Supporting information

Skeletal Change In The PNP Pincer Ligand Leads To A Highly Regioselective Alkyne Dimerization Catalyst

Wei Weng, Chengyun Guo, Remle Çelenligil-Çetin, Bruce M. Foxman, and Oleg V. Ozerov*

Department of Chemistry, Brandeis University, MS015, 415 South Street, Waltham, Massachusetts 02454.

Experimental

General considerations. Unless specified otherwise, all manipulations were performed under an argon atmosphere using standard Schlenk line or glovebox techniques. Toluene, ethyl ether, $\mathrm{C}_{6} \mathrm{D}_{6}$, THF, pentane, were dried over $\mathrm{NaK} / \mathrm{Ph}_{2} \mathrm{CO} / 18$ -crown-6, distilled or vacuum transferred and stored over molecular sieves in an Ar-filled glovebox. Compounds $[(\mathrm{COD}) \mathrm{RhCl}]_{2}{ }^{1}$, $\mathbf{1 a} \mathbf{a} \mathbf{c}$ and $\mathbf{2 a - c} \mathbf{c}^{2,3}$ were prepared as described previously. All other chemicals were used as received from commercial vendors. NMR spectra were recorded on a Varian iNova $400\left({ }^{1} \mathrm{H}\right.$ NMR, $399.755 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR, 100.518 MHz; ${ }^{31}$ P NMR, 161.822 MHz.) spectrometer. Chemical shifts are reported in δ (ppm). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, the residual solvent peak was used as an internal reference. ${ }^{31} \mathrm{P}$ NMR spectra were referenced externally using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at $0 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR was referenced externally to $1.0 \mathrm{M} \mathrm{CF}_{3} \mathrm{COOH}$ in CDCl_{3} at -78.5 ppm . Gas chromatography/mass spectra (GC/MS) were recorded on a Hewlett Packard G1800C

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
GCD System (GCD Plus Gas Chromatograph Electron Ionization Detector) employing HP-5MS from Agilent Technologies (30 m (column length) 0.25 mm (i.d.)). FT-IR spectra were recorded on Perkin Elmer spectrometer BX_{2} by using v 2.00 software.

NMR integration. Our empirical observations lead us to utilize a $\pm 3 \%$ error for the product fractions calculated from NMR integrations. Thus, all values for percent fractions should be taken with a $\pm 3 \%$ margin of error. This probably varies depending on what the ratios are exactly. A determination of a $98: 2$ ratio is more accurate in absolute terms than a $50: 50$ determination. Cases where the integration error is assumed to be larger are so noted.
(${ }^{\mathbf{T}} \mathbf{P N P}$) $\mathbf{R h H}_{\mathbf{2}} \mathbf{(3 a)}$. To 429 mg of $\mathbf{2 a}(0.74 \mathrm{mmol})$ in 20 mL of 2-propanol was added 0.35 g of $\mathrm{NaBH}_{4}(3.7 \mathrm{mmol})$ and the mixture was stirred at room temperature for 4 h . Then all volatiles were removed in vacuo. The residue was extracted with pentane several times and filtered through a pad of Celite. The filtrate was concentrated and cooled at $-35^{\circ} \mathrm{C}$ for 12 h . Compound 3a (yellow solid) was collected by filtration and dried in vacuo. Yield: $0.26 \mathrm{~g}(64 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.86(\mathrm{~d}, 4 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{Ar}-H)$, $6.49(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{Ar}-H), 3.01$ (s, 4H, - $\mathrm{CH}_{2} \mathrm{CH}_{2}-$), 1.99 (m, 4H, CHMe 2), 1.15 (app. quartet (dvt), 12H, CHMe $), 0.98$ (app. quartet (dvt), $12 \mathrm{H}, \mathrm{CHMe}$), $-15.3\left(\mathrm{dt}, 2 \mathrm{H}, J_{\mathrm{Rh}-\mathrm{H}}=\right.$ $\left.21 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{H}}=10 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 163.7(\mathrm{dt}, J=12 \mathrm{~Hz}, J=2 \mathrm{~Hz})$, 134.2 (t, $J=5 \mathrm{~Hz}), 133.6(\mathrm{~s}), 130.7(\mathrm{~s}), 124.6(\mathrm{t}, J=15 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=3 \mathrm{~Hz}), 40.7(\mathrm{~s}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 25.0 (very broad, CHMe_{2}), 19.9 (br, $\mathrm{CH} M e_{2}$), 18.4 (br, CHMe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 67.8\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{P}}=124 \mathrm{~Hz}\right)$. Elem. An. Found (Calculated) for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{RhNP}_{2}: 58.92$ (58.76); 7.63 (7.59).

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
(${ }^{\mathrm{Me}} \mathbf{P N P}$) $\mathbf{R h H}_{\mathbf{2}}$ (3b). Method 1. In a Teflon gas tight round bottom flask was combined the following: $\mathbf{1 b}(0.718 \mathrm{~g}, 1.61 \mathrm{mmol}),[(\mathrm{COD}) \mathrm{RhCl}]_{2}(0.400 \mathrm{~g}, 1.61 \mathrm{mmol}$ Rh), and 20 mL of fluorobenzene. The solution was stirred for 10 minutes and then was evaporated to dryness in vacuo. The residue was placed into a $70^{\circ} \mathrm{C}$ oil bath for 4 h . The resulting green solid ($0.793 \mathrm{~g}, 1.36 \mathrm{mmol}$) was dissolved in 20 mL of THF and 20 mL of 2-propanol. $\mathrm{NaBH}_{4}(0.514 \mathrm{~g}, 13.6 \mathrm{mmol})$ was added and the mixture was stirred for 1.5 h , during which time the color of solution changed from deep green to orange-brown. The solution was evaporated to dryness under vacuum, extracted with ether and filtered through a pad of Celite and then through a plug of silica gel. The volatiles were removed from the filtrate in vacuo and the residue was recrystallized from diethyl ether to afford pure product. Yield after recrystallization: $0.38 \mathrm{~g}(45 \%)$.

Method 2. 3b can also be prepared from (${ }^{\mathrm{Me}} \mathrm{PNP}$)RhHCl $(\mathbf{S 1})^{3}$ as follows. To 522 mg of $\mathbf{S} 1(0.92 \mathrm{mmol})$ in 20 mL of $2-$ propanol was added 0.75 g of $\mathrm{NaBH}_{4}(7.9 \mathrm{mmol})$ at room temperature. This mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 4 h ; the
 solvent was then removed in vacuo. The residue was extracted with toluene several times and filtered through a suction funnel. The filtrates were combined and the solvent was evaporated to dryness to afford product that was $>95 \%$ pure by NMR. Yield: 0.350 g (71 \%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.84(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}-H), 6.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-H), 6.88(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.21 (s, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), 1.98 (m, 4H, CHMe), 1.20 (app. quartet (dvt), $12 \mathrm{H}, \mathrm{CH} M e_{2}$), 1.03 (app. quartet (dvt), $\left.12 \mathrm{H}, \mathrm{CHMe} e_{2}\right)$), $-13.82\left(\mathrm{dt}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{Rh}}=20 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{P}}\right.$ $=9 \mathrm{~Hz}, \mathrm{Rh}-H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 163.2(\mathrm{dt}, J=2 \mathrm{~Hz}, J=12 \mathrm{~Hz}), 132.7(\mathrm{~s}), 132.0$ (s), $124.8(\mathrm{t}, J=3 \mathrm{~Hz}), 123.4(\mathrm{t}, J=16 \mathrm{~Hz}), 114.9(\mathrm{t}, J=5 \mathrm{~Hz}), 24.9\left(\mathrm{~m}, C \mathrm{HMe}_{2}\right), 20.5$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
($\mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}$), $19.9\left(\mathrm{t}, J=4 \mathrm{~Hz}, \mathrm{CH} M e_{2}\right), 18.6(\mathrm{br}, \mathrm{CHMe})_{2}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 64.8(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{Rh}}=129 \mathrm{~Hz}\right)$.
$\left.{ }^{(}{ }^{\mathbf{F}} \mathbf{P N P}\right) \mathbf{R h H}_{\mathbf{2}} \mathbf{(3 c)}$. To 64 mg of $\mathbf{2 c}(0.11 \mathrm{mmol})$ in 20 mL 2-propanol was added 90 mg of $\mathrm{NaBH}_{4}(0.94 \mathrm{mmol})$ at room temperature. This mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 4 h ; the solvent was then removed in vacuo. The residue was extracted with pentane and passed through celite pad. The pentane solution was concentrated and kept in the freezer at $-35{ }^{\circ} \mathrm{C}$. Yellow solids were obtained ($30 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.49(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 6.81 (m, 2H, Ar-H), 6.74 (m, 2H, Ar-H), 1.76 (m, 4H, CHMe), 1.06 (appt quartet (dt), $12 \mathrm{H}, J=7 \mathrm{~Hz}, J=17 \mathrm{~Hz}, \mathrm{CH} M e_{2}$), 0.86 (appt quartet (dt), $12 \mathrm{H}, J=7 \mathrm{~Hz}, J=15 \mathrm{~Hz}$, $\mathrm{CH} \mathrm{Me}_{2}$), -13.7 (dt, $\left.2 \mathrm{H}, J=9 \mathrm{~Hz}, J=20 \mathrm{~Hz}, \mathrm{Rh}_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 63.8(\mathrm{~d}, J=$ $129.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 161.3\left(\mathrm{vt}, J_{\mathrm{P}-\mathrm{C}}=12 \mathrm{~Hz}\right.$, aryl N-C), $154.8\left(\mathrm{dvt}, J_{\mathrm{C}-\mathrm{F}}=235\right.$ $\left.\mathrm{Hz}, J_{\mathrm{C}-\mathrm{P}}=4 \mathrm{~Hz}\right), 124.6\left(\mathrm{vtd}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=15 \mathrm{~Hz}\right), 118.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 117.7(\mathrm{~d}$, $\left.\left.J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 114.4(\mathrm{~m}), 24.7\left(\mathrm{vt}, J_{\mathrm{C}-\mathrm{P}}=12 \mathrm{~Hz}, C \mathrm{HMe}_{2}\right), 19.6\left(\mathrm{vt}, J_{\mathrm{C}-\mathrm{P}}=5 \mathrm{~Hz}, \mathrm{CHMe}\right)_{2}\right)$, $18.3(\mathrm{~s}, \mathrm{CHMe}) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-132.4(\mathrm{~s})$.
(${ }^{\mathbf{T}} \mathbf{P N P}$) $\mathbf{R h}(\mathbf{C O})$ (8a). Under 1 atm of $\mathrm{CO}, \mathrm{NaBEt}_{3} \mathrm{H}(91 \mu \mathrm{~L}, 0.091 \mathrm{mmol})$ was added portionwise to a solution of $\mathbf{2 a}(53 \mathrm{mg}, 0.091 \mathrm{mmol})$ in ether. The green solution became red-orange immediately. The product was isolated after filtration and removal of volatiles in vacuo to give a yellow-brown solid, which can be further purified by recrystallization in cold pentane. Yield: $26 \mathrm{mg}(50 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.81(\mathrm{br}, 4 \mathrm{H}, \mathrm{Ar}-H), 6.45(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H$), 2.92 (s, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.14 (br, $4 \mathrm{H}, \mathrm{CHMe} \mathrm{C}_{2}$), 1.25 (appt quartet (dt), $\left.12 \mathrm{H}, J=7 \mathrm{~Hz}, J=8 \mathrm{~Hz}, \mathrm{CH} M e_{2}\right), 1.02\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} M e_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 64.1$ $(\mathrm{d}, J=125 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 198.0\left(\mathrm{dt}, J_{\mathrm{Rh}-\mathrm{C}}=65 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{C}}=14 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right)$, $162.8(\mathrm{dt}, J=2 \mathrm{~Hz}, J=11 \mathrm{~Hz}), 134.6(\mathrm{t}, J=5 \mathrm{~Hz}), 133.6(\mathrm{~s}), 130.1(\mathrm{~s}), 122.8(\mathrm{t}, J=17$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
Hz), $114.9(\mathrm{t}, J=4 \mathrm{~Hz}), 40.7\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.8\left(\mathrm{br}, C \mathrm{HMe}_{2}\right), 19.5\left(\mathrm{~s}, \mathrm{CHMe} e_{2}\right), 18.3$ $\left(\mathrm{s}, \mathrm{CH} M e_{2}\right)$. IR: $v_{\mathrm{CO}}($ Toluene $)=1943 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NOP}_{2} \mathrm{Rh}: \mathrm{C}, 58.23 ; \mathrm{H}$, 7.08. Found: C, 58.17; H, 6.87.
(${ }^{\mathrm{Me}} \mathbf{P N P}$) $\mathbf{R h}(\mathbf{C O})(\mathbf{8 b})$. Under 1 atm of $\mathrm{CO}, \mathrm{NaBEt}_{3} \mathrm{H}(91 \mu \mathrm{~L}, 0.091 \mathrm{mmol})$ was added portionwise to a solution of $\mathbf{2 b}(53 \mathrm{mg}, 0.091 \mathrm{mmol})$ in ether. The green solution became orange-yellowish instantly. The title compound can be isolated in pure form by using the similar method as in 8a. Yield: $32 \mathrm{mg}(52 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.70\left(\mathrm{dt}, J_{\mathrm{HH}}\right.$ $\left.=8 \mathrm{~Hz}, J_{\mathrm{HP}}=2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H\right), 6.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-H), 6.81\left(\mathrm{~d}, J_{\mathrm{HH}}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H\right), 2.18$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{Me}$), 2.13 (m, overlap with Ar-Me signal, 4H, CHMe_{2}), 1.26 (appt quartet (dt), $12 \mathrm{H}, J=7 \mathrm{~Hz}, J=17 \mathrm{~Hz}, \mathrm{CH} M e_{2}$), 1.03 (appt quartet (dt), $12 \mathrm{H}, J=7 \mathrm{~Hz}, J=15 \mathrm{~Hz}$, CHMe) .
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 61.5(\mathrm{~d}, J=131.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 198.2\left(\mathrm{dt}, J_{\mathrm{Rh}-\mathrm{C}}=\right.$ $\left.63 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{C}}=14 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right), 162.5(\mathrm{t}, J=14 \mathrm{~Hz}), 132.3(\mathrm{~s}), 132.2(\mathrm{~s}), 124.8(\mathrm{t}, J=3$ $\mathrm{Hz}), 121.4(\mathrm{t}, J=18 \mathrm{~Hz}), 115.5(\mathrm{t}, J=6 \mathrm{~Hz}), 25.6(\mathrm{t}, J=13 \mathrm{~Hz}), 20.5(\mathrm{~s}, \mathrm{Ar}-\mathrm{Me}), 19.4(\mathrm{t}$, $J=3 \mathrm{~Hz}), 18.4$ (s). IR: $v_{\mathrm{CO}}($ Toluene $)=1945 \mathrm{~cm}^{-1}$.
$\left.{ }^{(}{ }^{F} \mathbf{P N P}\right) \mathbf{R h}(\mathbf{C O})(\mathbf{8 c})$. A solution of $\mathbf{3 c}(20 \mathrm{mg}, 0.037 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was stirred under 1 atm CO for $2 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR data indicate quantitative conversion to $8 \mathrm{c} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 6.78$ (m, 2H, Ar-H), 6.67 (m, 2H, Ar-H), 1.93 (br, $4 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 1.15 (appt quartet (dt), $\left.12 \mathrm{H}, J=7 \mathrm{~Hz}, J=16 \mathrm{~Hz}, \mathrm{CHMe}\right)_{2}$), 0.91 (appt quartet (dt), $12 \mathrm{H}, J=7 \mathrm{~Hz}, J=15 \mathrm{~Hz}, \mathrm{CHMe} 2) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 61.5(\mathrm{~d}, J=$ $130.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 197.5\left(\mathrm{dt}, J_{\mathrm{Rh}-\mathrm{C}}=64 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{C}}=14 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{CO}\right)$, $160.7\left(\mathrm{vt}, J_{\mathrm{P}-\mathrm{C}}=13 \mathrm{~Hz}\right.$, aryl N-C), $154.6\left(\mathrm{dvt}, J_{\mathrm{C}-\mathrm{F}}=235 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=5 \mathrm{~Hz}\right), 122.8\left(\mathrm{vtd}, J_{\mathrm{C}-\mathrm{F}}\right.$ $\left.=5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=18 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 117.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 115.1(\mathrm{~m}), 25.5$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
(vt, $J_{\mathrm{C}-\mathrm{P}}=12 \mathrm{~Hz}, C \mathrm{HMe}_{2}$), $19.2\left(\mathrm{vt}, J_{\mathrm{C}-\mathrm{P}}=3 \mathrm{~Hz}, \mathrm{CH} M e_{2}\right), 18.2\left(\mathrm{~s}, \mathrm{CHMe} e_{2}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ $\operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-132.0(\mathrm{~s})$. IR: $\mathrm{v}_{\mathrm{CO}}($ Toluene $)=1950 \mathrm{~cm}^{-1}$.
 mmol) was added to $\mathbf{3 a}(80 \mathrm{mg}, 0.15 \mathrm{mmol})$ dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ in a J . Young NMR tube. The reaction was monitored by ${ }^{31} \mathrm{P}$ NMR until completion. The solution was transferred to a flask and the volatiles were removed under vacuum. The residue was dissolved in pentane and passed through a pad of Celite. The resulting filtrate was then concentrated and kept in a $-35^{\circ} \mathrm{C}$ freezer for 7 h . The solid orange $7 \mathrm{a}-\mathrm{Ph}$ was collected by filtration and was dried under vacuum. Yield: $80 \mathrm{mg}(73 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.04$ (d, $J=7 \mathrm{~Hz}$, $2 \mathrm{H}, \operatorname{Ar}-H), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}$, olefinic $H), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \operatorname{Ar}-H), 7.21(\mathrm{t}, 2 \mathrm{H}$, $J=8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.13 (m, 2H, Ar-H, overlapped with solvent residue), 7.04 (m, 2H, ArH), $6.96(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}$, olefinic $H), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.66(\mathrm{br}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 6.39 (m, 2H, Ar- H), 3.11 (br, 2H, CH2 CH $)$, 2.95 (br, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.34 (br, 1 H , CHMe_{2}), 1.95 (br, 3H, CHMe 2), 1.71 (br, 3H, CHMe 2), 1.58 (br, 3H, CHMe), 1.20 (br, 3H, CHMe $), 0.99$ (br, 3H, CHMe $), 0.78$ (br, 3H, CHMe $), 0.69$ (br, $9 \mathrm{H}, \mathrm{CHMe}_{2}$). ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 162.8(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 138.3(\mathrm{~s}), 137.9(\mathrm{~s}), 134.1(\mathrm{br}), 133.4(\mathrm{~s}), 131.3$ (s$), 129.8$ (s$), 129.6$ (s$), 129.1$ (s$), 128.3$ (s$), 127.7$ (s$), 127.0(\mathrm{~s}), 126.6(\mathrm{~s}), 124.0(\mathrm{t}, \mathrm{J}=$ 16 Hz), 114.6 (s), 114.5 (s), 93.9 (dt, $J=7 \mathrm{~Hz}, J=4 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C}), 86.8(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C})$, $41.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.6$ (br, 1C of ${ }^{\mathrm{i}} \mathrm{Pr}$), 26.7 (br, 1C of ${ }^{\mathrm{i}} \mathrm{Pr}$), 21.0 (br, 4 C of ${ }^{\mathrm{i}} \mathrm{Pr}$), 18.3 (br, 2 C of ${ }^{\mathrm{i}} \mathrm{Pr}$), 16.3 (br, 2C of ${ }^{\mathrm{i}} \mathrm{Pr}$), 15.5 (br, 2C of ${ }^{\mathrm{i}} \mathrm{Pr}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 43.9(\mathrm{~d}, J=$ 124 Hz).

Catalytic dimerization of alkynes. In a typical run, to a J. Young NMR tube was added 3a, 3b or 3c ($8.8 \mathrm{mg}, 0.0164 \mathrm{mmol}$) dissolved in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. Alkyne (3.29

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
mmol) was added to the solution, and the closed NMR tube was heated at $100{ }^{\circ} \mathrm{C}$. After the reaction was complete, the reaction mixture was cooled to room temperature, and 25 $\mu \mathrm{L}$ dioxane was added to the tube as a NMR internal standard. The product identity was confirmed by ${ }^{1} \mathrm{H}$ NMR and GC/MS as well as by comparison to the literature data. ${ }^{4 \mathrm{a}-4 \mathrm{f}}$ The product yield was determined from the ${ }^{1} \mathrm{H}$ NMR data (vs. the dioxane standard).

Selected NMR data for the enyne compounds follow:
trans- $\mathbf{P h C} \equiv \mathbf{C C H}=\mathbf{C H P h}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.50-7.47, 7.12-6.99 (m, Ph), $6.95(\mathrm{~d}$, $1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.28(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=204\left(\mathrm{M}^{+}\right)$.
trans- $\mathbf{F C}_{6} \mathbf{H}_{4} \mathbf{C} \equiv \mathbf{C C H}=\mathbf{C H C}_{6} \mathbf{H}_{4} \mathbf{F}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar}-H$ overlapped with one vinyl proton), 6.63 (m, 4H, Ar- H), 6.09 (d, 1H, $J=16$ Hz). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-113.5(\mathrm{~m}),-115.2(\mathrm{~m}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 163.2(\mathrm{~d}$, $J=247 \mathrm{~Hz}), 162.8(\mathrm{~d}, J=248 \mathrm{~Hz}), 140.3(\mathrm{~s},-C=\mathrm{C}-\mathrm{Ar}), 133.6(\mathrm{~d}, J=8 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=$ 3 Hz), 128.2 (overlapped with solvent residue resonance), $120.0(\mathrm{~d}, J=4 \mathrm{~Hz}), 115.9(\mathrm{~d}, J$ $=22 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=22 \mathrm{~Hz}), 108.1(\mathrm{~s},-C=\mathrm{C}-\mathrm{Ar}), 91.2(\mathrm{~s},-\mathrm{C} \equiv \mathrm{C}), 89.0(\mathrm{~s},-\mathrm{C} \equiv \mathrm{C}) . \mathrm{M}^{+}=$ 240.
trans $-\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{9}} \mathbf{C} \equiv \mathbf{C C H}=\mathbf{C H C}_{\mathbf{4}} \mathbf{H}_{9}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.01(\mathrm{dt}, 1 \mathrm{H}, J=15.6, J=7.2 \mathrm{~Hz})$, $5.47(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 2.2-0.7\left(\mathrm{~m}, \mathrm{C}_{4} \mathrm{H}_{9}\right) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=164\left(\mathrm{M}^{+}\right)$.
trans $-\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{C} \equiv \mathbf{C C H}=\mathbf{C H C}_{3} \mathbf{H}_{7}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.01(\mathrm{dt}, 1 \mathrm{H}, J=16.0, J=6.8 \mathrm{~Hz})$, $5.48(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 2.4-0.7\left(\mathrm{~m}, \mathrm{C}_{3} \mathrm{H}_{7}\right) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=136\left(\mathrm{M}^{+}\right)$.
trans $-\mathbf{M e}_{2} \mathbf{N H}_{\mathbf{2}} \mathbf{C C} \equiv \mathbf{C C H}=\mathbf{C H C H}_{2} \mathbf{N M e}_{2}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.12(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.8, \mathrm{~J}$ $=6.2 \mathrm{~Hz}), 5.59(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.19\left(\mathrm{~s}, 2 \mathrm{H}, H_{2} \mathrm{CC} \equiv\right), 2.65(\mathrm{~d}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}$, $\left.=\mathrm{CHCH}_{2}\right), 2.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=165\left(\mathrm{M}^{+}-1\right.$, very

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
weak), $121\left(\mathrm{M}^{+}-45\right)$. Selected NMR data for the B type isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.39$ (s), 5.29 (s).
trans-Me $\mathbf{S i C}_{\mathbf{S i}} \equiv \mathbf{C C H}=\mathbf{C H S i M e} 3:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.44(\mathrm{~d}, 1 \mathrm{H}, J=19.6 \mathrm{~Hz}), 5.92$ $(\mathrm{d}, 1 \mathrm{H}, J=19.6 \mathrm{~Hz}), 0.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si} M e_{3}\right),-0.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si} M e_{3}\right) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=196\left(\mathrm{M}^{+}\right)$. Selected NMR data for the Trimer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.87(\mathrm{~d}, 1 \mathrm{H}, J=18.4 \mathrm{~Hz}), 6.72(\mathrm{~d}$, $1 \mathrm{H}, J=18.4 \mathrm{~Hz}), 6.36(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=294\left(\mathrm{M}^{+}\right)$.
trans- $\mathrm{Me}_{3} \mathbf{C C} \equiv \mathbf{C C H}=\mathbf{C H C M e} \mathbf{e}_{3}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.01(\mathrm{~d}, 1 \mathrm{H}, J=16.0), 5.37(\mathrm{~d}$, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 1.18$ and $0.84\left(\mathrm{~s}, \mathrm{CMe}_{3}\right) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=164\left(\mathrm{M}^{+}\right) . \mathrm{Me}_{3} \mathrm{CC} \equiv \mathrm{CH}$ Trimer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.51(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 6.89(\mathrm{~s}$, $1 \mathrm{H}), 1.21,1.08$ and $1.01\left(\mathrm{~s}, \mathrm{CMe}_{3}\right)$. GC-MS: $\mathrm{m} / \mathrm{z}=246\left(\mathrm{M}^{+}\right) . \mathrm{Me}_{3} \mathrm{CC} \equiv \mathrm{CH}$ Tetramer: GCMS: $m / z=328\left(\mathrm{M}^{+}\right)$.
trans $-\mathrm{Me}_{3} \mathrm{SiOCH}_{2} \mathbf{C} \equiv \mathbf{C C H}=\mathbf{C H C H}_{2} \mathrm{OSiMe}_{3}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.12(\mathrm{dt}, 1 \mathrm{H}, J=$ $15.6, J=4.4 \mathrm{~Hz}), 5.88(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.84(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{CHCH}_{2}\right), 0.12$ and $0.00\left(\mathrm{~s}, \mathrm{OSiMe}_{3}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 142.6(\mathrm{~s}), 109.0(\mathrm{~s}), 88.8$ (s), $83.6(\mathrm{~s}), 62.3(\mathrm{~s}), 51.7(\mathrm{~s}),-0.164(\mathrm{~s}),-0.55(\mathrm{~s}) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=256\left(\mathrm{M}^{+}\right)$.
trans $-\mathbf{H O C H}_{\mathbf{2}} \mathbf{C} \equiv \mathbf{C C H}=\mathbf{C H C H}_{\mathbf{2}} \mathbf{O H}$: This compound has lower solubility in benzene. After heating the NMR tube in the $100{ }^{\circ} \mathrm{C}$ oil bath for 3 h , a lot of precipitate was formed. All volatiles were removed under vacuum to afford the title compound. Yield: $0.195 \mathrm{~g}(96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.20(\mathrm{dt}, 1 \mathrm{H}, J=15.6, J=4.5 \mathrm{~Hz}), 5.76(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.6 \mathrm{~Hz}), 4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv\right), 4.11\left(\mathrm{~d}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 143.7$ (s), 110.1 (s), $89.0(\mathrm{~s}), 83.6(\mathrm{~s}), 62.7(\mathrm{~s}), 51.1(\mathrm{~s}) . \mathrm{GC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=112$ $\left(\mathrm{M}^{+}\right)$. Selected NMR data for B type isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H})$.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005
trans $-\mathbf{C H}_{3} \mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{C} \equiv \mathbf{C C H}=\mathbf{C H C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{C H}_{3}$: This compound has a lower solubility in benzene. When the reaction mixture cooled down to ambient temperature, it precipitated out in the NMR tube. The reaction mixture was evaporated to dryness and dissolved in CDCl_{3} (NMR yield: 98\%). Then the volatiles were removed under vacuum and the residue was washed with pentane. The resulting solid was dried under vacuum to afford the title compound as the off-white solid. Yield: $250 \mathrm{mg}(67 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.39-7.14 (m, 8H, Ph), $7.01(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 2.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. GC-MS: $\mathrm{m} / \mathrm{z}=232\left(\mathrm{M}^{+}\right)$.

Experiment with $\mathbf{H C} \equiv \mathbf{C C O}_{2} \mathbf{E t}$. This reaction was carried out using the same method as for other alkynes. The results are as follows.

Catalyst	Time	$\mathbf{A}: \mathbf{X}_{\mathbf{1}}: \mathbf{X}_{\mathbf{2}}$	Total Conv.,\%
3a	24 h	$18: 36: 64$	33%
3b	120 h	$3: 35: 65$	60%

A: trans $-\mathrm{EtO}_{2} \mathrm{CC} \equiv \mathrm{CCH}=\mathrm{CHCO}_{2} \mathrm{Et} ; \mathbf{X 1 : ~ T r i e t h y l - 1 , 3 , 5 - b e n z e n e t r i c a r b o x y l a t e ; ~ X 2 : ~ T r i e t h y l - 1 , 2 , 4 - ~}$ benzenetricarboxylate.

Selected NMR and GC-MS data. ${ }^{4 \mathrm{~g}}$ trans- $\mathbf{E t O}_{2} \mathbf{C C} \equiv \mathbf{C C H}=\mathbf{C H C O}_{2} \mathbf{E t}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.52(\mathrm{~d}, J=16 \mathrm{~Hz}), 6.12(\mathrm{~d}, J=16 \mathrm{~Hz}) . \mathrm{GC} / \mathrm{MS}: \mathrm{m} / \mathrm{z}=196\left(\mathrm{M}^{+}\right) . \mathbf{1 , 3 , 5}-$ Triethyl 1,3,5-Benzenetricarboxylate: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.88$ (s). GC/MS: m/z=294 $\left(\mathrm{M}^{+}\right)$. 1,2,4-Triethyl 1,3,5-Benzenetricarboxylate: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.43(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz})$, $7.97(\mathrm{dd}, J=8 \mathrm{~Hz}, J=2 \mathrm{~Hz}), 7.49(\mathrm{~d}, J=8 \mathrm{~Hz}) . \mathrm{GC} / \mathrm{MS}: \mathrm{m} / \mathrm{z}=294\left(\mathrm{M}^{+}\right)$.

Additional catalytic experiments.

1. Influence of water, air, and 7a-Ph as catalyst.

Entry 1: In a glovebox, a J. Young NMR tube was charged with $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}, 37 \mu \mathrm{~L}$ $\mathrm{PhC} \equiv \mathrm{CH}(0.34 \mathrm{mmol})$, and 3a $(0.0017 \mathrm{mmol})$. Then the NMR tube was closed off, placed into a $100{ }^{\circ} \mathrm{C}$ oil bath. The tube was removed from the oil bath and cooled for NMR analysis after 1 h and after 7 h .

Entry 2: In a glovebox, a J. Young NMR tube was charged with $37 \mu \mathrm{~L}$ PhC $\equiv \mathrm{CH}(0.34$ mmol) and $25 \mu \mathrm{~L}$ catalyst stock solution of $\mathbf{3 a}(0.0017 \mathrm{mmol})$. Then $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$ was added under air. The NMR tube was exposed to air for 5 min , placed into a $100{ }^{\circ} \mathrm{C}$ oil bath. The tube was removed from the oil bath and cooled for NMR analysis after 1 h and after 7 h .

Entry 3: In a glovebox, a J. Young NMR tube was charged with $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}, 37 \mu \mathrm{~L}$ $\mathrm{PhC} \equiv \mathrm{CH}(0.34 \mathrm{mmol}), 25 \mu \mathrm{~L}$ catalyst stock solution of $\mathbf{3 a}(0.0017 \mathrm{mmol}) . \quad 10 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ $(0.17 \mathrm{mmol})$ was then added to the tube quickly under air and the tube was closed off. This NMR tube was placed into a $100^{\circ} \mathrm{C}$ oil bath. The tube was removed from the oil bath and cooled for NMR analysis after 1 h and after 7 h .

Entry 4: In a glovebox, a J. Young NMR tube was charged with $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}, 37 \mu \mathrm{~L}$ $\mathrm{PhC} \equiv \mathrm{CH}(0.34 \mathrm{mmol}), 25 \mu \mathrm{~L}$ catalyst stock solution of $7 \mathbf{a}-\mathrm{Ph}(0.0017 \mathrm{mmol})$. Then NMR tube was placed into a $100{ }^{\circ} \mathrm{C}$ oil bath. The tube was removed from the oil bath and cooled for NMR analysis after 1 h and after 7 h .

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Entry	Catalyst	Time	$\mathbf{A : B}$	Total Conv.,\%
$\mathbf{1}$	$\mathbf{3 a}$	1 h	$98: 2$	42
		7 h	$98: 2$	92
$\mathbf{2}$	$\mathbf{3 a}$	1 h	$98: 2$	20
		7 h	$98: 2$	76
$\mathbf{3}$	$\mathbf{3 a}$	1 h	$98: 2$	35
		7 h	$98: 2$	72
$\mathbf{4}$	$\mathbf{7 a - P h}$	1 h	$98: 2$	32
		7 h	$98: 2$	63

2. Catalyst re-use

A J. Young NMR tube was charged with 1-pentyne ($220 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$), 3a (6.0 mg , 0.011 mmol) and $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$. The NMR tube was placed into a $100^{\circ} \mathrm{C}$ oil bath and the reaction was periodically monitored by ${ }^{1} \mathrm{H}$ NMR. When the reaction was completed, another $220 \mu \mathrm{~L}$ 1-pentyne was added to the same NMR tube. This was repeated for 4 cycles and the results are shown below (Time was recorded for individual repeated cycle; total conversion was based on the total amount of acetylene added).

Recycle	catalyst	Time	A:B	TON*	Total TON
$\mathbf{1}$	$\mathbf{3 a}$	1 h	$99: 1$	194	194
$\mathbf{2}$	$\mathbf{3 a}$	8 h	$98: 2$	174	368
$\mathbf{3}$	$\mathbf{3 a}$	18 h	$98: 2$	190	558
$\mathbf{4}$	3a	72 h	$98: 2$	66	624

[^0]Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

3. Dimerization of $\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CCH}$ in the presence of free enyne

$50 \mu \mathrm{~L}$ dioxane, $215 \mu \mathrm{~L} p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CH}(1.7 \mathrm{mmol})$ and $2.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$ were mixed in a vial. 0.500 mL of this mixture was added to each of 4 J . Young NMR tubes (containing ca. $0.31 \mathrm{mmol} \quad p$ $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CCH}$). Stock $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of 3a ($25 \mu \mathrm{~L}, 0.0017$ mmol) was added to each NMR tube. $\mathbf{S 2}$ was added to three of those 4 NMR tubes. Then all tubes were placed into a $100{ }^{\circ} \mathrm{C}$
 oil bath. Those tubes were removed from the oil bath after 1 h and 9 h for NMR analysis. Yield and selectivity are shown in the following table.

Entry	$[\mathbf{S 2}] /[\mathbf{3 a}]$	catalyst	Time	$\mathbf{A : B}$	Total Conv. \%
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{3 a}$	1 h	$98: 2$	27
			9 h	$98: 2$	93
$\mathbf{2}$	$\mathbf{5}$	$\mathbf{3 a}$	1 h	$98: 2$	23
			9 h	$98: 2$	91
$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{3 a}$	1 h	$98: 2$	24
			9 h	$98: 2$	96
$\mathbf{4}$	$\mathbf{2 5}$	$\mathbf{3 a}$	1 h	$98: 2$	24
			9 h	$98: 2$	95

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

0.0035 mmol of $\mathbf{3 a}$ was added to a solution of $38 \mu \mathrm{~L} \mathrm{PhC} \mathrm{\equiv CX}(\mathrm{X}=\mathrm{H}, \mathrm{D})$ and $35 \mu \mathrm{~L}$ ${ }^{\mathrm{n}} \mathrm{PrC} \equiv \mathrm{CH}$ in $0.5 \mathrm{~mL} \mathrm{C} 6_{6} \mathrm{D}_{6}$ separately. The two NMR tubes were placed into a $100^{\circ} \mathrm{C}$ oil bath. S3 was the only cross-dimer isomer observed. The resonances of the vinyl protons of the cross-coupling products $\mathbf{S 3}(\mathrm{X}=\mathrm{H}, \mathrm{D})$ and the m / z values of their parent MS peaks are as follows.

$$
\begin{aligned}
& \text { S4 (X = H): } 5.66(\mathrm{dt}, J=2 \mathrm{~Hz}, J=16 \mathrm{~Hz}), 6.16(\mathrm{dt}, J=7 \mathrm{~Hz}, J=16 \mathrm{~Hz}) ; \mathrm{M}^{+}=170 . \\
& \mathbf{S 4}(\mathrm{X}=\mathrm{D}): 5.66(\mathrm{t}, J=2 \mathrm{~Hz}) ; \mathrm{M}^{+}=171 .
\end{aligned}
$$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\left({ }^{\mathrm{T}} \mathrm{PNP}\right) \mathrm{RhH}_{2}(\mathbf{3 a}),(\mathrm{PNP}) \mathrm{RhH}_{2}(\mathbf{3 b})$, and $\left({ }^{\mathrm{F}} \mathrm{PNP}\right) \mathrm{RhH}_{2}$ (3c), the hydride resonances not shown.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of ($\left.{ }^{\mathrm{T}} \mathrm{PNP}\right) \mathrm{Rh}(\mathrm{CO})(\mathbf{8 a})$, (PNP)RhCO (8b), and $\left({ }^{\mathrm{F}} \mathrm{PNP}\right) \mathrm{Rh}(\mathrm{CO})(8 \mathrm{c})$.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 a}-\mathbf{P h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The singlet at $\delta 0.28 \mathrm{ppm}$ corresponds to the trace impurity of poly(dimethylsiloxane) (silicon grease). The triplet at $\delta 0.86 \mathrm{ppm}$ and a multiplet at ca. $\delta 1.2 \mathrm{ppm}$ correspond to pentane of crystallization.

Figure S4. The portion of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 a} \mathbf{a}-\mathrm{Ph}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ corresponding to the aromatic and olefinic hydrogens.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

SI References.

1 D. R. Baghurst and D. M. P. Mingos, J. Organomet. Chem. 1990, 384, 57-60.
2 W. Weng, C. Guo, C. Moura, L. Yang, B. M. Foxman and O. V. Ozerov, Organometallics 2005, 24, 3487-3499.

3 O. V. Ozerov, C. Guo, V. A. Papkov and B. M. Foxman, J. Am. Chem. Soc. 2004, 126, 4792-4793.

4
(a) A. Haskel, J. Q. Wang, T. Straub, T. G. Neyroud and M. S. Eisen, J. Am. Chem. Soc. 1999, 121, 3025-3034. (b) M. A. J. Tenorio, M. J. Tenorio, M. C. Puerta and P. Valerga, Organometallics 2000, 19, 1333-1342. (c) C. S. Yi and N. Liu, Organometallics 1996, 19, 3968-3971. (d) C. Yang and S. P. Nolan, J. Org. Chem. 2002, 67, 591-593. (f) D. Mesnard, J. P. Charpentier and L. Miginiac, J. Organomet. Chem. 1981, 214, 135-143. (g) K. Tanaka, K. Toyoda, A. Wada, K. Shirasaka and M. Hirano, Chem. Eur. J., 2005, 11, 1145-1156.

[^0]: * For each cycle only.

