Cyclic sulfamidates as lactam precursors. An efficient asymmetric synthesis of (-)-aphanorphine

John F. Bower, ${ }^{a}$ Peter Szeto ${ }^{b}$ and Timothy Gallagher ${ }^{a^{*}}$
${ }^{a}$ School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom.
${ }^{b}$ Chemical Development, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, United Kingdom.

Supplementary Information

(A) General experimental details

Starting materials sourced from commercial suppliers were used as received. Dry solvents, where necessary, were obtained by distillation using standard procedures or by passage through a column of anhydrous alumina using equipment from Anhydrous Engineering based on the Grubbs’ design. Petrol refers to the fraction of petroleum ether boiling in the range of $40-60^{\circ} \mathrm{C}$. The removal of solvents in vacuo was achieved using both a Büchi rotary evaporator (bath temperatures up to $40^{\circ} \mathrm{C}$) at a pressure of either 15 mmHg (diaphragm pump) or 0.1 mmHg (oil pump), as appropriate, and a high vacuum line at room temperature. Reactions requiring anhydrous conditions were run under an atmosphere of dry nitrogen; glassware, syringes and needles were either flame dried immediately prior to use or placed in an oven $\left(150{ }^{\circ} \mathrm{C}\right)$ for at least 2 hrs and allowed to cool either in a desiccator or under an atmosphere of dry nitrogen; liquid reagents, solutions or solvents were added via syringe through rubber septa; solid reagents were added via Schlenk type adapters. Commercially available Merck Kieselgel $60 \mathrm{~F}_{254}$ aluminium backed plates were used for TLC analysis. Visualisation was achieved by either UV fluorescence, acidic KMnO_{4} solution and heat, ninhydrin stain and heat, ammonium molybdate solution and heat or iodine vapour. Flash column chromatography (FCC) was performed using Fluorochem 60 silica: 230-400 mesh $(40-63 \mu \mathrm{~m})$. The crude material was applied to the column as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or by pre-adsorption onto silica, as appropriate. Melting points were determined using a Reichert melting point table and temperature controller and are uncorrected. Optical rotations were measured using a Perkin-Elmer 241 polarimeter. Elemental analysis was performed by the University of Bristol microanalytical service. Infra-red spectra were recorded in the range $4000-600 \mathrm{~cm}^{-1}$ on a Perkin Elmer

Spectrum either as neat films or solids compressed onto a diamond window. Abbreviations used are: w (weak), m (medium), s (strong) and br (broad). NMR spectra were recorded on a JEOL GX270, JEOL GX400, JEOL Lambda 300, JEOL Eclipse 400, JEOL Eclipse 300 or JEOL Alpha 500 spectrometer. Chemical shifts are quoted in parts per million (ppm); ${ }^{1} \mathrm{H}$ NMR spectra are referenced to TMS or residual protium of the deuterated solvent; ${ }^{13} \mathrm{C}$ NMR are referenced to TMS or the deuterated solvent. Coupling constants (J) are quoted to the nearest 0.5 Hz . Other abbreviations used are: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Assignments of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR signals were made where possible, using COSY, DEPT, HMQC and HMBC experiments. Where mixtures of isomers (e.g. diastereomers) have been characterised together, they are referred to as A and B. Mass spectra were determined by the University of Bristol mass spectrometry service by either electron impact (EI) or chemical ionisation (CI) using a Fisons VG Analytical Autospec spectrometer, or by electrospray ionisation (ESI) using a Brüker Daltonics Apex IV spectrometer. Chiral HPLC was performed using either the racemate or the antipode as a standard on an Agilent 1100 LC system equipped with a quaternary pump, diode array detector and column thermostat under the conditions specified in each case.

(B) Experimental Procedures

2-Bromo-4-methoxybenzaldehyde (5)

This compound was prepared by adaptation of the procedure of Durst. ${ }^{1}$ To a solution of N, N, N '-trimethylethylenediamine ($10.19 \mathrm{~mL}, 78.4 \mathrm{mmol}$, freshly distilled from CaH_{2}) in anhydrous THF (180 mL) at $-20{ }^{\circ} \mathrm{C}$ was added, via syringe, $n-\mathrm{BuLi}(30.3$ $\mathrm{mL}, 75.8 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) over two minutes and the resulting pale yellow mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 minutes. p-Anisaldehyde ($8.94 \mathrm{~mL}, 73.4 \mathrm{mmol}$)
was added via syringe in one portion and the resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 20 minutes. n-BuLi ($88.1 \mathrm{~mL}, 220.2 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) was added via syringe and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 minutes and then allowed to stand in the freezer (ca. $-15{ }^{\circ} \mathrm{C}$) for 24 hrs . The reaction mixture, now a deep orange solution, was cooled to $-78{ }^{\circ} \mathrm{C}$ and, with vigorous stirring, a solution of carbon tetrabromide ($68.5 \mathrm{~g}, 207 \mathrm{mmol}$) in anhydrous THF (30 mL) was added dropwise, via syringe, over 15 minutes (Caution: slow addition of the quench is required to moderate the reaction exotherm). The resulting brown suspension was then poured into stirred, ice cold aq. $3 \mathrm{M} \mathrm{HCl}(500 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$. The combined organic portions were concentrated to ca. 150 mL , washed with saturated aq. sodium thiosulfate solution ($5 \times 100 \mathrm{~mL}$), water (100 mL) and then brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then concentrated in vacuo to afford a brown oil (ca. 46 g). This was pre-adsorbed onto silica ($c a .120 \mathrm{~g}$) and purified by FCC (hexanesEtOAc 12:1) to yield a crude product which was then recrystallised from petrol (2 crops) to afford 5 ($9.81 \mathrm{~g}, 62 \%$) as pale yellow needles; m.p. 77.5-79 ${ }^{\circ} \mathrm{C}$ (petrol) [Lit. $\left.{ }^{1}, 70-71{ }^{\circ} \mathrm{C}(\mathrm{EtOH})\right] ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 6.96(1 \mathrm{H}, \mathrm{ddd}$, $J=8.5,3.0$ and $1.0, \mathrm{C} 5-\underline{\mathrm{H}}), 7.15(1 \mathrm{H}, \mathrm{d}, J=3.0, \mathrm{C} 3-\underline{\mathrm{H}}), 7.91(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C} 6-\underline{\mathrm{H}})$, $10.24(1 \mathrm{H}, \mathrm{d}, J=1.0, \operatorname{Ar}(\mathrm{CO}) \underline{\mathrm{H}})$. The spectroscopic properties of this compound were consistent with the data available in the literature. ${ }^{1}$

(Z)-3-(2-Bromo-4-methoxyphenyl)-2-tert-butoxycarbonylaminoacrylic acid methyl ester (6)

To solution of aldehyde 5 ($512 \mathrm{mg}, 2.38 \mathrm{mmol}$) and (\pm)- N-Boc- α-phosphonoglycine trimethyl ester ($779 \mathrm{mg}, 2.62 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ was added tetramethylguanidine ($448 \mu \mathrm{~L}, 3.57 \mathrm{mmol}$) and the resulting solution was stirred at r.t. for 18 hrs. The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with 10 \% aq. citric acid solution (20 mL) and then saturated aq. NaHCO_{3} solution (20
$\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford a pale yellow oil. This was then purified by FCC (hexanes-EtOAc 7:2) to afford the dehydroamino ester 6 (909 $\mathrm{mg}, 99 \%$) as a viscous, colourless oil; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3336 (w), 1703 (s), 1231 (s), 1156 (s), 1026 (s); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36$ ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.83(3 \mathrm{H}, \mathrm{s}$, $\left.\operatorname{ArOCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 6.25\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.83(1 \mathrm{H}, \mathrm{dd}, J=$ 8.5 and $2.5, \mathrm{C} 5-\underline{\mathrm{H}}), 7.16(1 \mathrm{H}, \mathrm{d}, J=2.5, \mathrm{C} 3-\underline{\mathrm{H}}), 7.38(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\underline{\mathrm{H}}), 7.60(1 \mathrm{H}, \mathrm{d}, J=$ $8.5, \mathrm{C} 6-\underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.0\left(\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $52.6\left(\mathrm{ArOCH}_{3}\right), 55.5$ $\left(\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right), 80.7\left(\mathrm{NHCO}_{2} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $113.6(\underline{\mathrm{C}}-5), 117.7(\underline{\mathrm{C}}-3), 124.3,125.7$ and 126.8 ($\underline{C}-1, \underline{\mathrm{C}}-2$ and $\underline{\mathrm{C}}-8$), 127.3 ($\underline{\mathrm{C}}-7$), 130.3 ($\underline{\mathrm{C}-6), ~} 152.4$ ($\underline{\mathrm{C}}-4$), $160.1\left(\mathrm{NHCO}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $165.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}^{+}\right) 388$ and $386\left([\mathrm{M}+\mathrm{H}]^{+}, 84\right.$ and $\left.82 \%\right), 287$ and $285([\mathrm{M}+\mathrm{H}-$ Boc $]^{+}, 100$ and 98); HRMS: (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+} 408.0414, \mathrm{C}_{16} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}_{5}$ requires 408.0417. The stereochemistry of this compound was assigned as Z on the basis of related reactions described in the literature. ${ }^{2}$

(R)-3-(2-Bromo-4-methoxyphenyl)-2-tert-butoxycarbonylaminopropionic acid methyl ester (7)

In an Aldrich Atmosbag ${ }^{\circledR}$ (N_{2} atmosphere), MeOH (13 mL , deoxygenated by passage of N_{2} for 2 hrs) was added to a 25 mL r.b. flask containing dehydroamino ester 6 ($436 \mathrm{mg}, 1.13 \mathrm{mmol}$) and $[((R, R)$-Et-DuPHOS)Rh(COD)]BF 4 (11.1 mg, 1.5 $\mathrm{mol} \%)$ and the reaction vessel was sealed inside a hydrogenation bomb. The system was then purged with H_{2} (6 purge cycles at a pressure of 5 atm.) and stirred vigorously at r.t for 40 hrs. The mixture was then concentrated in vacuo and filtered through a pad of silica ($60,5 \times 5 \mathrm{~cm}$) eluting with EtOAc (ca. 30 mL). The eluent was concentrated in vacuo to afford the amino ester derivative 7 ($440 \mathrm{mg}, 100 \%$, 99% e.e.) as a colourless, viscous oil; $[\alpha]_{\mathrm{D}}{ }^{20}-5.1$ (c $=0.8, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3374 (br), 2977 (br), 1715 (s), 1495 (s), 1243 (m), 1167 (s), 1029 (m); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{C}_{3}\right)_{3}\right), 3.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0$ and $7.5, \mathrm{C} 7-\underline{\mathrm{H}}), 3.25$ (1H, dd, $J=14.0$ and $6.5, \mathrm{C} 7-\underline{H})$, $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOC} \underline{H}_{3}\right), 4.60$
($1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.5$ and $6.5, \mathrm{C} 8-\underline{\mathrm{H}}), 5.08\left(1 \mathrm{H}, \mathrm{d}, \underline{\mathrm{J}}=8.0, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.81(1 \mathrm{H}$, dd, $J=8.5$ and 3.0, C5- \underline{H}), $7.10(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C} 6-\underline{\mathrm{H}}), 7.11(1 \mathrm{H}, \mathrm{d}, J=3.0, \mathrm{C} 3-\underline{\mathrm{H}})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.2\left(\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 37.7(\underline{\mathrm{C}}-7), 52.3\left(\mathrm{ArOCH}_{3}\right), 53.7(\underline{\mathrm{C}}-8)$, $55.5\left(\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right), 80.0\left(\mathrm{NHCO}_{2} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 113.6(\underline{\mathrm{C}}-5), 118.0(\underline{\mathrm{C}}-3), 125.1$ and 127.8 ($\underline{\mathrm{C}}-1$ and $\underline{\mathrm{C}}-2$), $131.6(\underline{\mathrm{C}}-6), 155.0(\underline{\mathrm{C}}-4), 158.1\left(\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 170.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HRMS: (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$410.0570, $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{79} \mathrm{BrNO}_{5}$ requires 410.0574; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{Br}$: C, 49.50; H, 5.71; N, 3.61. Found: C, 49.51; H, 5.41; N, 3.33.

The enantiomeric purity of this compound was determined by chiral HPLC (Chiralcel OJ-H, isocratic hexane - i-PrOH 95:5, $1.0 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$) against a racemic standard prepared under similar conditions using Wilkinson's catalyst $\left(\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}, 5 \mathrm{~mol} \%\right.$, $7 \mathrm{~atm} ., 48 \mathrm{hrs}) ; \mathrm{t}_{\mathrm{R}}($ major $)=9.1 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ minor $)=12.6 \mathrm{~min}$.
[(R)-2-(2-Bromo-4-methoxyphenyl)-1-hydroxymethylethyl]-carbamic acid tertbutyl ester (8)

To a solution of ester 7 ($569 \mathrm{mg}, 0.72 \mathrm{mmol}$) in anhydrous THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$ was added, dropwise via syringe, a solution of LiAlH_{4} in THF ($1 \mathrm{M}, 2.16 \mathrm{~mL}, 2.16$ mmol) over 2 minutes. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and then, sequentially, water $(80 \mu \mathrm{~L})$, aq. 4 M NaOH solution $(80 \mu \mathrm{~L})$ and water $(240 \mu \mathrm{~L})$ were added dropwise, via syringe (Caution: gas evolution), to form a colourless precipitate. The mixture was then filtered through Celite ${ }^{\circledR}$, rinsing copiously with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 50 mL), washed with water (20 mL) and then brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford the alcohol 8 (498 mg, 96%) as a colourless, crystalline solid; m.p. 87-90 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hexanes); $[\alpha]_{\mathrm{D}}{ }^{20}+34.0$ (c $=1.5$, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3394 (br m), 1689 (s), 1494 (s), 1243 (m), 1169 (m), 1028 (m); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 2.62-
$3.01(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\underline{\mathrm{H}}), 3.54-3.95(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\underline{\mathrm{H}}$ and $\mathrm{C} 9-\underline{\mathrm{H}}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.85$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.5, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.81(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.5, \mathrm{C} 5-\underline{\mathrm{H}}), 7.10(1 \mathrm{H}, \mathrm{d}$, $J=2.5, \mathrm{C} 3-\underline{\mathrm{H}}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C} 6-\underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.3$ $\left(\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.5$ ($\mathrm{C}-7$), 53.3 and 55.5 ($\mathrm{C}-8$ and ArOCH_{3}), 64.4 ($\mathrm{C}-9$), 79.8 $\left(\mathrm{NHCO}_{2} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 114.0(\underline{\mathrm{C}}-5), 117.9$ ($\underline{\mathrm{C}}-3$), 124.9 and 129.4 ($\underline{\mathrm{C}}-1$ and $\underline{\mathrm{C}}-2$), 131.9 (C-6), $156.3(\underline{C}-4), 158.8\left(\mathrm{NHCO}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right)$; HRMS: (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$382.0621, $\mathrm{C}_{15} \mathrm{H}_{22}{ }^{79} \mathrm{BrNO}_{4}$ requires 382.0624 .
(R)-3-(2-Bromo-4-methoxyphenyl)-2-methylaminopropan-1-ol (10)

To a solution of N-Boc alcohol 8 ($364 \mathrm{mg}, 1.02 \mathrm{mmol}$) in anhydrous THF (12 mL) was added NaH ($54.8 \mathrm{mg}, 1.37 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) causing immediate gas evolution. The resulting pale yellow slurry was then stirred at r.t. for 8 hrs prior to the addition of NaH ($61.2 \mathrm{mg}, 1.52 \mathrm{mmol}, 60$ \% dispersion in mineral oil) and then MeI ($254 \mu \mathrm{~L}, 4.08 \mathrm{mmol}$). After stirring for a further 1 hr excess NaH was quenched by careful addition of water (Caution: vigorous gas evolution) and the mixture was concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and 50% aq. NaOH solution (3 mL) and then heated at reflux (oil bath ca. $90^{\circ} \mathrm{C}$) for 2 hrs . After cooling to r.t., the mixture was diluted with brine (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford a pale yellow solid. This was then dissolved in MeCN $(20 \mathrm{~mL})$, washed with hexane $(2 \times 10 \mathrm{~mL})$ and concentrated in vacuo to afford essentially pure amino alcohol $\mathbf{1 0}(129 \mathrm{mg}, 92 \%)$ as a pale yellow wax; $[\alpha]_{\mathrm{D}}{ }^{20}+20.0$ (c = 0.6, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3309 (br m), 1603 (m), 1491 (s), 1240 (s), 1026 (s); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.12\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} \underline{H M e}\right.$ and $\mathrm{CH}_{2} \mathrm{OH}$), $2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{3}\right), 2.71$ ($1 \mathrm{H}, \mathrm{dd}, J=13.0$ and $7.0, \mathrm{C} 3-\underline{\mathrm{H}}$), 2.83-2.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\underline{\mathrm{H}}$), 2.91 ($1 \mathrm{H}, \mathrm{dd}, J=13.0$ and $6.5, \mathrm{C} 3-\underline{\mathrm{H}}), 3.31(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and $5.0, \mathrm{C} 1-\underline{H}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and $4.0, \mathrm{C} 1-$
$\underline{\mathrm{H}}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 6.80(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.5, \mathrm{C} 8-\underline{\mathrm{H}}), 7.09(1 \mathrm{H}, \mathrm{d}, J=2.5$, $\mathrm{C} 6-\underline{\mathrm{H}}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C} 9-\underline{\mathrm{H}})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 33.7\left(\mathrm{NCH}_{3}\right), 36.9(\underline{\mathrm{C}}-3)$, $55.5\left(\mathrm{ArOCH}_{3}\right), 60.4$ (C-2), 61.8 (C-1), 113.6 (C-8), 118.1 ($\underline{\mathrm{C}}-6$), 124.8 and 130.0 (ㄷ4 and C-5), 131.7 (C-9), 158.7 (C-7); HRMS: (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$274.0437, $\mathrm{C}_{11} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}$ requires 274.0437.

(R)-4-(2-Bromo-4-methoxybenzyl)-3-methyl-1,2,3-oxathiazolidine 2,2-dioxide (4)

To an ice cold solution of amino alcohol 10 ($468 \mathrm{mg}, 1.7 \mathrm{mmol}$), imidazole (465 mg , $6.84 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(501 \mu \mathrm{~L}, 3.66 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added, dropwise, via syringe, over 5 minutes, a solution of $\mathrm{SOCl}_{2}(150 \mu \mathrm{~L}, 2.04 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The resulting colourless solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 hrs and then poured into aq. $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$. The organic portion was isolated and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with water (15 mL) and then brine (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford intermediate cyclic sulfamidite (533 mg, 98%) as a pale yellow oil. This material was used immediately in the next stage without further purification. To a vigorously stirred, ice cold solution of NaIO_{4} ($69 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{RuCl}_{3}(0.1 \mathrm{mg}, 0.15 \mathrm{~mol} \%)$ in water (2 mL) was added, in one portion, a solution of sulfamidite ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) in EtOAc (3 mL). The resulting pale brown suspension was stirred at $0{ }^{\circ} \mathrm{C}$ until careful TLC analysis showed complete consumption of starting material (ca. 0.25 hrs ; TLC conditions: 1:1 Et ${ }_{2} \mathrm{O}-\mathrm{Petrol}$; intermediate sulfamidite co-elutes with sulfamidate $\mathbf{4}$ but can be stained using KMnO_{4} dip without the need for heat). The mixture was then diluted with EtOAc (10 mL) and aq. $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the organic portion was isolated, washed with brine (10 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford a brown residue which was immediately purified by FCC ($\mathrm{Et}_{2} \mathrm{O}$-petrol 1:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ loading) to afford the sulfamidate 4 ($88 \mathrm{mg}, 82 \%$, 99 \% e.e.) as a colourless crystalline solid; m.p. $82-83^{\circ} \mathrm{C}$
$\left(\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+8.9\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $1605(\mathrm{~m}), 1494(\mathrm{~m}), 1345(\mathrm{~s})$, 1179 (s), 1028 (m), $972(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{3}\right), 2.88(1 \mathrm{H}$, dd, $J=14.0$ and $9.0, \mathrm{C} 3-\underline{\mathrm{H}}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=14.0$ and $5.5, \mathrm{C} 3-\underline{\mathrm{H}}), 3.75-3.85(1 \mathrm{H}, \mathrm{m}$, C2-H), 3.80 (3H, s, Ar-OCH3 $)^{2}, 4.26$ ($1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $7.0, \mathrm{C} 1-\underline{H}$), 4.40 ($1 \mathrm{H}, \mathrm{dd}, J$ $=8.5$ and $6.5, \mathrm{C} 1-\underline{H}$), $6.84(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.5, \mathrm{C} 6-\underline{\mathrm{H}}$), $7.13(1 \mathrm{H}, \mathrm{d}, J=2.5, \mathrm{C} 8-$ $\underline{\mathrm{H}}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5, \mathrm{C} 5-\underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.0\left(\mathrm{NCH}_{3}\right), 37.4(\underline{\mathrm{C}}-3), 55.7$ and $60.5\left(\mathrm{ArOCH}_{3}\right.$ and $\underline{\mathrm{C}}-2$), 70.5 ($\underline{-1}-1$), 114.1 ($\underline{-}-6$), 118.7 (ㄷ-8), 124.7 and 126.2 (C-4 and $\underline{\mathrm{C}}-9$), 132.0 (C-5), 159.7 (C-7); m/z (CI $\left.{ }^{+}\right) 336$ and $338\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right.$ and 95 \%); HRMS: (CI^{+}) Found: $[\mathrm{M}+\mathrm{H}]^{+} 335.9891, \mathrm{C}_{11} \mathrm{H}_{14}{ }^{79} \mathrm{BrNO}_{4} \mathrm{~S}$ requires 335.9905. The oxidation step could conveniently be carried out on a larger scale (up to 10 mmol) but resulted in diminished and variable yields of the product 4 (58-77 \%).

The enantiomeric purity of this compound was determined by chiral HPLC (Chiralcel OJ-H, isocratic hexane - i-PrOH 70:30, $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$); t_{R} (major) $=28.3 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}($ minor $)=31.7 \mathrm{~min}$.

[(R)-5-(2-Bromo-4-methoxybenzyl)-1-methyl-2-oxopyrrolidin-3-yl]-phosphonic acid diethyl ester (11)

To a solution of triethyl phosphonoacetate ($355 \mu \mathrm{~L}, 1.79 \mathrm{mmol}$) in anhydrous THF (8 mL) was added t-BuOK ($200 \mathrm{mg}, 1.79 \mathrm{mmol}$) and the mixture was heated at $40{ }^{\circ} \mathrm{C}$ to form a clear solution. After 25 minutes, sulfamidate 4 ($300 \mathrm{mg}, 0.89 \mathrm{mmol}$) was added and the reaction was stirred at $40{ }^{\circ} \mathrm{C}$ for a further 15 hrs . The mixture was then cooled to r.t. and treated with aq. $5 \mathrm{M} \mathrm{HCl}(0.89 \mathrm{mmol})$ and stirred at r.t. for 3 hrs. The mixture was neutralised by addition of saturated aq. NaHCO_{3} solution, stirred for 12 hrs, diluted with brine (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic portion was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by FCC (EtOAc-MeOH 19:1) to yield the α-phosphono lactam 11 (311 mg ,
$84 \%, 4: 3$ d.r. $A: B$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1}$ (film) 2981 (br w), 1687 (s), 1492 (m), 1240 (s), 1021 (s), 963 (m); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 1.24-1.40 (12H, m, OCH OH_{3} of A and $B), 1.99-2.38(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\underline{\mathrm{H}}$ of A and $B), 2.54(1 \mathrm{H}, \mathrm{dd}, J=13.0$ and $9.0, \mathrm{C} 5-$ $\underline{\mathrm{H}}$ of $A), 2.79(1 \mathrm{H}, \mathrm{dd}, J=13.0$ and $10.5, \mathrm{C} 5-\underline{\mathrm{H}}$ of $B), 2.56-3.01\left(8 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{3}\right.$ and C2- \underline{H} of A and B), $3.27(1 \mathrm{H}, \mathrm{dd}, J=13.0$ and 4.0 , C5-H of A), $3.37(1 \mathrm{H}, \mathrm{dd}, J=13.0$ and 4.0, C5-H of B), 3.78-3.85 (1H, m, C4-H of B), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right.$ of B), 3.80 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right.$ of $\left.A\right), 3.85-3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\underline{\mathrm{H}}$ of $A), 4.09-4.33\left(8 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \underline{H}_{2}\right.$ of A and B), 6.80-6.85 (2H, m, C8- \underline{H} of A and $B), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C} 7-\underline{\mathrm{H}}$ of $A), 7.11-$ 7.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 10-\underline{\mathrm{H}}$ of A and B), 7.25 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5$, C7- $\underline{\mathrm{H}}$ of B); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 16.3-16.7 (4C, m, $\mathrm{OCH}_{2} \mathrm{CH}_{3} \times 4$), $25.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.0, \underline{\mathrm{C}}-3\right.$ of $\left.B\right), 26.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}\right.$ $=3.5, \underline{\mathrm{C}}-3$ of A), 28.7 (2 signals) (NCH_{3} of A and B), 38.6 ($\underline{\mathrm{C}}-5$ of A), 39.2 ($\mathrm{C}-5$ of B), $40.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=144.5, \underline{\mathrm{C}}-2\right.$ of $\left.A\right), 40.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=146.0, \underline{\mathrm{C}}-2\right.$ of $\left.B\right), 55.6$ and 55.7 (ArOCH_{3} of A and B), 58.2 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=5.0, \underline{\mathrm{C}}-4$ of B), $58.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.0, \underline{\mathrm{C}}-4\right.$ of $\left.B\right)$, 62.1-63.5 (4C, m, $\mathrm{OCH}_{2} \mathrm{CH}_{3} \times 4$), $113.8(\mathrm{C}-8$ of A), $114.0(\mathrm{C}-8$ of B), 118.4 (C-10 of A), 118.5 (C-10 of B), 124.7, 125.0, 128.0 and 128.5 (C-6 and C-11 of A and B), 131.7 (C-7 of B), 132.5 (C-7 of A), 159.3 (2 signals) (C-9 of A and B), 169.3 (d, ${ }^{2} J_{\mathrm{PC}}$ $=3.5, \underline{\mathrm{C}}-1$ of $B), 169.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=3.5, \underline{\mathrm{C}}-1\right.$ of $\left.A\right) ; \delta_{\mathrm{P}}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.0(B)$ and 25.1 (A); HRMS: (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$456.0545, $\mathrm{C}_{22} \mathrm{H}_{25}{ }^{79} \mathrm{BrNO}_{5} \mathrm{P}$ requires 456.0546.
(S)-5-(2-Bromo-4-methoxybenzyl)-1-methyl-3-methylenepyrrolidin-2-one (3)

NaH ($21.4 \mathrm{mg}, 0.54 \mathrm{mmol}, 60$ \% dispersion in mineral oil) was washed, via syringe, with anhydrous hexane ($2 \times 0.5 \mathrm{~mL}$) and then suspended in anhydrous THF (1 mL). To this suspension was added, via syringe, a solution of α-phosphono lactam 11 (217 $\mathrm{mg}, 0.51 \mathrm{mmol}$) in anhydrous THF (1 mL and 0.5 mL line wash) resulting in immediate gas evolution and the formation of a brown solution. Paraformaldehyde ($30.6 \mathrm{mg}, 1.02 \mathrm{mmol}$) was added and the mixture was stirred at r.t. for 3 hrs . The
reaction was quenched by addition of aq. $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$, then diluted with brine (10 $\mathrm{mL})$ and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with aq. 1 M NaOH solution (20 mL) and then brine (20 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo. The residue was dissolved in EtOAc and rapidly filtered through a short plug of silica (60, $2 \times 2 \mathrm{~cm}$) eluting with EtOAc (30 mL). Concentration of the eluent in vacuo afford the exocylic alkene 3 ($116 \mathrm{mg}, 74 \%$) as a pale yellow oil. This material was unstable to chromatography (60 silica or neutral alumina) and so was used in the next stage without further purification; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 2.46-2.55 (2H, m, C3- \underline{H} and C5- \underline{H}), $2.68(1 \mathrm{H}, \mathrm{dddd}, J=17.0,8.0,3.0$ and 3.0, C3- \underline{H}), 3.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NC} \underline{H}_{3}$), 3.29 ($1 \mathrm{H}, \mathrm{dd}, J=13.5$ and 4.5 , C5-H), 3.80 (3H, s, ArOCH_{3}), $3.80-3.88$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\underline{\mathrm{H}}$), 5.28 (1 H , ddd, $J=3.0,3.0$ and 1.0, C12- $\underline{\mathrm{H}}$), 5.97 ($1 \mathrm{H}, \mathrm{ddd}, J=3.0,3.0$ and 1.0, C12- $\underline{\mathrm{H}}$), 6.82 ($1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $3.0, \mathrm{C} 8-\underline{\mathrm{H}}$), 7.09 (1 H , d, $J=8.5, \mathrm{C} 7-\underline{\mathrm{H}}), 7.13(1 \mathrm{H}, \mathrm{d}, J=3.0, \mathrm{C} 10-\underline{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.8\left(\mathrm{NCH}_{3}\right)$, 30.4 (C-3), 39.3 (ㄷ-5), 55.6 and $56.0\left(\mathrm{ArOCH}_{3}\right.$ and $\underline{\mathrm{C}}-4$), 113.8 (C-8), 115.5 (ㄷ-12), 118.5 (C-10), 125.0 and 128.3 (C-6 and C-11), 131.8 (C-7), 138.9 (C-2), 159.2 (ㄷ-9), 168.2 (C-1).
(1R,9R)-4-Methoxy-1,10-dimethyl-10-azatricyclo[7.2.1.0 ${ }^{2,7}$]dodeca-2,4,6-trien-11one (12) and (R)-5-(4-methoxybenzyl)-1,3-dimethyl-1,5-dihydropyrrol-2-one (16)

12

16

A stock solution was prepared by dissolving AIBN ($42 \mathrm{mg}, 0.26 \mathrm{mmol}$, freshly recrystallised from $\mathrm{Et}_{2} \mathrm{O}$ and dried under high vacuum (r.t., 0.01 mmHg) for 4 hrs) and freshly prepared $\mathrm{Bu}_{3} \mathrm{SnH}(200 \mathrm{mg}, 0.57 \mathrm{mmol}$) in anhydrous benzene (32 mL , freshly distilled from sodium benzophenone ketyl and further deoxygenated by passage of N_{2} for 2 hrs). To a flask containing a solution of alkene 3 ($28 \mathrm{mg}, 0.09$ mmol) in refluxing benzene (8 mL , prepared as above) was added a portion of the stock solution (8 mL) over 1.5 hrs via syringe pump. After stirring for a further 1 hr the mixture was cooled to r.t. and concentrated in vacuo. The residue was dissolved in MeCN (10 mL) and washed with hexane ($2 \times 5 \mathrm{~mL}$). The MeCN portion was then
concentrated in vacuo to afford a colourless oil which was purified by FCC (EtOAchexanes $4: 1$) to yield the tricycle $\mathbf{1 2}$ ($13.0 \mathrm{mg}, 62 \%$) as a colourless crystalline solid and subsequently the endocylic alkene 16 ($3.7 \mathrm{mg}, 18 \%$) as a colourless oil.

12: m.p. 147-148 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexanes) $\quad\left[\right.$ Lit. ${ }^{3}, 142-143{ }^{\circ} \mathrm{C}$ (racemate, no recrystallisation solvent quoted) $] ;[\alpha]_{\mathrm{D}}{ }^{20}-20.0\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 2934 (m), 1695 (s), 1289 (m), 1244 (m), 1040 (m); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.55$ (3H, s, $\mathrm{C} 2-\mathrm{CH}_{3}$), $2.03(1 \mathrm{H}, \mathrm{d}, J=10.5, \mathrm{C} 3-\underline{\mathrm{H}}), 2.18(1 \mathrm{H}, \mathrm{dd}, J=10.5$ and $5.5, \mathrm{C} 3-\underline{\mathrm{H}}), 2.83$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), 2.87-3.00 (2H, m, C5-H), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}$), 3.84 ($1 \mathrm{H}, \mathrm{dt}, J=5.5$ and $2.5, \mathrm{C} 4-\underline{\mathrm{H}}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $3.0, \mathrm{C} 8-\underline{\mathrm{H}}), 6.84(1 \mathrm{H}, \mathrm{d}, J=3.0, \mathrm{C} 10-\underline{\mathrm{H}})$, $6.99(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C} 7-\underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.5\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 27.6\left(\mathrm{NCH}_{3}\right), 30.0$ (C-5), 40.7 (ㄷ-3), 45.2 (ㄷ-2), 54.9 and $55.3\left(\mathrm{ArOCH}_{3}\right.$ and $\left.\underline{\mathrm{C}}-4\right), 110.1$ ($\underline{\mathrm{C}}-10$), 112.8 (C-8), 124.4 (ㄷ-6), 130.7 (ㄷ-7), 141.5 (ㄷ-11), 158.1 (ㄷ-9), 177.1 (ㄷ-1); m/z (CI $\left.{ }^{+}\right) 232$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS: $\left(\mathrm{CI}^{+}\right)$Found: $[\mathrm{M}+\mathrm{H}]^{+}$232.1331, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires 232.1338. The spectroscopic properties of this compound were consistent with the data available in the literature. ${ }^{3}$

16: This material was contaminated with ca. 5% of 16 as judged by ${ }^{1} H N M R ; v_{\max } /$ cm^{-1} (film) 2924 (br), 1685 (s), 1513 (m), 1248 (m), 1035 (w); δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.84(3 \mathrm{H}, \mathrm{t}, J=1.5, \mathrm{C} 10-\underline{\mathrm{H}}), 2.51(1 \mathrm{H}, \mathrm{dd}, J=13.5$ and $9.0, \mathrm{C} 5-\underline{H}), 3.01(3 \mathrm{H}, \mathrm{s}$, NCH_{3}), $3.11\left(2 \mathrm{H}, \mathrm{dd}, J=13.5\right.$ and 5.0, C5-H), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.94-4.01(1 \mathrm{H}$, m C4- \underline{H}), $6.50(1 \mathrm{H}, \mathrm{t}, J=1.5, \mathrm{C} 3-\underline{\mathrm{H}}), 6.84(2 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{C} 8-H), 7.07(2 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{C} 7-\underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.2(\underline{\mathrm{C}}-10), 27.7\left(\mathrm{NCH}_{3}\right), 37.0(\underline{\mathrm{C}}-5), 55.3\left(\mathrm{ArOCH}_{3}\right)$, 63.4 (C-4), 114.0 (C-8), 128.4 and 135.3 (C-2 and C-6), 130.1 (C-9), 139.5 (C-3), 158.5 (C-9), 172.0 ($\underline{\mathrm{C}}-1$); m/z (CI $\left.{ }^{+}\right) 232$ ([M+H] ${ }^{+} 100$ \%); HRMS: (CI ${ }^{+}$) Found: $[\mathrm{M}+\mathrm{H}]^{+}$232.1335, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires 232.1338.

Preparation of $\mathrm{Bu}_{3} \mathbf{S n H}$

This was prepared according to the procedure of Hayashi et al. ${ }^{4}$ Thus, $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}(1.7$ $\mathrm{mL}, 3.36 \mathrm{mmol}$) was added via syringe to a N_{2} purged flask containing poly(methylhydrosiloxane) ($401 \mu \mathrm{~L}, 6.72 \mathrm{mmol}$) causing a mild exotherm. The mixture was stirred at r.t. for 1 hr (until no further exotherm was observed) and then distilled (ca. $85{ }^{\circ} \mathrm{C}, 0.1 \mathrm{mmHg}$) to afford $\mathrm{Bu}_{3} \mathrm{SnH}$ as a colourless oil (N.B. An initial
minor fraction (b.p. ca. $65{ }^{\circ} \mathrm{C}, ~ 0.1 \mathrm{mmHg}$) was discarded). This material was generally prepared immediately prior to use but, if desired, could be stored under N_{2} at $5{ }^{\circ} \mathrm{C}$ for up to 48 hrs without any evidence (cloudiness) of decomposition.

(+)-O-Methyl aphanorphine (13)

Lactam 12 was converted to (+)-O-methyl aphanorphine 13 using the procedure described by Funk; ${ }^{3}[\alpha]_{\mathrm{D}}{ }^{20}+8.3$ (c $=0.5, \mathrm{CHCl}_{3}$); lit. $[\alpha]^{28}{ }_{\mathrm{D}}+8.1$ (c 1.2, CHCl_{3}), ${ }^{5}$ $[\alpha]^{20}{ }_{\mathrm{D}}+9.4\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right){ }^{6}[\alpha]^{20}{ }_{\mathrm{D}}+8.7\left(\mathrm{c} 1.06, \mathrm{CHCl}_{3}\right){ }^{7}{ }^{7} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.48$ (3H, s), 1.84 ($1 \mathrm{H}, \mathrm{d}, J=11.0$), 2.01 ($1 \mathrm{H}, \mathrm{ddd}, J=11.0,5.5$ and 1.0), 2.47 ($3 \mathrm{H}, \mathrm{s}$), 2.73 (1H, d, $J=9.0$), 2.80-2.87 ($2 \mathrm{H}, \mathrm{m}$), 3.01 ($1 \mathrm{H}, \mathrm{d}, J=17.0$), 3.39 ($1 \mathrm{H}, \mathrm{ddd}, J=5.5,3.0$ and 3.0), $3.78(3 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and 2.5), $6.78(1 \mathrm{H}, \mathrm{d}, J=2.5), 7.02(1 \mathrm{H}, \mathrm{d}$, $J=8.5) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.5,35.7,41.6,41.7,43.2,55.3,61.3,71.3,109.4$, 110.9, 126.1, 130.2, 148.1, 157.7 . The spectroscopic properties of this compound were consistent with the data available in the literature. ${ }^{8}$

(C) References

1. Y. Lear and T. Durst, Can. J. Chem., 1997, 75, 817.
2. U. Schmidt, A. Lieberknecht and J. Wild, Synthesis, 1984, 53.
3. J. R. Fuchs and R. L. Funk, Org. Lett., 2001, 3, 3923.
4. K. Hayashi, J. Iyoda and I. Shiihara, J. Organometal. Chem., 1967, 10, 81.
5. M. Shimizu, T. Kamikubo and K. Ogasawara, Heterocycles, 1997, 46, 21.
6. O. Tamura, T. Yanagimachi, T. Kobayashi and H. Ishibashi, Org. Lett., 2001, 3, 2427.
7. H. Zhai, S. Luo, C. Ye and Y. Ma, J. Org. Chem., 2003, 68, 8268.
8. S. Shiotani, H. Okada, K. Nakamata, T. Yamamoto and F. Sekino, Heterocycles, 1996, 43, 1031.
