A Highly Selective Charge Transfer Fluoroionophore for Cu²⁺

Zhen-Chang Wen, Rui Yang, Hui He and Yun-Bao Jiang*

Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China and College of Chemistry and Chemical Engineering, Southwest University, Chongqing 410075, China ybjiang@xmu.edu.cn Tel/Fax: +86 592 2185662

Electronic Supporting Information

Ta	ble of Content1
1.	Experimental procedures
2.	Synthesis of 1 and 2
3.	Table S1: Absorption spectral parameters of 1 and its metal complexes in ACN4
4.	Absorption spectra of 1 in ACN in the presence of individual metal ion (Figure S1)4
5.	Solvent effect on the fluorescence emission of 1 (Figure S2)6
6.	Fluorescence titration of 1 with Cu^{2+} and other transition metal ions in pure ACN (Figure S3)7
7.	Fluorescence spectra of 1 in the presence of Cu^{2+} in ACN-H ₂ O (9:1, v/v) (Figure S4)7
8.	Table S2: Fluorescence spectral parameters of 1 and $1-Cu^{2+}$ complex in ACN and ACN-H ₂ O
	solutions
9.	Solvent effect on the fluorescence emission of $1-Cu^{2+}$ complex (Figure S5)
10.	. pH profiles of the fluorescence intensity of 1 in the absence and presence of Cu^{2+} (Figure S6)9
11.	. ESI-MS of 1 in ACN in the presence of Cu(ClO ₄) ₂ (Figure S7)
12.	. IR spectra of 1 and 1-Cu ²⁺ complex (Figure S8)10
13.	. Fluorescence titration of 2 with Cu ²⁺ in ACN (Figure S9)11
14.	Fluorescence spectra in acetonitrile of 2 , 2 -Cu ²⁺ complex and N'-isopropyl 4-(N,N-
	dimethylamino)benzamide11

1. Experimental Procedures

¹H NMR and ¹³C NMR were acquired in DMSO- d_6 on Varian Unity⁺ 500MHz NMR spectrometer using TMS as an internal standard. HRMS were obtained on a Micromass LCT spectrometer by injection of methanol solution of the sample. Absorption and fluorescence spectra were recorded on Varian Cary 300 absorption spectrophotometer and Hitachi F-4500 fluorescence spectrophotometer, respectively. Solutions were measured in 1.00 cm quartz cell. The solvents employed for titration were redistilled acetonitrile (ACN) and deionized water. Fluorescence quantum yields were measured using quinine sulfate as the standard (0.546 in 0.5 mol L⁻¹ H₂SO₄).¹

All spectral titrations were carried out by keeping the sensor concentration constant while varying the concentration of metal ion. Metal ions were used as their perchlorates except Ag^+ , Al^{3+} , Co^{2+} and Fe^{3+} that existed as nitrates. In the pH titration experiments, pH values of the solutions were adjusted with tetrabutylammonium hydroxide and perchloric acid solution that contained the same concentration of the metal ion.

The dipole moment of the CT state of 1 was determined as 24.1D following equation (1),²

$$k = \frac{\mu_1^{CT} * (\mu_1^{CT} - \mu_1^g) / \rho_1^3}{\mu_2^{CT} * (\mu_2^{CT} - \mu_2^g) / \rho_2^3}$$
(1)

In (1), μ^{CT} and μ^{g} are the dipole moments of the CT state and the ground state, respectively. ρ is the equivalent radius of the solute and subscript numbers "1" and "2" refer to **1** and 4-dimethylaminobenzonitrile (DMABN), respectively. *k* is the slope of the plot in Figure S2(b). ρ_{l} , ρ_{2} and μ_{1}^{g} were calculated as 4.95Å, 3.98Å and 6.3D, respectively, using Hartree-Fock(HF)/6-31G(d) method. μ_{2}^{g} and μ_{2}^{CT} of DMABN were taken as 6.6D and 16.4D from reference 2. Following the same method, the CT state dipole moment of the **1**-Cu²⁺ complex was determined as 22.6D by assuming that the dipole moment of the ground state of **1** was not changed upon binding with Cu²⁺.

References

- [1] Demas, J. N.; Crobys, G. A. J. Phys. Chem. 1971, 75, 991-1024.
- [2] Zachariasse, K. A.; Grobys, M.; Tauer, E. Chem. Phys. Lett., 1997, 274, 372-382.

2. Synthesis of 1 and 2

1 and its control compound **2** were synthesized by refluxing in ethanol equimolar quantities of 4-(dimethylamino)benzoylhydrazine and 2-methoxybenzaldehyde and benzaldehyde, respectively. The crude products were recrystallized from ethanol and characterized by ¹H/¹³C NMR and HRMS. **1**: ¹H NMR (500MHz, DMSO-*d*₆), δ (ppm) 2.998 (6H, s), 3.868 (3H, s), 6.748(2H, d, *J* = 8.5Hz), 7.018 (1H, t, *J* = 7.5Hz), 7.101 (1H, d, *J* = 8.5Hz), 7.414 (1H, t, *J* = 7.5Hz), 7.833 (2H, d, *J* = 8.5 Hz), 8.779 (1H, s), 11.557 (1H, s); ¹³C NMR (125MHz, DMSO-*d*₆), δ (ppm) 40.009, 55.654, 110.811, 111.781, 119.470, 120.731, 122.720, 125.364, 129.075, 131.137, 141.543, 152.433, 157.575, 162.693. HRMS (ESI): found 298.1558; calcd for [C₁₇H₂₀N₃O₂⁺]: 298.1556.

2: ¹H NMR (500MHz, DMSO- d_6), δ (ppm) 2.998 (6H, s), 6.756(2H, d, J = 9Hz), 7.400-7.647 (3H, m), 7.708 (2H, d, J = 7.5Hz), 7.817 (2H, d, J = 8.5Hz), 8.418 (1H, s), 11.558 (1H, s); ¹³C NMR (125MHz, DMSO- d_6), δ (ppm) 39.985, 110.787, 119.422, 126.795, 128.760, 129.075, 129.675, 134.678, 146.078, 152.433, 162.818. HRMS (ESI): found 268.1448; calcd for [C₁₆H₁₈N₃O⁺]: 268.1450.

3. Absorption spectral parameters of 1 and its metal complexes in ACN

	$\lambda_{\rm L},$	$\varepsilon_{\rm L}, 10^{-1}$	$\lambda_{\text{L-M}},$	$\mathcal{E}_{L-M}, 10^{-1}$	isosbestic	Binding		
	nm	$L \text{ mol}^{-1} \text{ cm}^{-1}$	nm	$L \text{ mol}^{-1} \text{ cm}^{-1}$	points, nm	Constant, $10^4 \text{ M}^{-1 \text{ c}}$		
1	334	4.49	_	—	—	-		
$1 - Fe^{3+}$	334	5.50	_ ^b	_ ^b	—	_ ^b		
$1-Co^{2+}$	336	4.12	370	1.20	293, 342	6.98±4.31		
1 -Ni ²⁺	350	3.49	370	2.93	290, 350	2.15±0.29		
$1-Cu^{2+}$	320	1.89	388	0.7	293, 363	6.64±0.81		
$1-Ag^+$	334	4.99	- ^b	_ ^b	—	- ^b		
$1 - Zn^{2+}$	- ^a	_ ^a	370	4.30	269, 293, 348	6.52±0.37		
$1-Cd^{2+}$	341	3.60	370	1.92	269, 293, 348	1.57±0.20		
1- Hg ²⁺	- ^a	_ ^a	378	3.10	278, 299, 354	25.9±25.7		
$1 - Pb^{2+}$	_ ^a	_ ^a	375	4.59	275, 297, 351	9.64±0.30		
$1 - Al^{3+}$	334	3.72	390	0.10	—	_ ^b		

a. Band peaked at 334nm disappeared. *b*. Too weak to be determined. *c*. Binding constant was fitted via a nonlinear equation assuming a 1:1 binding stoichiometry. Nice fitting supported the 1:1 stioichiometry.

4. Absorption spectra of 1 in ACN in the presence of individual metal ion

Figure S1: Absorption spectra of **1** $(2.0 \times 10^{-5} \text{ M})$ in ACN in the presence of increasing concentration of metal ion. Metal ions are, from (a) to (j), Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Pb²⁺, Ag⁺ and Al³⁺, respectively.

5. Solvent effect on the fluorescence emission of 1

Figure S2: (a) The CT emission normalized fluorescence spectra of 1 in diethyl ether-ACN binary solvents of varied composition. $[1] = 2.0 \times 10^{-5}$ M, the excitation wavelength was 298nm. (b) Plot of the CT emission energy hv^{max} of 1 against that of DMABN in diethyl ether-ACN binary solvents.

6. Fluorescence titration of 1 with Cu^{2+} and other transition metal ions in pure ACN

Figure S3: Plot of the fluorescence enhancement factor (I/I_0) versus concentrations of Cu²⁺ and other metal ions.

7. Fluorescence spectra of 1 in ACN-H₂O solution

Figure S4: (a) Fluorescence spectra of 1 (2.0×10^{-5} M) in a mixture (9:1, v/v) of ACN and tris-HCl (0.005M, pH 7.2) aqueous buffer solution in the presence of increasing concentration of Cu²⁺.

		1		1- Cu ²⁺			
	$\lambda_{\rm CT}$, nm ^{<i>a</i>}	$\lambda_{ m LE}$, nm b	$\Phi_{ m f}{}^c$	$\lambda_{\rm CT}$, nm ^{<i>a</i>}	$\lambda_{ m LE}$, nm b	$\Phi_{ m f}$ c	
ACN	525	370	0.0082	460	370	0.28	
10% H ₂ O	530	370	0.0020	482	370	0.32	
30% H ₂ O	_	370	0.0015	492	375	0.23	
50% H ₂ O	_	370	0.0014	500	375	0.16	
80% H ₂ O	_	370	0.0007	513	375	0.042	
90% H ₂ O	_	370	0.0004	526	380	0.016	

8. Fluorescence spectral parameters of 1 and 1-Cu²⁺ in ACN and ACN-H₂O solutions

a. The charge transfer (CT) band position. b. The LE band position. c. Total fluorescence quantum yield.

9. Solvent effect on the fluorescence emission of $1-Cu^{2+}$ complex

Figure S5: (a) The CT emission normalized fluorescence spectra of **1** in ACN-H₂O binary solvents in the presence of 1 equiv of Cu^{2+} and (b) plot of the CT emission energy hv^{max} of **1**-Cu²⁺ complex against that of DMABN in ACN-H₂O binary solvents.

10. pH profiles of the fluorescence intensity of 1 in the absence and presence of Cu²⁺

Figure S6: (a) Plot of the fluorescence intensity of **1** $(2.0 \times 10^{-5} \text{ M})$ and (b) fluorescence enhancement factor of **1** in the presence of 2.5 equiv of Cu²⁺ as a function of pH in ACN-H₂O (9:1, v/v) solutions.

11. ESI-MS spectrum of 1 in ACN in the presence of $Cu(ClO_4)_2$

Figure S7: ESI-MS spectrum of **1** and its complex with Cu^{2+} in CAN. Peak *m/z* 180.5 corresponds to $(1+Cu^{2+})/2$ and peak *m/z* 298.3 corresponds to $(1+H^+)$.

12. IR spectra of **1** and $1-Cu^{2+}$ complex

Figure S8: Partial IR spectra of **1** (top) and **1**- Cu^{2+} complex (bottom). Note that the peaks at 1624, 1609 and 1253 cm⁻¹, ascribed to C=O, C=N and C-O stretching of **1** respectively, shift upon binding to Cu^{2+} to lower wavenumber of 1609, 1570 and 1245 cm⁻¹ respectively.

13. Fluorescence titration of $\mathbf{2}$ with Cu^{2+} in ACN

Figure S9: (a) Fluorescence spectra of **2** $(2.0 \times 10^{-5} \text{ M})$ in ACN in the presence of increasing concentration of Cu²⁺. The excitation wavelength was 306 nm, the isosbestic wavelength observed in the absorption spectral titration. (b) Plot of the fluorescence enhancement factor (I/I₀) versus Cu²⁺ concentration. I and I₀ are the fluorescence intensity of **2** in the presence and absence of Cu²⁺, respectively.

15. Fluorescence spectra in acetonitrile of **2**, **2**-Cu²⁺ complex and *N*'-isopropyl 4-(*N*,*N*-dimethylaminobenzamide (**3**)

Figure S10: Fluorescence spectra in acetonitrile of 2, 2-Cu²⁺ complex and 3