub> **3** (b) lissamine rhodamine B (LRB). [LRB] = 0 - 0.9  $\mu$ M for both experiments. All measurements were carried out in 5 mM phosphate buffer at pH = 7.5 and T = 25 °C.

### S-3. Calculation of Ceff in CD vesicles

The effective concentration of cyclodextrin ( $C_{eff}$ ) experienced by guest **3** on the surface of a mixed vesicle of CDs **1a** and **1b** was calculated from the following geometric considerations, in analogy with ref 7:

molecular surface area of 
$$\alpha$$
-CD **1a**:  $A_{\alpha$ -CD = 3.4 × 10<sup>-18</sup> m<sup>2</sup> (ref 3)

molecular surface area of β-CD **1b**: 
$$A_{\beta\text{-CD}} = 3.75 \times 10^{-18} \text{ m}^2$$
 (ref 3)

fraction of  $\alpha$ -CD 1a in mixed vesicles:  $f_{\alpha$ -CD

fraction of  $\beta$ -CD **1b** in mixed vesicles:  $f_{\beta$ -CD

fraction of surface area covered by  $\beta$ –CD **1b**:

$$\sigma_{\beta-CD} = (f_{\beta-CD} \times A_{\beta-CD}) / (f_{\beta-CD} \times A_{\beta-CD} + f_{\alpha-CD} \times A_{\alpha-CD})$$

surface coverage of host sites:

$$\Gamma_{s,max}$$
 (100%) = 1/ ( $N_{Av} \times A_{\beta-CD} \times 10000$ ) (mol cm<sup>-2</sup>)

$$\Gamma_{\rm s} = \sigma_{\beta-{\rm CD}} \times \Gamma_{\rm s,max} (100\%)$$

distance between adamantyls in 3:  $L = 3.49 \times 10^{-9}$  m from CPK model

effective concentration of CD:

$$C_{\rm eff,max} = \frac{\pi L^2 N_{\rm Av} \Gamma_{\rm s} - 1}{\binom{2}{3} \pi N_{\rm Av} L^3}$$
 (ref 7)