Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Substrate	M.Wt.	Ki	Log(Ki)	F1 F2	2 F	3 F4	F	5	F6	F7	F8	F9a	F9b	F1() Tota	al	Ki	Error	Ref	tissue	Ki or Km?	Log(K)	+sem	-sem Substrate
1 L-Dopa-Phe	344	0.03	-1.52	2 1	1	1 1		0	2	2	2			-2	29	9	0.03	nd	1	oocytes	Ki	-1.52	nd	nd L-Dopa-Phe
2 Ala-NH-C6H4-(4Ph)	240	0.03	-1.52	2 1	1	1 1		0	0	4	0			-*	1 8	8	0.03	0.00	2	caco-2	Ki	-1.52	0.04	-0.05 Ala-NH-C6H4-(4Ph)
3 Gly-Ala	146	0.032	-1.49	2 1	1	1 1		0	2	0	2			-	1 8	8	0.032	0.00	5	oocytes	Ki	-1.49	0.04	-0.04 Gly-Ala
4 Gly-Val	174	0.032	-1.49	2 1	1	1 1		0	2	0	2			-	1 8	8	0.032	0.00	3	bbmv	Ki	-1.49	0.01	-0.01 Gly-Val
5 Ala-Ala	160	0.08	-1.10	2 1	1	1 1		0	2	0	2			-	1 8	8	0.08	0.01	3	bbmv	Ki	-1.10	0.05	-0.06 Ala-Ala
6 Phe-Tvr	328	0.1	-1.00	2 1	1	1 1		0	2	2	2			-:	2 9	9	0.1	0.04	4	oocvtes	Ki	-1.00	0.15	-0.22 Phe-Tvr
7 Asp-Ala	204	0.12	-0.92	2	1	1 1		0	2	0	2				1 8	8	0.12	nd	5	oocytes	Ki	-0.92	nd	nd Asp-Ala
8 Ala-Ala-Ala	231	0.16	-0.80	2	1	1 1		õ	2	Ő	0	0	2		1 8	8	0.16	0.14	4	oocytes	Ki	-0.80	0.27	-0.90 Ala-Ala-Ala
9 Ser-Ala	176	0.21	-0.68	2	1	1 1		õ	2	Ő	2	ů	-		1 8	8	0.21	nd	5	oocytes	Ki	-0.68	nd	nd Ser-Ala
10 Phe-Ala	236	0.21	-0.68	2	1	1 1		ñ	2	0 0	2				 1 s	8	0.21	0.10	5	oocytes	Ki	-0.68	0 17	-0.28 Phe-Ala
	245	0.22	-0.66	2	1	1 1		ñ	2	ñ	2				1 3	8	0.22	nd	5	oocytes	Ki	-0.66	nd	nd Arg-Ala
12 Phe-Pro	240	0.22	-0.64	2	1	1 1		1	2	0	2				1 7	7	0.22	nd	5	oocytes	Ki	-0.00	nd	nd Phe-Pro
13 Ala-Pro	186	0.25	-0.0-	2	1	1 1		_1	2	0	2			_	1 7	7	0.25	0.10	5	oocytes	Ki	-0.0-	0 15	
14 Ala (trans thio) Pro	202	0.20	-0.00	2	1	1 1		1	2	0	2			-	1 4	, 6	0.20	0.10	5		Ki	-0.00	0.13	0.02 Ala (trans this) Pro
	170	0.0	-0.52	2	1	1 1	,	0	2	2	2			-	1 (6	0.0	0.02	2	caco-2		-0.52	0.05	
	1/0	0.34	-0.47	2	1			0	0	2	0			-	1 C	7	0.34	0.04	2	Caco-z		-0.47	0.05	
16 H2N-CH2-(C=O)-C2H4-CO2	131	0.4	-0.40	2	1			0	2	0	2			-		7	0.4	na		P.pastoris	KI Ki	-0.40	na	
17 Val-Lys	245	0.64	-0.19	2	1	1 1		0	2	-1	2	~	~	-		7	0.64	na	/	vmdd	KI	-0.19	na	nd val-Lys
18 L-Loracarbet	349	0.7	-0.15	2		1 1		0	2	0	0	0	2	-4	2 .	-	0.7	0.14	8	caco-2	KI	-0.15	0.08	
19 Val-Acyclovir	324	0.74	-0.13	2 1	1	1 1		1	0	2	0			-	1 7	7	0.74	0.14	13	HeLa	Ki	-0.13	0.08	-0.09 Val-Acyclovir
20 Phe-Tyr-NH2	327	0.9	-0.05	2 1	1	1 1		0	2	2	0		_	-2	2	7	0.9	0.38	4	oocytes	Ki	-0.05	0.15	-0.24 Phe-Tyr-NH2
21 Ala-Ala-D-Ala	231	0.99	0.00	2 1	1	1 1		0	2	0	0	-2	2	-1	1 6	6	0.99	0.22	4	oocytes	Ki	0.00	0.09	-0.11 Ala-Ala-D-Ala
22 Enalapril	376	1.1	0.04	0 1	1	1 1		0	2	0	2			-2	2 8	5	1.1	0.30	10	bbmv	Ki	0.04	0.10	-0.14 Enalapril
23 H2N-(CH2)4-CO2H	117	1.14	0.06	2 1	1	0 0)	0	2	0	2			-'	16	6	1.14	0.06	11	P.pastoris	Ki	0.06	0.02	-0.02 H2N-(CH2)4-CO2H
24 D-Phe-Ala	236	1.14	0.06	2 - 1	1	1 1		0	2	0	2			-'	16	6	1.14	0.16	12	bbmv	Km	0.06	0.06	-0.07 D-Phe-Ala
25 Pro-Ala	186	1.26	0.10	0 1	1	1 1		0	2	0	2			-'	16	6	1.26	nd	5	oocytes	Ki	0.10	nd	nd Pro-Ala
26 D-Phe-Gly	222	1.7	0.23	2 - ′	1	1 1		0	2	0	2			-'	16	6	1.7	nd	5	oocytes	Ki	0.23	nd	nd D-Phe-L-Gly
27 D-Loracarbef	349	1.8	0.26	2 - 1	1	1 1		0	2	0	0	0	2	-2	2 5	5	1.8	0.25	8	caco-2	Ki	0.26	0.06	-0.06 D-Loracarbef
28 Ac-Phe	207	2	0.30	-2 ()	1 1		0	2	2	2			-'	1 :	5	2	0.37	4	oocytes	Ki	0.30	0.07	-0.09 Ac-Phe
29 D-Amoxycillin	365	2	0.30	2 - 1	1	1 1		0	2	0	0	0	2	-2	2 5	5	2	nd	8	caco-2	Ki	0.30	nd	nd D-Amoxycillin
30 D-Phe-Glu	294	2.15	0.33	2 - 1	1	1 1		0	2	-1	2			-'	1 క	5	2.15	0.10	12	bbmv	Km	0.33	0.02	-0.02 D-Phe-Glu
31 Ala-NH-Ph	164	2.9	0.46	2 1	1	1 1		0	0	1	0			-'	1 5	5	2.9	0.30	2	caco-2	Ki	0.46	0.04	-0.05 Ala-NH-Ph
32 D-Ala-Ala-Ala	231	3.04	0.48	2 - 1	1	1 1		0	2	0	0	0	2	-'	1 6	6	3.04	0.96	4	oocytes	Ki	0.48	0.12	-0.17 D-Ala-Ala-Ala
33 4-H2N-CH2-C6H4-CO2H	151	3.1	0.49	2 1	1	1 ()	0	0	0	2			-'	1 :	5	3.1	0.90	9	oocytes	Ki	0.49	0.11	-0.15 4-H2N-CH2-C6H4-CO2H
34 Captopril	217	4	0.60	0 0)	1 1		-1	2	0	2			-*	1 4	4	4	1.00	10	bbmv	Ki	0.60	0.10	-0.12 Captopril
35 3-H2N-C6H4-CH2-CO2H	151	6	0.78	0 0)	1 0)	0	2	0	2			-*	1 4	4	6	2.00	5	bbmv	Ki	0.78	0.12	-0.18 3-H2N-C6H4-CH2-CO2H
36 Ala-D-Ala-Ala	231	6.43	0.81	2 1	1	1 1		0	-2	0	0	0	2	-	1 4	4	6.43	1.83	4	oocytes	Ki	0.81	0.11	-0.15 Ala-D-Ala-Ala
37 4-H2N-C6H4-CH2-CO2H	151	6.5	0.81	0 0)	1 0)	0	2	0	2				1 4	4	6.5	0.30	14	bbmv	Ki	0.81	0.02	-0.02 4-H2N-C6H4-CH2-CO2H
38 Ac-Phe-Tvr	370	8.4	0.92	-2 1	1	1 1		0	2	2	0	0	2	-2	2 5	5	8.4	0.11	4	oocvtes	Ki	0.92	0.01	-0.01 Ac-Phe-Tvr
39 Ac-Phe-Tvr-NH2	369	10	1.00	-2 1	1	1 1		0	2	2	0	0	0	-:	2 3	3	10	4.01	4	oocvtes	Ki	1.00	0.15	-0.22 Ac-Phe-Tvr-NH2
40 4-H2N-C6H4-CO2H	137	10.6	1.03	0 0)	1 ()	0	2	0	2				1 4	4	10.6	3.04	5	bbmy	Ki	1.03	0.11	-0.15 4-H2N-C6H4-CO2H
41 Ala-NH-CH2-(Ph)	178	14 1	1 15	2 1	1	1 1		0	0	0	0				1 4	4	14 1	1 10	2	caco-2	Ki	1 15	0.03	-0.04 Ala-NH-CH2-(Ph)
42 D-Phe-L-Pro	262	21	1.32	2 -	1	1 1		-1	2	Õ	2				1 !	5	21	nd	5	oocytes	Ki	1.32	nd	nd D-Phe-L-Pro
43 Ac-Phe-NH2	206	22	1.34	-2 (ז	1 1		0	2	2	0				1 :	3	22	5 64	4	oocytes	Ki	1.34	0 10	-0 13 Ac-Phe-NH2
	307	22.7	1 36	2 1	1	1 1		0	_2	0	ñ	0	2	_	· ·	3	22.7	7 10	15	ocvtes	Ki	1.01	0.10	-0.16 Ala-D-Phe-Ala
45 Pho-NH2	164	50	1.00	2	1 _	1 1		0	0	0	0	0	2		1 1	2	50	7.10 nd	10	oocytes	Ki	1.00	0.12 nd	nd Phe-NH2
	165	100	2.00	2	 1	1 1		0	0	0	0			-	1 1	2	100	nd	-+	ocutoc		2 00	nd	nd Pho
	100	50	2.00	2	1 -			0						-	· ·	2 2	50	nu	4	D postorio		2.00	nu	
49 L Dopo	103	>100		2	1		,	0						-	1 4	2 2	>100		11	1 .µasi0115				
	197	> 100		2	י ר		'	0	0	2				-	1 4 4 7	<u>د</u>	>100		10	UUCytes	N K			
49 ACYCIOVIF	225	>100		-2 (0 1 0 1		0	U	Z				-	i (4	>100		13	HeLa	KI			
SU CYCIO(GIY-GIY)	128	>100		-2 1	I	U 1		U						-	I -'	1	>100		16	LLC Cells	KI			CYCIO(GIY-GIY)

References for Table 1 (ESI)

The following references relate to the Table in the ESI – they are provided for ease of location, and are identical to those in the paper (but numbered differently).

- 1 I. Tamai, T. Nakanishi, H. Nakahara, Y. Sai, V. Ganapathy, F.H. Leibach and A. Tsuji, *J. Pharm. Sci.* 1998, **87**, 1542.
- 2 V. Borner, Y.J. Fei, B. Hartrodt, V. Ganapathy, F.H. Leibach, K. Neubert and M. Brandsch, *Eur. J. Biochem.*, 1998, **255**, 698.
- 3 H. Daniel, E.L. Morse and S.A. Adibi, J. Biol. Chem., 1992, 267, 9565.
- 4 D. Meredith, C.S. Temple, N. Guha, C.J. Sword, C.A.R. Boyd, I.D. Collier, K.M. Morgan and P.D. Bailey, *Eur. J. Biochem.*, 2000, **267**, 3723.
- New data presented in this paper, determined using one of two methods: a) K_i from oocytes expressing PepT1 see D. Meredith, C.A.R. Boyd, J.R. Bronk, P.D. Bailey, K.M. Morgan, I.D. Collier and C.S. Temple, *J. Physiol.*, 1998, **512**, 629; b) K_i from reconstituted BBMV see C.S. Temple, P.D. Bailey, J.R. Bronk and C.A.R. Boyd, *J. Physiol.*, 1996, **494**, 795.
- 6 M. Brandsch, F. Thunecke, G. Kullertz, M. Schutkowski, G. Fischer and K. Neubert, *J. Biol. Chem.*, 1998, **273**, 3861.
- 7 Wootton and Hazelwood, *Biochem. Soc. Trans.*, 1989, 17, 691.
- 8 U. Wenzel, D.T. Thwaites and H. Daniel, *Br. J. Pharmacol.*, 1995, **116**, 3021.
- 9 C.S. Temple, I.D. Collier, J.R. Bronk, P.D. Bailey and C.A.R. Boyd, *J. Physiol.*, 1998. **511P**, 26P.
- 10 C.S. Temple and C.A.R. Boyd, Biochim. Biophys. Acta., 1373, 277.
- 11 F. Döring, J. Will, S. Amasheh, W. Clauss, H. Ahlbrecht and H. Daniel, *J. Biol. Chem.*, 1998, **273**, 23211.
- 12 C.S. Temple, J.R. Bronk, P.D. Bailey and C.A.R. Boyd, *Pflügers Arch., Eur. J. Physiol.*, 1995, **430**, 825.
- 13 M.E. Ganapathy, W. Huang, H. Wang, V. Ganapathy and F.H. Leibach, *Biochem. Biophys. Res. Commun.*, 1998, **246**, 470.
- 14 C.S. Temple, A.K. Stewart, D. Meredith, N.A. Lister, K.M. Morgan, I.D. Collier, R.D. Vaughan-Jones, C.A.R. Boyd, P.D. Bailey and J.R. Bronk, *J. Biol. Chem.*, 1998, **273**, 20.
- 15 C.J. Sword, C.A.R. Boyd and C.S. Temple, J. Physiol., 1999, 515P, 169P.
- 16 T. Terada, K. Sawada, M. Irie, H. Saito, Y. Hashimoto and K. Inui, *Pflügers Arch., Eur. J. Physiol.*, 2000, **440**, 679.

Notes for determining "T" in Table 1 (ESI)

- a) Factor 2: for the stereochemistry at residue 1, L-residues normally adopt the template conformation. However, note that it is the spacial arrangement that is important, so that the constrained D-analogues presented in reference 26 of the paper possess the correct 3D arrangement for tight binding, whereas the L-isomers do not; α,α-disubstituted residues at position 1 also show reduced binding because the "D" side-chain has an unfavourable interaction (P.D. Bailey, C.A.R. Boyd, I.D. Collier, J.G. George, G.L. Kellett, D. Meredith, K.M. Morgan, R. Pettecrew, R.G. Pritchard and R.A. Price, *Chem. Commun.*, 2005, DOI: 10.1039/b510697d).
- b) Factor 4: for the first amide bond, the presence of a C=O or C=S has been explored, both contributing to improved binding (parameter of +1); other potential changes at this position have not been probed.
- c) Factor 7: the hydrophobic pocket confers significantly improved binding when aromatic residues can be located therein more precise measures of

hydrophobicity failed to provide better correlation. Note that the 4-toluidide (entry 15) reaches the hydrophobic pocket by virtue of the methyl group, and such 4-substituted analogues show high binding (ref. 13 above). However, the unsubstituted anilide (entry 31) binds much less well as it fails to extend properly into the pocket (see Figure 2 of the paper), whilst the benzyl analogue (entry 40) also binds poorly as the aryl group is misaligned. Charged residues in the pocket lead to reduced binding (incurring a penalty of -1 in the calculation of T). Heteroaryl groups have not screened, but a binding parameter of +1 for such groups might be expected to generate reasonable correlations.

- d) There is no preconception about the mode of binding in the analyses that alignment which generates the highest T value is assumed to correspond to the mode of binding. A good set of examples to illustrate this are the Phe analogues (entries 28, 43, 45, 46) and the Phe-Tyr analogues (entries 6, 20, 38, 39), which show T values ranging from 2–9.
- e) Finally, it must be recognized that substrates with structures significantly different from the (admittedly wide) range used in this analysis cannot be predicted with great confidence. For example, there may be size limits associated with side chains R¹, R² and R³, but we have not yet reached those with substrates up to indolylmethyl (i.e. the side chain on tryptophan), or significantly bigger (e.g. steroidal) in the case of R².