Electronic Supplementary Information:

Crystal Structure of an NPNA-Repeat Motif from the Circumsporozoite Protein of the Malaria Parasite *Plasmodium falciparum*

Arin Ghasparian, Kerstin Moehle, Anthony Linden and John A. Robinson*

Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

1. NMR studies

¹H NMR chemical shift assignments at 600 MHz for the major *trans* rotamer of the peptide Ac-Ala-Asn-Pro-Asn-Ala-NH₂ in H₂O/D₂O (9:1), pH 5, at 278 K were derived by standard methods from DQF-COSY, TOCSY and 250 ms ROESY spectra, and are given below (Table-1S).

Figure-1S. 600 MHz ¹H NMR spectrum of Ac-Ala-Asn-Pro-Asn-Ala-NH₂.

Table-1S. ¹H NMR assignments and ³J coupling constants (Hz).

Residue	NH	HC(a) HC(β)	Others	$^{3}J_{HNH\alpha}$	$^{3}J_{H\alpha H\beta}$
Ac-ANI	PNA-NI	H_2				·
Ac	-	-	-	CH ₃ (γ) 2.02		
Ala ¹	8.42	4.24	1.34	-	5.5	
Asn ²	8.67	4.97	2.89, 2.74	NH(ε) 7.80; NH(ζ) 7.10	7.3	7.2
Pro ³	-	4.42	2.30, 1.98	CH ₂ (γ) 2.03, 2.03; CH ₂ (δ) 3.82, 3.82	-	9.1, 4.5
Asn ⁴	8.51	4.71	2.88, 2.75	NH(ε) 7.77; NH(ζ) 7.07	7.7	9.1, 5.6
Ala ⁵	8.11	4.24	1.43	-	5.9	
NH ₂	-	-	-	NH(ε) 7.65; NH(ζ) 7.19		

- # Supplementary Material (ESI) for Chemical C@mmunications
- # This journal is © The Royal Society of Chemistry 2005

_

It is not possible here to describe fully the conformational dynamics of this short linear peptide in solution on the basis of the available NMR data. Nevertheless, 2D spectra were analysed in the program XEASY (Bartels, C., Xia, T., Billeter, M, Guentert, P., Wuethrich, K. The programm XEASY for computer-supported NMR spectral analysis of biological macromolecules. *J. Biomol. NMR* **1995**, *6*, 1-10). Distance restraints were obtained by integrating cross peaks in ROESY spectra, translating these into upper-distance limits using the CALIBA module of DYANA (Güntert, P.; Mumenthaler, C.; Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. *J. Mol. Biol.* **1997**, *273*, 283-298) and correcting for resonance offset effects. The distance restraints are summarized below (Table-2S):

Table-2S. ROE cross peaks and derived distance restraints. The prefix Q indicates the use of a pseudoatom and a pseudoatom correction.

Peak-1	Peak-2	dist.rstrnt (Å)
0 ACE QAC	1 ALA HN	4.42
0 ACE QAC	2 ASN HN	5.19
1 ALA HN	1 ALA HA	3.30
1 ALA HN	1 ALA QB	4.82
1 ALA HN	2 ASN HN	4.17
1 ALA HA	2 ASN HN	2.59
1 ALA HA	2 ASN HD22	4.97
1 ALA QB	2 ASN HN	6.03
1 ALA QB	3 pro Qd	7.42
2 ASN HN	2 ASN HA	2.65
2 ASN HN	2 ASN HB2	3.30
2 ASN HN	2 ASN HB3	3.42
2 ASN HN	3 pro Qd	6.39
2 ASN HN	5 ALA QB	5.88
2 ASN HA	2 ASN HB2	3.89
2 ASN HA	2 ASN HB3	4.07
2 ASN HA	3 PRO QD	4.63
2 ASN HB2	2 ASN HD21	3.79
2 ASN HB2	2 ASN HD22	5.50
2 ASN HB2	3 PRO QD	6.39
2 ASN HB3	2 ASN HD21	4.45
2 ASN HB3	2 ASN HD22	5.50
2 ASN HB3	3 PRO QD	5.87
2 ASN HB3	5 ALA QB	5.47
3 PRO HA	3 PRO HB2	3.14
3 PRO HA	3 PRO HB3	2.52
3 PRO HA	3 PRO QG	5.18
3 PRO HA	3 PRO QD	5.68
3 PRO HA	4 ASN HN	2.74
3 PRO HA	5 ALA HN	4.54
3 PRO HB2	3 PRO QD	4.53
3 PRO HB2	4 ASN HN	3.39
3 PRO HB3	3 PRO QD	5.68
3 PRO QG	3 PRO QD	5.52
3 PRO QD	4 ASN HN	6.30
4 ASN HN	4 ASN HA	3.05
4 ASN HN	4 ASN HB2	3.17
4 ASN HN	4 ASN HB3	3.67
4 ASN HN	5 ALA HN	3.64
4 ASN HA	4 ASN HB2	2.96
4 ASN HA	4 ASN HB3	2.71
4 ASN HA	4 ASN HD21	5.50
4 ASN HA	4 ASN HD22	5.50
4 ASN HA	5 ALA HN	2.83

4	ASN	HA	6	NH2	HEN	5.50
4	ASN	HB2	4	ASN	HD21	3.92
4	ASN	HB2	4	ASN	HD22	5.50
4	ASN	HB2	5	ALA	HN	4.23
4	ASN	HB3	4	ASN	HD21	4.85
4	ASN	HB3	4	ASN	HD22	5.50
4	ASN	HB3	5	ALA	HN	4.11
4	ASN	HB3	5	ALA	HA	4.35
5	ALA	HN	5	ALA	HA	3.21
5	ALA	HN	5	ALA	QB	4.67
5	ALA	HN	6	NH2	HEN	5.00
5	ALA	HA	6	NH2	HEN	3.58
5	ALA	HA	6	NH2	HZN	4.82
5	ALA	QB	6	NH2	HEN	5.69
5	ALA	QB	6	NH2	HZN	5.88

2. Crystallography

The structure of $C_{21}H_{34}N_8O_8\cdot 3H_2O$ (AGI62) has been solved and refined successfully with no unusual features. The space group permits the compound in the crystal to be enantiomerically pure, but the absolute configuration of the molecule has not been determined. The enantiomer used in the refinement was based on the expected *S*-configuration of all peptide units in the molecule. The asymmetric unit contains one peptide and three water molecules. The peptide molecule displays two intramolecular hydrogen bonds, which serve to maintain a turn conformation. The remaining N-H groups and water molecules are involved in intermolecular hydrogen bonds which link the peptide and water molecules into an infinite three-dimensional framework. See Table 3S for full details. # Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Figure-2S. *ORTEP*¹ representation of the molecule (50% probability ellipsoids; H-atoms given arbitrary displacement parameters for clarity)

Figure-3S. Molecular packing projected down the *c*-axis showing the hydrogen bonding scheme (equivalent isotropic spheres for atoms; uninvolved H-atoms omitted for clarity).

EXPERIMENTAL

Crystal-Structure Determination. – A crystal of C₂₁H₃₄N₈O₈·3H₂O, obtained from D₂O, was mounted on a glass fibre and used for a low-temperature X-ray structure determination. All measurements were made on a *Nonius KappaCCD* area-detector diffractometer² using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and an *Oxford Cryosystems Cryostream 700* cooler. The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of 2373 reflections in the range 4° < 2 θ < 50°. The mosaicity was 0.527(3)°. A total of 208 frames were collected using ω scans with κ offsets, 10 seconds exposure time and a rotation angle of 2.0° per frame, and a crystal-detector distance of 30.0 mm.

Data reduction was performed with *HKL Denzo* and *Scalepack*³. The intensities were corrected for Lorentz and polarization effects, but not for absorption. The space group was determined from packing considerations, a statistical analysis of intensity distribution, and the

successful solution and refinement of the structure. Equivalent reflections were merged. Data collection and refinement parameters are given in the cif file. A view of the molecule is shown in Figure-2S. The crystallographic data are available through the Cambridge Crystallographic Data Center (CCDC 280279).

The structure was solved by direct methods using *SIR924*, which revealed the positions of all non-hydrogen atoms. The asymmetric unit contains one peptide and three water molecules. The non-hydrogen atoms were refined anisotropically. The H-atoms of the water molecules and the primary amide N-atoms were placed in the positions indicated by a difference electron density map and their positions were allowed to refine together with individual isotropic displacement parameters. All remaining H-atoms were placed in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to $1.2U_{eq}$ of its parent C-atom ($1.5U_{eq}$ for the methyl groups). Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimised the function $\Sigma w (F_0^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. Plots of $\Sigma w (F_0^2 - F_c^2)^2$ versus $F_c / F_c(\max)$ and resolution showed no unusual trends. A correction for secondary extinction was not applied. One reflection, whose intensity was considered to be an extreme outlier, was omitted from the final refinement.

Neutral atom scattering factors for non-hydrogen atoms were taken from Maslen, Fox and O'Keefe^{5a}, and the scattering factors for H-atoms were taken from Stewart, Davidson and Simpson⁶. Anomalous dispersion effects were included in F_c^7 ; the values for f' and f'' were those of Creagh and McAuley^{5b}. The values of the mass attenuation coefficients are those of Creagh and Hubbel^{5c}. All calculations were performed using the *SHELXL97*⁸ program.

D	Н	А	D-H	Н•••А	D···A	D-H···A
N(1)	-H(1)	••••0(30 ⁱ)	0.88	2.10	2.954(4)	164
N(4)	-H(4)	···0(27 ⁱⁱ)	0.88	1.99	2.863(4)	172
N(10)	-H(10)	····O(21)	0.88	1.94	2.774(3)	157
N(13)	-H(13)	••••0(6)	0.88	2.43	3.257(4)	157
N(16)	-Н(161))0(3 ⁱⁱⁱ)	0.94(5)	1.89(5)	2.837(4)	178(4)
N(16)	-Н(162)) \cdots 0(17 ^{iv})	0.83(4)	2.05(4)	2.873(4)	173(6)
N(22)	-Н(221)	$) \cdots 0(15^{v})$	0.83(5)	1.97(5)	2.790(4)	171(4)
N(22)	-Н(222)	$\cdots 0(30^{v})$	0.80(6)	2.44(6)	3.128(5)	144(5)
N(28)	-Н(281))···O(6 ^{vi})	0.91(5)	2.50(5)	2.952(4)	111(3)
N(28)	-Н(282)	$) \cdots 0(31^{V})$	0.86(5)	2.12(5)	2.971(5)	168(4)
0(30)	-H(301)) \cdots 0(12 ^{vii})	0.88(6)	2.10(6)	2.969(4)	168(5)

Table-3S. Hydrogen bonding geometry (Å, °).

0(30)	-H(302) · · · O(32)	0.8(1)	2.0(1)	2.779(5)	154(8)
0(31)	-H(311)O(27)	0.82(7)	2.09(7)	2.888(4)	163(6)
0(31)	-H(312)O(21 ^{vii})	0.81(8)	1.99(8)	2.798(4)	174(7)
0(32)	-H(321)O(15)	0.89(7)	2.07(7)	2.945(4)	165(5)
0(32)	-H(322)O(3 ^{iv})	0.90(7)	1.99(7)	2.855(4)	161(5)

Atoms with Roman numerals refer to the following symmetry related positions:

i 1+x, -1+y, 1+z	ii 1+x, -1+y, z	iii x, y, -1+z
iv -1+x, y, -1+z	v 1+x, y, z	vi <i>x</i> , 1+ <i>y</i> , <i>z</i>
vii -1+x, y, z		

N(10)-H and N(13)-H form intramolecular hydrogen bonds with the amide O-atoms that are seven atoms back along the peptide backbone. Each of these interactions has the graph set motif⁹ of S(10) and serves to maintain a helical conformation at one end of the peptide. The remaining N-H groups are involved in intermolecular hydrogen bonds with amide O-atoms of neighbouring molecules or with O-atoms of the water molecules. The water molecules form intermolecular hydrogen bonds with other water molecules and with amide O-atoms of neighbouring peptide molecules. The intermolecular interactions link the peptide and water molecules into an infinite three-dimensional framework.

REFERENCES

- C.K. Johnson, *ORTEPII*, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
- (2) R. Hooft, *KappaCCD Collect Software*, Nonius BV, Delft, The Netherlands, 1999.
- (3) Z. Otwinowski, W. Minor, in *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, Eds. C.W. Carter Jr., R.M. Sweet, Academic Press, New York, 1997, pp. 307-326.
- (4) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, *SIR92, J. Appl. Crystallogr.* **1994**, *27*, 435.
- (5) a) E.N. Maslen, A.G. Fox, M.A. O'Keefe, in 'International Tables for Crystallography', Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1,

pp. 477-486; b) D.C. Creagh, W.J. McAuley, *ibid*. Table 4.2.6.8, pp. 219-222; c) D.C. Creagh, J.H. Hubbell, *ibid*. Table 4.2.4.3, pp. 200-206.

- (6) R.F. Stewart, E.R. Davidson, W.T. Simpson, J. Chem. Phys. 1965, 42, 3175-3187.
- (7) J.A. Ibers, W.C. Hamilton, *Acta Crystallogr.* **1964**, *17*, 781-782.
- (8) G.M. Sheldrick, *SHELXL97, Program for the Refinement of Crystal Structures*, University of Göttingen, Germany, 1997.
- (9) J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem. **1995**, 107, 1689-1708; Angew. Chem. Int. Ed. Engl. **1995**, 34, 1555-1573.

Coordinates in PDB format:

ATOM	1	03	0	9.530	-1.192	10.523	1.00	0.00	0
ATOM	2	06	0	7.288	-0.792	7.358	1.00	0.00	0
ATOM	3	09	0	4.271	1.903	7.753	1.00	0.00	0
ATOM	4	012	0	5.959	2.277	3.194	1.00	0.00	0
ATOM	5	015	0	3.988	-0.689	3.452	1.00	0.00	0
ATOM	6	017	0	12.356	-2.467	10.932	1.00	0.00	0
ATOM	7	021	0	9.067	2.063	6.451	1.00	0.00	0
ATOM	8	027	0	5.092	5.364	6.597	1.00	0.00	0
ATOM	12	N1	0	10.520	-3.718	11.211	1.00	0.00	N
ATOM	13	N4	0	9.938	-1.608	8.347	1.00	0.00	N
ATOM	14	N7	0	7.592	0.872	8.850	1.00	0.00	N
ATOM	15	N10	0	6.314	2.135	6.790	1.00	0.00	N
ATOM	16	N13	0	6.243	0.506	4.559	1.00	0.00	N
ATOM	17	N16	0	5.141	-1.422	1.668	1.00	0.00	N
ATOM	18	N22	0	10.322	1.466	4.690	1.00	0.00	N
ATOM	19	N28	0	7.304	5.690	6.925	1.00	0.00	N
ATOM	20	C2	0	10.063	-3.469	9.865	1.00	0.00	C
ATOM	21	C3	0	9.848	-1.974	9.618	1.00	0.00	C
ATOM	22	C5	0	9.574	-0.263	7.898	1.00	0.00	C
ATOM	23	CG	0	8.058	-0.078	8.027	1.00	0.00	C
ATOM	24	C8	0	6.148	1.106	9.006	1.00	0.00	C
ATOM	25	C9	0	5.495	1.755	7.780	1.00	0.00	C
ATOM	26	C11	0	5.871	2.738	5.551	1.00	0.00	C
ATOM	27	C12	0	6.036	1.820	4.337	1.00	0.00	C
ATOM	28	C14	0	6.407	-0.417	3.454	1.00	0.00	C
ATOM	29	C15	0	5.062	-0.847	2.847	1.00	0.00	C
ATOM	30	C17	0	11.668	-3.191	11.658	1.00	0.00	C
ATOM	31	C18	0	12.061	-3.563	13.055	1.00	0.00	C
ATOM	32	C19	0	8.742	-4.188	9.636	1.00	0.00	C
ATOM	33	C20	0	10.020	-0.139	6.446	1.00	0.00	C
ATOM	34	C21	0	9.775	1.224	5.852	1.00	0.00	C
ATOM	35	C23	0	8.396	1.828	9.642	1.00	0.00	C
ATOM	36	C24	0	7.371	2.863	10.090	1.00	0.00	C
ATOM	37	C25	0	6.080	2.048	10.220	1.00	0.00	C
ATOM	38	C26	0	6.609	4.057	5.293	1.00	0.00	C
ATOM	39	C27	0	6.273	5.091	6.337	1.00	0.00	C
ATOM	40	C29	0	7.190	-1.649	3.891	1.00	0.00	C
ATOM	41	Hl	0	10.037	-4.224	11.745	1.00	0.00	H
ATOM	42	Н2	0	10.742	-3.814	9.217	1.00	0.00	H
ATOM	43	Н4	0	10.226	-2.192	7.755	1.00	0.00	H
ATOM	44	Н5	0	10.047	0.419	8.456	1.00	0.00	H
ATOM	45	Н8	0	5.688	0.245	9.220	1.00	0.00	H
ATOM	46	Н10	0	7.178	2.011	6.901	1.00	0.00	H
ATOM	47	H11	0	4.897	2.947	5.645	1.00	0.00	H
ATOM	48	H13	0	6.280	0.206	5.385	1.00	0.00	H

ATOM	49	H14	0	6.934	0.046	2.740	1.00	0.00	Н
ATOM	50	H161	0	5.940	-1.428	1.166	1.00	0.00	Н
ATOM	51	H162	0	4.498	-1.809	1.300	1.00	0.00	H
ATOM	52	H181	0	12.458	-2.787	13.501	1.00	0.00	H
ATOM	53	H182	0	12.713	-4.294	13.028	1.00	0.00	H
ATOM	54	H183	0	11.267	-3.853	13.552	1.00	0.00	H
ATOM	55	H191	0	8.073	-3.851	10.267	1.00	0.00	H
ATOM	56	H192	0	8.866	-5.150	9.774	1.00	0.00	H
ATOM	57	H193	0	8.436	-4.026	8.718	1.00	0.00	H
ATOM	58	H201	0	10.986	-0.343	6.390	1.00	0.00	H
ATOM	59	H202	0	9.537	-0.814	5.905	1.00	0.00	H
ATOM	60	H221	0	10.732	0.886	4.261	1.00	0.00	H
ATOM	61	H222	0	10.055	2.110	4.292	1.00	0.00	H
ATOM	62	H231	0	9.103	2.243	9.087	1.00	0.00	H
ATOM	63	H232	0	8.817	1.382	10.420	1.00	0.00	H
ATOM	64	H241	0	7.272	3.582	9.418	1.00	0.00	H
ATOM	65	H242	0	7.627	3.266	10.958	1.00	0.00	H
ATOM	66	H251	0	5.282	2.632	10.177	1.00	0.00	H
ATOM	67	H252	0	6.063	1.539	11.069	1.00	0.00	H
ATOM	68	H261	0	7.585	3.893	5.297	1.00	0.00	H
ATOM	69	H262	0	6.361	4.402	4.399	1.00	0.00	H
ATOM	70	H281	0	7.109	6.390	7.479	1.00	0.00	H
ATOM	71	H282	0	8.090	5.512	6.613	1.00	0.00	H
ATOM	72	H291	0	6.707	-2.103	4.613	1.00	0.00	H
ATOM	73	H292	0	8.076	-1.377	4.212	1.00	0.00	H
ATOM	74	H293	0	7.291	-2.259	3.131	1.00	0.00	H
ATOM	9	030	0	1.151	2.826	2.350	1.00	0.00	0
ATOM	75	H301	0	0.316	2.785	2.641	1.00	0.00	H
ATOM	76	H302	0	1.281	2.134	1.919	1.00	0.00	H
ATOM	10	031	0	2.347	4.683	6.014	1.00	0.00	0
ATOM	77	H311	0	3.136	4.918	6.014	1.00	0.00	H
ATOM	78	H312	0	2.150	3.903	6.149	1.00	0.00	H
ATOM	11	032	0	1.757	0.183	1.739	1.00	0.00	0
ATOM	79	H321	0	2.372	-0.233	2.239	1.00	0.00	H
ATOM	80	H322	0	1.369	-0.384	1.155	1.00	0.00	Н