# ELECTRONIC SUPPORTING INFORMATION 

# Dynamic Multivalent Recognition of Cyclodextrin Vesicles 

Choon Woo Lim, Bart Jan Ravoo* and David N. Reinhoudt*<br>Laboratory of Supramolecular Chemistry and Technology, MESA + Institute for<br>Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The<br>Netherlands.E-mail: b.j.ravoo@utwente.nl; d.n.reinhoudt@utwente.nl

## S-1. Location of NBD-Chol 2 in CD vesicles.

$\mathrm{Co}^{2+}$ is a powerful quencher for NBD fluorescence. However, if NBD is buried in a bilayer membrane, quenching by the hydrophilic $\mathrm{Co}^{2+}$ ion is not efficient. Chattopadhyay and London (Biochim. Biophys. Acta, 1998, 938, 24-34; Biochemistry, 1987, 26, 39-45) have proposed a correlation of the localization of NBD dyes in a bilayer membrane with the $\mathrm{Co}^{2+}$ quenching efficiency. Compared with their results, our experiments $\left(\mathrm{K}_{\mathrm{sv}}=8.09 \pm 0.85 \mathrm{M}^{-1}\right)$ show that the localization of NBD-Chol $\mathbf{2}$ in the CD vesicles is similar to the localization of NBD in 6-NBD-phosphatidyl choline and 12-NBD-phosphatidyl choline, indicating that NBD-Chol 2 resides deeply in the CD vesicle membrane.


Quenching ( $\mathrm{F} / \mathrm{F}_{0}$ ) of NBD-Chol $\mathbf{2}$ in vesicles of $\beta$-CD $\mathbf{1 b}$ by the addition of $\mathrm{Co}^{2+}$ ion. Experiments were carried out in 10 mM Tris buffer, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}=7.2$.

## S-2. Addition of LRB-Ad2 3 and LRB to vesicles of cyclodextrin 1b



Fluorescence emission spectra ( $\lambda_{\mathrm{ex}}=450 \mathrm{~nm}$ ) of vesicles of $\beta$-CD $\mathbf{1 b}(10 \mu \mathrm{M})$ containing $1 \mathrm{~mol} \%$ NBD-Chol $2(0.1 \mu \mathrm{M})$ upon adding (a) divalent guest LRB-Ad 3 (b) lissamine rhodamine $\mathrm{B}(\mathrm{LRB})$. $[\mathrm{LRB}]=0-0.9 \mu \mathrm{M}$ for both experiments. All measurements were carried out in 5 mM phosphate buffer at $\mathrm{pH}=7.5$ and $\mathrm{T}=25^{\circ} \mathrm{C}$.

## S-3. Calculation of $\mathrm{C}_{\text {eff }}$ in CD vesicles

The effective concentration of cyclodextrin ( $\mathrm{C}_{\text {eff }}$ ) experienced by guest $\mathbf{3}$ on the surface of a mixed vesicle of CDs $\mathbf{1 a}$ and $\mathbf{1 b}$ was calculated from the following geometric considerations, in analogy with ref 7 :
molecular surface area of $\alpha-\mathrm{CD} \mathrm{1a:} \quad \mathrm{~A}_{\alpha-\mathrm{CD}}=3.4 \times 10^{-18} \mathrm{~m}^{2} \quad($ ref 3)
molecular surface area of $\beta-C D 1 b: \quad A_{\beta-C D}=3.75 \times 10^{-18} \mathrm{~m}^{2} \quad($ ref 3$)$
fraction of $\alpha$-CD 1a in mixed vesicles: $\quad \mathrm{f}_{\alpha-\mathrm{CD}}$
fraction of $\beta$-CD 1b in mixed vesicles: $\quad f_{\beta-C D}$
fraction of surface area covered by $\beta-\mathbf{C D} \mathbf{1 b}$ :

$$
\sigma_{\beta-C D}=\left(f_{\beta-C D} \times A_{\beta-C D}\right) /\left(f_{\beta-C D} \times A_{\beta-C D}+f_{\alpha-C D} \times A_{\alpha-C D}\right)
$$

surface coverage of host sites:

$$
\begin{aligned}
& \Gamma_{\mathrm{s}, \max }(100 \%)=1 /\left(N_{A v} \times \mathrm{A}_{\beta-\mathrm{CD}} \times 10000\right)\left(\mathrm{mol} \mathrm{~cm}^{-2}\right) \\
& \Gamma_{\mathrm{s}}=\sigma_{\beta-\mathrm{CD}} \times \Gamma_{\mathrm{s}, \max }(100 \%)
\end{aligned}
$$

distance between adamantyls in $\mathbf{3}$ :

$$
\mathrm{L}=3.49 \times 10^{-9} \mathrm{~m} \text { from } \mathrm{CPK} \text { model }
$$

effective concentration of CD:

$$
\begin{equation*}
C_{\mathrm{eff}, \max }=\frac{\pi L^{2} N_{\mathrm{Av}} \Gamma_{\mathrm{s}}-1}{(2 / 3) \pi N_{\mathrm{Av}} L^{3}} \tag{ref7}
\end{equation*}
$$

