Cyclic sulfamidates as lactam precursors. An efficient asymmetric synthesis of (-)-aphanorphine

John F. Bower,^a Peter Szeto^b and Timothy Gallagher^{a*}

^a School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom. ^b Chemical Development, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, United Kingdom.

Supplementary Information

(A) General experimental details

Starting materials sourced from commercial suppliers were used as received. Dry solvents, where necessary, were obtained by distillation using standard procedures or by passage through a column of anhydrous alumina using equipment from Anhydrous Engineering based on the Grubbs' design. Petrol refers to the fraction of petroleum ether boiling in the range of 40-60 °C. The removal of solvents *in vacuo* was achieved using both a Büchi rotary evaporator (bath temperatures up to 40 °C) at a pressure of either 15 mmHg (diaphragm pump) or 0.1 mmHg (oil pump), as appropriate, and a high vacuum line at room temperature. Reactions requiring anhydrous conditions were run under an atmosphere of dry nitrogen; glassware, syringes and needles were either flame dried immediately prior to use or placed in an oven (150 °C) for at least 2 hrs and allowed to cool either in a desiccator or under an atmosphere of dry nitrogen; liquid reagents, solutions or solvents were added via syringe through rubber septa; solid reagents were added *via* Schlenk type adapters. Commercially available Merck Kieselgel 60F₂₅₄ aluminium backed plates were used for TLC analysis. Visualisation was achieved by either UV fluorescence, acidic KMnO₄ solution and heat, ninhydrin stain and heat, ammonium molybdate solution and heat or iodine vapour. Flash column chromatography (FCC) was performed using Fluorochem 60 silica: 230-400 mesh (40-63 µm). The crude material was applied to the column as a solution in CH₂Cl₂ or by pre-adsorption onto silica, as appropriate. Melting points were determined using a Reichert melting point table and temperature controller and are uncorrected. Optical rotations were measured using a Perkin-Elmer 241 polarimeter. Elemental analysis was performed by the University of Bristol microanalytical service. Infra-red spectra were recorded in the range 4000-600 cm⁻¹ on a Perkin Elmer Spectrum either as neat films or solids compressed onto a diamond window. Abbreviations used are: w (weak), m (medium), s (strong) and br (broad). NMR spectra were recorded on a JEOL GX270, JEOL GX400, JEOL Lambda 300, JEOL Eclipse 400, JEOL Eclipse 300 or JEOL Alpha 500 spectrometer. Chemical shifts are quoted in parts per million (ppm); ¹H NMR spectra are referenced to TMS or residual protium of the deuterated solvent; ¹³C NMR are referenced to TMS or the deuterated solvent. Coupling constants (J) are quoted to the nearest 0.5 Hz. Other abbreviations used are: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Assignments of ¹H NMR and ¹³C NMR signals were made where possible, using COSY, DEPT, HMQC and HMBC experiments. Where mixtures of isomers (e.g. diastereomers) have been characterised together, they are referred to as A and B. Mass spectra were determined by the University of Bristol mass spectrometry service by either electron impact (EI) or chemical ionisation (CI) using a Fisons VG Analytical Autospec spectrometer, or by electrospray ionisation (ESI) using a Brüker Daltonics Apex IV spectrometer. Chiral HPLC was performed using either the racemate or the antipode as a standard on an Agilent 1100 LC system equipped with a quaternary pump, diode array detector and column thermostat under the conditions specified in each case.

(B) Experimental Procedures

2-Bromo-4-methoxybenzaldehyde (5)

This compound was prepared by adaptation of the procedure of Durst.¹ To a solution of N,N,N'-trimethylethylenediamine (10.19 mL, 78.4 mmol, freshly distilled from CaH₂) in anhydrous THF (180 mL) at -20 °C was added, *via* syringe, *n*-BuLi (30.3 mL, 75.8 mmol, 2.5 M in hexanes) over two minutes and the resulting pale yellow mixture was stirred at -20 °C for 15 minutes. *p*-Anisaldehyde (8.94 mL, 73.4 mmol)

was added via syringe in one portion and the resulting mixture was stirred at -20 °C for 20 minutes. n-BuLi (88.1 mL, 220.2 mmol, 2.5 M in hexanes) was added via syringe and the mixture was stirred at -20 °C for 30 minutes and then allowed to stand in the freezer (ca. -15 °C) for 24 hrs. The reaction mixture, now a deep orange solution, was cooled to -78 °C and, with vigorous stirring, a solution of carbon tetrabromide (68.5 g, 207 mmol) in anhydrous THF (30 mL) was added dropwise, via syringe, over 15 minutes (Caution: slow addition of the quench is required to moderate the reaction exotherm). The resulting brown suspension was then poured into stirred, ice cold aq. 3 M HCl (500 mL) and extracted with Et₂O (2×500 mL). The combined organic portions were concentrated to ca. 150 mL, washed with saturated aq. sodium thiosulfate solution ($5 \times 100 \text{ mL}$), water (100 mL) and then brine (100 mL), dried (Na₂SO₄) and then concentrated in vacuo to afford a brown oil (ca. 46 g). This was pre-adsorbed onto silica (ca. 120 g) and purified by FCC (hexanes-EtOAc 12:1) to yield a crude product which was then recrystallised from petrol (2 crops) to afford 5 (9.81 g, 62 %) as pale yellow needles; m.p. 77.5 - 79 °C (petrol) [Lit.¹,70-71 °C (EtOH)]; δ_H (400 MHz, CDCl₃) 3.90 (3H, s, ArOCH₃), 6.96 (1H, ddd, J = 8.5, 3.0 and 1.0, C5-H), 7.15 (1H, d, J = 3.0, C3-H), 7.91 (1H, d, J = 8.5, C6-H), 10.24 (1H, d, J = 1.0, Ar(CO)H). The spectroscopic properties of this compound were consistent with the data available in the literature.¹

(Z)-3-(2-Bromo-4-methoxyphenyl)-2-*tert*-butoxycarbonylaminoacrylic acid methyl ester (6)

To solution of aldehyde **5** (512 mg, 2.38 mmol) and (\pm)-*N*-Boc- α -phosphonoglycine trimethyl ester (779 mg, 2.62 mmol) in anhydrous CH₂Cl₂ (11 mL) was added tetramethylguanidine (448 µL, 3.57 mmol) and the resulting solution was stirred at r.t. for 18 hrs. The reaction mixture was then diluted with CH₂Cl₂ (10 mL), washed with 10 % aq. citric acid solution (20 mL) and then saturated aq. NaHCO₃ solution (20

mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford a pale yellow oil. This was then purified by FCC (hexanes-EtOAc 7:2) to afford the dehydroamino ester **6** (909 mg, 99 %) as a viscous, colourless oil; v_{max} / cm^{-1} (film) 3336 (w), 1703 (s), 1231 (s), 1156 (s), 1026 (s); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.36 (9H, s, NHCO₂C(C<u>H</u>₃)₃), 3.83 (3H, s, ArOC<u>H</u>₃), 3.88 (3H, s, CO₂C<u>H</u>₃), 6.25 (1H, br s, N<u>H</u>CO₂C(CH₃)₃), 6.83 (1H, dd, J =8.5 and 2.5, C5-<u>H</u>), 7.16 (1H, d, J = 2.5, C3-<u>H</u>), 7.38 (1H, s, C7-<u>H</u>), 7.60 (1H, d, J =8.5, C6-<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 30.0 (NHCO₂C(<u>C</u>H₃)₃), 52.6 (ArO<u>C</u>H₃), 55.5 (CO₂<u>C</u>H₃), 80.7 (NHCO₂<u>C</u>(CH₃)₃), 113.6 (<u>C</u>-5), 117.7 (<u>C</u>-3), 124.3, 125.7 and 126.8 (<u>C</u>-1, <u>C</u>-2 and <u>C</u>-8), 127.3 (<u>C</u>-7), 130.3 (<u>C</u>-6), 152.4 (<u>C</u>-4), 160.1 (NH<u>C</u>O₂(CH₃)₃), 165.8 (<u>C</u>O₂CH₃); m/z (CI⁺) 388 and 386 ([M+H]⁺, 84 and 82 %), 287 and 285 ([M+H-Boc]⁺, 100 and 98); HRMS: (ESI) Found: [M+Na]⁺ 408.0414, C₁₆H₂₀⁷⁹BrNO₅ requires 408.0417. *The stereochemistry of this compound was assigned as Z on the basis of related reactions described in the literature*.²

(R)-3-(2-Bromo-4-methoxyphenyl)-2-*tert*-butoxycarbonylaminopropionic acid methyl ester (7)

In an Aldrich Atmosbag (N₂ atmosphere), MeOH (13 mL, deoxygenated by passage of N₂ for 2 hrs) was added to a 25 mL r.b. flask containing dehydroamino ester **6** (436 mg, 1.13 mmol) and [((*R*,*R*)-Et-DuPHOS)Rh(COD)]BF₄ (11.1 mg, 1.5 mol %) and the reaction vessel was sealed inside a hydrogenation bomb. The system was then purged with H₂ (6 purge cycles at a pressure of 5 atm.) and stirred vigorously at r.t for 40 hrs. The mixture was then concentrated *in vacuo* and filtered through a pad of silica (60, 5 × 5 cm) eluting with EtOAc (*ca.* 30 mL). The eluent was concentrated *in vacuo* to afford the amino ester derivative **7** (440 mg, 100 %, 99 % e.e.) as a colourless, viscous oil; $[\alpha]_D^{20}$ -5.1 (c = 0.8, CHCl₃); v_{max} / cm⁻¹ (film) 3374 (br), 2977 (br), 1715 (s), 1495 (s), 1243 (m), 1167 (s), 1029 (m); δ_H (400 MHz, CDCl₃) 1.39 (9H, s, NHCO₂C(C<u>H₃</u>)₃), 3.05 (1H, dd, *J* = 14.0 and 7.5, C7-<u>H</u>), 3.25 (1H, dd, *J* = 14.0 and 6.5, C7-<u>H</u>), 3.73 (3H, s, CO₂C<u>H₃</u>), 3.79 (3H, s, ArOC<u>H₃</u>), 4.60

(1H, ddd, J = 8.0, 7.5 and 6.5, C8-<u>H</u>), 5.08 (1H, d, <u>J</u> = 8.0, N<u>H</u>CO₂C(CH₃)₃), 6.81 (1H, dd, J = 8.5 and 3.0, C5-<u>H</u>), 7.10 (1H, d, J = 8.5, C6-<u>H</u>), 7.11 (1H, d, J = 3.0, C3-<u>H</u>); δ_{C} (100 MHz, CDCl₃) 28.2 (NHCO₂C(<u>C</u>H₃)₃), 37.7 (<u>C</u>-7), 52.3 (ArO<u>C</u>H₃), 53.7 (<u>C</u>-8), 55.5 (CO₂<u>C</u>H₃), 80.0 (NHCO₂<u>C</u>(CH₃)₃), 113.6 (<u>C</u>-5), 118.0 (<u>C</u>-3), 125.1 and 127.8 (<u>C</u>-1 and <u>C</u>-2), 131.6 (<u>C</u>-6), 155.0 (<u>C</u>-4), 158.1 (NH<u>C</u>O₂C(CH₃)₃), 170.3 (<u>C</u>O₂CH₃); HRMS: (ESI) Found: [M+Na]⁺ 410.0570, C₁₆H₂₂⁷⁹BrNO₅ requires 410.0574; Anal. Calcd for C₁₆H₂₂NO₅Br: C, 49.50; H, 5.71; N, 3.61. Found: C, 49.51; H, 5.41; N, 3.33.

The enantiomeric purity of this compound was determined by chiral HPLC (Chiralcel OJ-H, isocratic hexane - *i*-PrOH 95:5, 1.0 mL/min, 25 °C) against a racemic standard prepared under similar conditions using Wilkinson's catalyst ((Ph₃P)₃RhCl, 5 mol %, 7 atm., 48 hrs); t_R (major) = 9.1 min and t_R (minor) = 12.6 min.

[(R)-2-(2-Bromo-4-methoxyphenyl)-1-hydroxymethylethyl]-carbamic acid *tert*butyl ester (8)

To a solution of ester **7** (569 mg, 0.72 mmol) in anhydrous THF (10 mL) at -78 °C was added, dropwise *via* syringe, a solution of LiAlH₄ in THF (1 M, 2.16 mL, 2.16 mmol) over 2 minutes. The resulting solution was stirred at 0 °C for 30 minutes and then, sequentially, water (80 µL), aq. 4 M NaOH solution (80 µL) and water (240 µL) were added dropwise, *via* syringe (**Caution:** gas evolution), to form a colourless precipitate. The mixture was then filtered through Celite ®, rinsing copiously with CH₂Cl₂ (*ca.* 50 mL), washed with water (20 mL) and then brine (20 mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford the alcohol **8** (498 mg, 96 %) as a colourless, crystalline solid; m.p. 87-90 °C (Et₂O-hexanes); $[\alpha]_D^{20}$ +34.0 (c = 1.5, CHCl₃); ν_{max} / cm⁻¹ (film) 3394 (br m), 1689 (s), 1494 (s), 1243 (m), 1169 (m), 1028 (m); δ_H (270 MHz, CDCl₃) 1.39 (9H, s, NHCO₂C(C<u>H</u>₃)₃), 2.50 (1H, br s, O<u>H</u>), 2.62-

3.01 (2H, m, C7-<u>H</u>), 3.54-3.95 (3H, m, C8-<u>H</u> and C9-<u>H</u>), 3.78 (3H, s, ArOC<u>H</u>₃), 4.85 (1H, br d, J = 7.5, N<u>H</u>CO₂C(CH₃)₃), 6.81 (1H, dd, J = 8.5 and 2.5, C5-<u>H</u>), 7.10 (1H, d, J = 2.5, C3-<u>H</u>), 7.18 (1H, d, J = 8.5, C6-<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 28.3 (NHCO₂C(<u>CH₃</u>)₃), 36.5 (<u>C</u>-7), 53.3 and 55.5 (<u>C</u>-8 and ArO<u>C</u>H₃), 64.4 (<u>C</u>-9), 79.8 (NHCO₂C(CH₃)₃), 114.0 (<u>C</u>-5), 117.9 (<u>C</u>-3), 124.9 and 129.4 (<u>C</u>-1 and <u>C</u>-2), 131.9 (<u>C</u>-6), 156.3 (<u>C</u>-4), 158.8 (NH<u>C</u>O₂(CH₃)₃); HRMS: (ESI) Found: [M+Na]⁺ 382.0621, C₁₅H₂₂⁷⁹BrNO₄ requires 382.0624.

(R)-3-(2-Bromo-4-methoxyphenyl)-2-methylaminopropan-1-ol (10)

To a solution of *N*-Boc alcohol **8** (364 mg, 1.02 mmol) in anhydrous THF (12 mL) was added NaH (54.8 mg, 1.37 mmol, 60 % dispersion in mineral oil) causing immediate gas evolution. The resulting pale yellow slurry was then stirred at r.t. for 8 hrs prior to the addition of NaH (61.2 mg, 1.52 mmol, 60 % dispersion in mineral oil) and then MeI (254 µL, 4.08 mmol). After stirring for a further 1 hr excess NaH was quenched by careful addition of water (Caution: vigorous gas evolution) and the mixture was concentrated in vacuo. The residue was dissolved in MeOH (6 mL) and 50 % aq. NaOH solution (3 mL) and then heated at reflux (oil bath *ca*. 90 °C) for 2 hrs. After cooling to r.t., the mixture was diluted with brine (20 mL) and extracted with CH_2Cl_2 (3 × 15 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo* to afford a pale yellow solid. This was then dissolved in MeCN (20 mL), washed with hexane $(2 \times 10 \text{ mL})$ and concentrated in vacuo to afford essentially pure amino alcohol **10** (129 mg, 92 %) as a pale yellow wax; $[\alpha]_D^{20}$ +20.0 $(c = 0.6, CHCl_3); v_{max} / cm^{-1}$ (film) 3309 (br m), 1603 (m), 1491 (s), 1240 (s), 1026 (s); δ_H (400 MHz, CDCl₃) 2.12 (2H, br s, NHMe and CH₂OH), 2.42 (3H, s, NHCH₃), 2.71 (1H, dd, J = 13.0 and 7.0, C3-H), 2.83-2.89 (1H, m, C2-H), 2.91 (1H, dd, J = 13.0 and 6.5, C3-H), 3.31 (1H, dd, J = 11.0 and 5.0, C1-H), 3.61 (1H, dd, J = 11.0 and 4.0, C1<u>H</u>), 3.77 (3H, s, ArOC<u>H</u>₃), 6.80 (1H, dd, J = 8.5 and 2.5, C8-<u>H</u>), 7.09 (1H, d, J = 2.5, C6-<u>H</u>), 7.11 (1H, d, J = 8.5, C9-<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 33.7 (N<u>C</u>H₃), 36.9 (<u>C</u>-3), 55.5 (ArO<u>C</u>H₃), 60.4 (<u>C</u>-2), 61.8 (<u>C</u>-1), 113.6 (<u>C</u>-8), 118.1 (<u>C</u>-6), 124.8 and 130.0 (<u>C</u>-4 and <u>C</u>-5), 131.7 (<u>C</u>-9), 158.7 (<u>C</u>-7); HRMS: (ESI) Found: [M+H]⁺ 274.0437, C₁₁H₁₇⁷⁹BrNO₂ requires 274.0437.

(R)-4-(2-Bromo-4-methoxybenzyl)-3-methyl-1,2,3-oxathiazolidine 2,2-dioxide (4)

To an ice cold solution of amino alcohol 10 (468 mg, 1.7 mmol), imidazole (465 mg, 6.84 mmol) and Et₃N (501 µL, 3.66 mmol) in anhydrous CH₂Cl₂ (15 mL) was added, dropwise, via syringe, over 5 minutes, a solution of SOCl₂ (150 µL, 2.04 mmol) in anhydrous CH₂Cl₂ (3 mL). The resulting colourless solution was stirred at 0 °C for 2.5 hrs and then poured into aq. 1 M HCl (15 mL). The organic portion was isolated and the aqueous portion was extracted with CH_2Cl_2 (2 × 15 mL). The combined organic extracts were washed with water (15 mL) and then brine (15 mL), dried (Na₂SO₄) and concentrated in vacuo to afford intermediate cyclic sulfamidite (533 mg, 98 %) as a pale yellow oil. This material was used immediately in the next stage without further *purification*. To a vigorously stirred, ice cold solution of NaIO₄ (69 mg, 0.32 mmol) and RuCl₃ (0.1 mg, 0.15 mol %) in water (2 mL) was added, in one portion, a solution of sulfamidite (100 mg, 0.32 mmol) in EtOAc (3 mL). The resulting pale brown suspension was stirred at 0 °C until careful TLC analysis showed complete consumption of starting material (ca. 0.25 hrs; TLC conditions: 1:1 Et₂O-Petrol; intermediate sulfamidite co-elutes with sulfamidate 4 but can be stained using KMnO₄ dip without the need for heat). The mixture was then diluted with EtOAc (10 mL) and aq. 1 M HCl (10 mL) and the organic portion was isolated, washed with brine (10 mL), dried (Na₂SO₄) and concentrated in vacuo to afford a brown residue which was immediately purified by FCC (Et₂O-petrol 1:1, CH₂Cl₂ loading) to afford the sulfamidate 4 (88 mg, 82 %, 99 % e.e.) as a colourless crystalline solid; m.p. 82-83 °C

(Et₂O); $[\alpha]_{D}^{20}$ +8.9 (c = 0.9, CHCl₃); v_{max} / cm⁻¹ (film) 1605 (m), 1494 (m), 1345 (s), 1179 (s), 1028 (m), 972 (m); δ_{H} (400 MHz, CDCl₃) 2.79 (3H, s, NHC<u>H₃</u>), 2.88 (1H, dd, *J* = 14.0 and 9.0, C3-<u>H</u>), 3.26 (1H, dd, *J* = 14.0 and 5.5, C3-<u>H</u>), 3.75-3.85 (1H, m, C2-<u>H</u>), 3.80 (3H, s, Ar-OC<u>H₃</u>), 4.26 (1H, dd, *J* = 8.5 and 7.0, C1-<u>H</u>), 4.40 (1H, dd, *J* = 8.5 and 6.5, C1-<u>H</u>), 6.84 (1H, dd, *J* = 8.5 and 2.5, C6-<u>H</u>), 7.13 (1H, d, *J* = 2.5, C8-<u>H</u>), 7.14 (1H, d, *J* = 8.5, C5-<u>H</u>); δ_{C} (100 MHz, CDCl₃) 34.0 (NCH₃), 37.4 (C-3), 55.7 and 60.5 (ArOCH₃ and C-2), 70.5 (C-1), 114.1 (C-6), 118.7 (C-8), 124.7 and 126.2 (C-4 and C-9), 132.0 (C-5), 159.7 (C-7); *m*/*z* (CI⁺) 336 and 338 ([M+H]⁺, 100 and 95 %); HRMS: (CI⁺) Found: [M+H]⁺ 335.9891, C₁₁H₁₄⁷⁹BrNO₄S requires 335.9905. *The oxidation step could conveniently be carried out on a larger scale (up to 10 mmol) but resulted in diminished and variable yields of the product 4 (58 - 77 %).*

The enantiomeric purity of this compound was determined by chiral HPLC (Chiralcel OJ-H, isocratic hexane - *i*-PrOH 70:30, 1.0 mL/min, 25 °C); t_R (major) = 28.3 min and t_R (minor) = 31.7 min.

[(R)-5-(2-Bromo-4-methoxybenzyl)-1-methyl-2-oxopyrrolidin-3-yl]-phosphonic acid diethyl ester (11)

To a solution of triethyl phosphonoacetate (355 μ L, 1.79 mmol) in anhydrous THF (8 mL) was added *t*-BuOK (200 mg, 1.79 mmol) and the mixture was heated at 40 °C to form a clear solution. After 25 minutes, sulfamidate **4** (300 mg, 0.89 mmol) was added and the reaction was stirred at 40 °C for a further 15 hrs. The mixture was then cooled to r.t. and treated with aq. 5 M HCl (0.89 mmol) and stirred at r.t. for 3 hrs. The mixture was neutralised by addition of saturated aq. NaHCO₃ solution, stirred for 12 hrs, diluted with brine (10 mL) and extracted with CH₂Cl₂ (2 × 20 mL). The organic portion was dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by FCC (EtOAc-MeOH 19:1) to yield the α-phosphono lactam **11** (311 mg,

84 %, 4:3 d.r. A:B) as a colourless oil; v_{max} / cm^{-1} (film) 2981 (br w), 1687 (s), 1492 (m), 1240 (s), 1021 (s), 963 (m); δ_H (400 MHz, CDCl₃) 1.24-1.40 (12H, m, OCH₂CH₃) of A and B), 1.99-2.38 (4H, m, C3-H of A and B), 2.54 (1H, dd, J = 13.0 and 9.0, C5-H of A), 2.79 (1H, dd, J = 13.0 and 10.5, C5-H of B), 2.56-3.01 (8H, m, NCH₃ and C2-<u>H</u> of A and B), 3.27 (1H, dd, J = 13.0 and 4.0, C5-<u>H</u> of A), 3.37 (1H, dd, J = 13.0 and 4.0, C5-H of B), 3.78-3.85 (1H, m, C4-H of B), 3.79 (3H, s, ArOCH₃ of B), 3.80 (3H, s, ArOCH₃ of A), 3.85-3.94 (1H, m, C4-H of A), 4.09-4.33 (8H, m, OCH₂ of A and B), 6.80-6.85 (2H, m, C8-H of A and B), 7.08 (1H, d, J = 8.5, C7-H of A), 7.11-7.15 (2H, m, C10-<u>H</u> of A and B), 7.25 (1H, d, J = 8.5, C7-<u>H</u> of B); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.3-16.7 (4C, m, OCH₂CH₃ × 4), 25.1 (d, ${}^{2}J_{PC} = 4.0$, C-3 of B), 26.1 (d, ${}^{2}J_{PC}$ = 3.5, C-3 of A), 28.7 (2 signals) (NCH₃ of A and B), 38.6 (C-5 of A), 39.2 (C-5 of B), 40.0 (d, ${}^{1}J_{PC} = 144.5$, C-2 of A), 40.4 (d, ${}^{1}J_{PC} = 146.0$, C-2 of B), 55.6 and 55.7 (ArO<u>C</u>H₃ of A and B), 58.2 (d, ${}^{3}J_{PC} = 5.0$, <u>C</u>-4 of B), 58.5 (d, ${}^{3}J_{PC} = 6.0$, <u>C</u>-4 of B), 62.1-63.5 (4C, m, OCH₂CH₃ × 4), 113.8 (C-8 of A), 114.0 (C-8 of B), 118.4 (C-10 of A), 118.5 (C-10 of B), 124.7, 125.0, 128.0 and 128.5 (C-6 and C-11 of A and B), 131.7 (C-7 of B), 132.5 (C-7 of A), 159.3 (2 signals) (C-9 of A and B), 169.3 (d, ²J_{PC} = 3.5, <u>C</u>-1 of B), 169.4 (d, ${}^{2}J_{PC}$ = 3.5, <u>C</u>-1 of A); δ_{P} (121 MHz, CDCl₃) 25.0 (B) and 25.1 (A); HRMS: (ESI) Found: [M+Na]⁺ 456.0545, C₂₂H₂₅⁷⁹BrNO₅P requires 456.0546.

(S)-5-(2-Bromo-4-methoxybenzyl)-1-methyl-3-methylenepyrrolidin-2-one (3)

NaH (21.4 mg, 0.54 mmol, 60 % dispersion in mineral oil) was washed, *via* syringe, with anhydrous hexane (2×0.5 mL) and then suspended in anhydrous THF (1 mL). To this suspension was added, *via* syringe, a solution of α -phosphono lactam **11** (217 mg, 0.51 mmol) in anhydrous THF (1 mL and 0.5 mL line wash) resulting in immediate gas evolution and the formation of a brown solution. Paraformaldehyde (30.6 mg, 1.02 mmol) was added and the mixture was stirred at r.t. for 3 hrs. The

reaction was quenched by addition of aq. 1 M HCl (2 mL), then diluted with brine (10 mL) and extracted with EtOAc (2 \times 20 mL). The combined organic extracts were washed with aq. 1 M NaOH solution (20 mL) and then brine (20 mL), dried (Na₂SO₄) and concentrated in vacuo. The residue was dissolved in EtOAc and rapidly filtered through a short plug of silica (60, 2×2 cm) eluting with EtOAc (30 mL). Concentration of the eluent *in vacuo* afford the exocylic alkene **3** (116 mg, 74 %) as a pale yellow oil. This material was unstable to chromatography (60 silica or neutral alumina) and so was used in the next stage without further purification; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.46-2.55 (2H, m, C3-H and C5-H), 2.68 (1H, dddd, J = 17.0, 8.0, 3.0 and 3.0, C3-H), 3.00 (3H, s, NCH₃), 3.29 (1H, dd, J = 13.5 and 4.5, C5-H), 3.80 (3H, s, ArOC<u>H</u>₃), 3.80-3.88 (1H, m, C4-<u>H</u>), 5.28 (1H, ddd, *J* = 3.0, 3.0 and 1.0, C12-<u>H</u>), 5.97 (1H, ddd, J = 3.0, 3.0 and 1.0, C12-H), 6.82 (1H, dd, J = 8.5 and 3.0, C8-H), 7.09 (1H, d, J = 8.5, C7-<u>H</u>), 7.13 (1H, d, J = 3.0, C10-<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 28.8 (N<u>C</u>H₃), 30.4 (<u>C</u>-3), 39.3 (<u>C</u>-5), 55.6 and 56.0 (ArO<u>C</u>H₃ and <u>C</u>-4), 113.8 (<u>C</u>-8), 115.5 (<u>C</u>-12), 118.5 (C-10), 125.0 and 128.3 (C-6 and C-11), 131.8 (C-7), 138.9 (C-2), 159.2 (C-9), 168.2 (C-1).

(1R,9R)-4-Methoxy-1,10-dimethyl-10-azatricyclo[7.2.1.0^{2,7}]dodeca-2,4,6-trien-11one (12) *and* (R)-5-(4-methoxybenzyl)-1,3-dimethyl-1,5-dihydropyrrol-2-one (16)

A stock solution was prepared by dissolving AIBN (42 mg, 0.26 mmol, freshly recrystallised from Et₂O and dried under high vacuum (r.t., 0.01 mmHg) for 4 hrs) and freshly prepared Bu₃SnH (200 mg, 0.57 mmol) in anhydrous benzene (32 mL, freshly distilled from sodium benzophenone ketyl and further deoxygenated by passage of N₂ for 2 hrs). To a flask containing a solution of alkene **3** (28 mg, 0.09 mmol) in refluxing benzene (8 mL, prepared as above) was added a portion of the stock solution (8 mL) over 1.5 hrs *via* syringe pump. After stirring for a further 1 hr the mixture was cooled to r.t. and concentrated *in vacuo*. The residue was dissolved in MeCN (10 mL) and washed with hexane (2 × 5 mL). The MeCN portion was then

concentrated *in vacuo* to afford a colourless oil which was purified by FCC (EtOAchexanes 4:1) to yield the tricycle **12** (13.0 mg, 62 %) as a colourless crystalline solid and subsequently the endocylic alkene **16** (3.7 mg, 18 %) as a colourless oil.

12: m.p. 147-148 °C (EtOAc-hexanes) [Lit.³,142-143 °C (racemate, no recrystallisation solvent quoted)]; $[\alpha]_D^{20}$ -20.0 (c = 1.2, CHCl₃); v_{max} / cm^{-1} (film) 2934 (m), 1695 (s), 1289 (m), 1244 (m), 1040 (m); δ_H (400 MHz, CDCl₃) 1.55 (3H, s, C2-CH₃), 2.03 (1H, d, J = 10.5, C3-H), 2.18 (1H, dd, J = 10.5 and 5.5, C3-H), 2.83 (3H, s, NCH₃), 2.87-3.00 (2H, m, C5-H), 3.78 (3H, s, ArOCH₃), 3.84 (1H, dt, J = 5.5 and 2.5, C4-H), 6.74 (1H, dd, J = 8.5 and 3.0, C8-H), 6.84 (1H, d, J = 3.0, C10-H), 6.99 (1H, d, J = 8.5, C7-H); δ_C (100 MHz, CDCl₃) 17.5 (C2-CH₃), 27.6 (NCH₃), 30.0 (C-5), 40.7 (C-3), 45.2 (C-2), 54.9 and 55.3 (ArOCH₃ and C-4), 110.1 (C-10), 112.8 (C-8), 124.4 (C-6), 130.7 (C-7), 141.5 (C-11), 158.1 (C-9), 177.1 (C-1); m/z (Cl⁺) 232 ([M+H]⁺, 100 %); HRMS: (Cl⁺) Found: [M+H]⁺ 232.1331, C₁₄H₁₈NO₂ requires 232.1338. *The spectroscopic properties of this compound were consistent with the data available in the literature.*³

16: This material was contaminated with ca. 5 % of **16** as judged by ¹H NMR; v_{max} / cm^{-1} (film) 2924 (br), 1685 (s), 1513 (m), 1248 (m), 1035 (w); δ_{H} (400 MHz, CDCl₃) 1.84 (3H, t, J = 1.5, C10-<u>H</u>), 2.51 (1H, dd, J = 13.5 and 9.0, C5-<u>H</u>), 3.01 (3H, s, NC<u>H</u>₃), 3.11 (2H, dd, J = 13.5 and 5.0, C5-<u>H</u>), 3.80 (3H, s, ArOC<u>H</u>₃), 3.94-4.01 (1H, m C4-<u>H</u>), 6.50 (1H, t, J = 1.5, C3-<u>H</u>), 6.84 (2H, d, J = 9.0, C8-*H*), 7.07 (2H, d, J = 9.0 C7-<u>H</u>); δ_{C} (100 MHz, CDCl₃) 11.2 (<u>C</u>-10), 27.7 (N<u>C</u>H₃), 37.0 (<u>C</u>-5), 55.3 (ArO<u>C</u>H₃), 63.4 (<u>C</u>-4), 114.0 (<u>C</u>-8), 128.4 and 135.3 (<u>C</u>-2 and <u>C</u>-6), 130.1 (<u>C</u>-9), 139.5 (<u>C</u>-3), 158.5 (<u>C</u>-9), 172.0 (<u>C</u>-1); m/z (CI⁺) 232 ([M+H]⁺, 100 %); HRMS: (CI⁺) Found: [M+H]⁺ 232.1335, C₁₄H₁₈NO₂ requires 232.1338.

Preparation of Bu₃SnH

This was prepared according to the procedure of Hayashi *et al.*⁴ Thus, $(Bu_3Sn)_2O$ (1.7 mL, 3.36 mmol) was added *via* syringe to a N₂ purged flask containing poly(methylhydrosiloxane) (401 µL, 6.72 mmol) causing a mild exotherm. The mixture was stirred at r.t. for 1 hr (until no further exotherm was observed) and then distilled (*ca.* 85 °C, 0.1 mmHg) to afford Bu₃SnH as a colourless oil (*N.B.* An initial

minor fraction (b.p. *ca.* 65 °C, 0.1 mmHg) was discarded). *This material was* generally prepared immediately prior to use but, if desired, could be stored under N_2 at 5 °C for up to 48 hrs without any evidence (cloudiness) of decomposition.

(+)-O-Methyl aphanorphine (13)

Lactam **12** was converted to (+)-*O*-methyl aphanorphine **13** using the procedure described by Funk;³ $[\alpha]_D^{20}$ +8.3 (c = 0.5, CHCl₃); lit. $[\alpha]_D^{28}$ +8.1 (c 1.2, CHCl₃),⁵ $[\alpha]_D^{20}$ +9.4 (c 0.3, CHCl₃),⁶ $[\alpha]_D^{20}$ +8.7 (c 1.06, CHCl₃);⁷ δ_H (400 MHz, CDCl₃) 1.48 (3H, s), 1.84 (1H, d, *J* = 11.0), 2.01 (1H, ddd, *J* = 11.0, 5.5 and 1.0), 2.47 (3H, s), 2.73 (1H, d, *J* = 9.0), 2.80-2.87 (2H, m), 3.01 (1H, d, *J* = 17.0), 3.39 (1H, ddd, *J* = 5.5, 3.0 and 3.0), 3.78 (3H, s), 6.68 (1H, dd, *J* = 8.5 and 2.5), 6.78 (1H, d, *J* = 2.5), 7.02 (1H, d, *J* = 8.5); δ_C (125 MHz, CDCl₃) 21.5, 35.7, 41.6, 41.7, 43.2, 55.3, 61.3, 71.3, 109.4, 110.9, 126.1, 130.2, 148.1, 157.7 . *The spectroscopic properties of this compound were consistent with the data available in the literature.*⁸

(C) References

- 1. Y. Lear and T. Durst, *Can. J. Chem.*, 1997, **75**, 817.
- 2. U. Schmidt, A. Lieberknecht and J. Wild, *Synthesis*, 1984, 53.
- 3. J. R. Fuchs and R. L. Funk, *Org. Lett.*, 2001, **3**, 3923.
- 4. K. Hayashi, J. Iyoda and I. Shiihara, J. Organometal. Chem., 1967, 10, 81.
- 5. M. Shimizu, T. Kamikubo and K. Ogasawara, *Heterocycles*, 1997, 46, 21.
- O. Tamura, T. Yanagimachi, T. Kobayashi and H. Ishibashi, *Org. Lett.*, 2001, 3, 2427.
- 7. H. Zhai, S. Luo, C. Ye and Y. Ma, J. Org. Chem., 2003, 68, 8268.
- 8. S. Shiotani, H. Okada, K. Nakamata, T. Yamamoto and F. Sekino, *Heterocycles*, 1996, **43**, 1031.