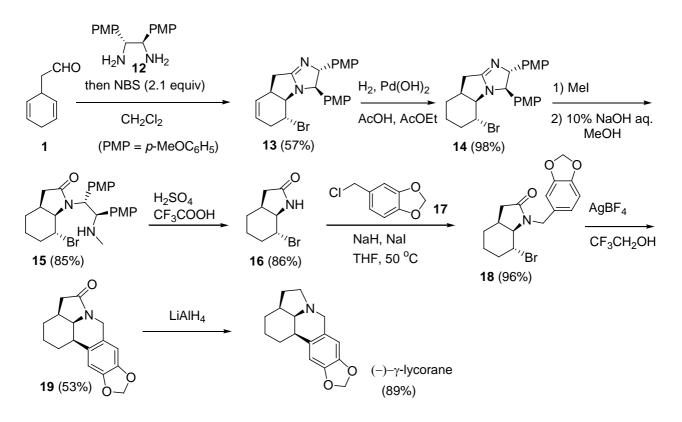

"Supporting Information" Intramolecular bromo-amination of 1,4-cyclohexadiene aminal: onepot discrimination of two olefins and concise asymmetric synthesis of $(-)-\gamma$ -lycorane

Hiromichi Fujioka,* Kenichi Murai, Yusuke Ohba, Hideki Hirose, and Yasuyuki Kita*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Osaka 565-0871, Osaka 565-0871, Japan

Scheme 5. One-pot operation

(4*R***S**, 5*R***S**)-2-(2,5-Cyclohexadienylmethyl)-4,5-diphenylimidazolidine (4)


3 (98.0 mg, 0.46 mmol) was added to a solution of $\mathbf{1}^{11}$ (56.4 mg, 0.46 mmol) in CH₂Cl₂ (30 ml) at 0 °C under N₂. The mixture was stirred for 30 min and then evaporated in vacuo. The obtained **4** was used in the next reaction without purification. **4**: Colorless oil; IR (KBr) cm⁻¹: 3309, 3026, 1454; ¹H NMR δ : 1.87 (2H, t, J = 12.0 Hz), 2.25 (2H, brs), 2.65—2.69 (2H, m), 3.00—3.07 (2H, m), 4.16 (1H, A in ABq, J = 7.5 Hz), 4.22 (1H, B in ABq, J = 7.5 Hz), 4.52 (1H, t, J = 6.0 Hz), 5.73—5.82 (4H, m), 7.20—7.37 (10H, m); ¹³C NMR δ : 26.1, 33.0, 43.3, 68.9, 71.4, 73.3, 124.3, 126.4, 126.8, 127.2, 128.3, 128.3, 128.7, 128.7, 140.9, 142.8.

Compound 6

Synthesis from Diene Aminal 4 (entry 2 in the Table of Scheme 2): NBS (71 mg, 0.40 mmol) was added to a solution of 4 (60 mg, 0.19 mmol) in CH_2Cl_2 (3.7 ml) at 0 °C under N₂. The mixture was stirred for 15 min at the same temperature. The mixture was quenched by addition of sat. aq. Na₂S₂O₃ and sat. aq. NaHCO₃. The resulting solution was extracted with CH_2Cl_2 . The organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using (AcOEt-Et₃N (20/1) to AcOEt-MeOH-Et₃N (20/1/1)) as the eluent to give 5 (42.4 mg, 1.08 mmol) in 57%.

One-pot Synthesis: 3 (1.15 g, 5.43 mmol) was added to a solution of 1 (663 mg, 5.43 mmol) in

CH₂Cl₂ (110 ml) at 0 °C under N₂. The mixture was stirred for 1 h. NBS (2.03 g, 11.4 mmol) was added to the mixture, and the resulting solution was stirred for 15 min at the same temperature. The mixture was quenched by addition of sat. aq. Na₂S₂O₃ and sat. aq. NaHCO₃. The resulting solution was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using (AcOEt-Et₃N (20/1) to AcOEt-MeOH-Et₃N (20/1/1)) as the eluent to give **5** (12.2 g, 1.08 mmol) in 57%.**5**: Colorless amorphous; IR (KBr) cm⁻¹: 1649, 912, 742; ¹H NMR δ : 2.37—2.46 (2H, m), 2.61 (1H, dt, *J* = 4.8, 17.4 Hz), 2.80 (1H, dd, *J* = 8.4, 16.2 Hz), 3.33—3.38 (1H, m), 3.52 (1H, dd, *J* = 7.5, 8.4 Hz), 4.11 (1H, ddd, *J* = 4.5, 8.4, 8.4 Hz), 4.86 (1H, d, *J* = 4.8 Hz), 5.31 (1H, d, *J* = 4.8 Hz), 5.60—5.67 (1H, m), 5.70—5.78 (1H, m), 7.25—7.40 (10H, m); ¹³C NMR δ : 29.8, 33.2, 42.2, 50.0, 58.0, 69.8, 84.0, 124.6, 126.3, 126.8, 127.2, 128.0, 128.9, 140.6, 143.8, 170.1; FAB-MS *m/z*: 393 (MH)⁺; FAB-HRMS m/z: calcd for C₂₂H₂₁BrN₂: 393.096 (M+H⁺); found: 393.0939.

Scheme 6. Asymmetric synthesis of (-)-y-licorane

Compound 13

12 (4.39 g, 16.1 mmol) was added to a solution of 1 (1.97 g, 16.1 mmol) in CH₂Cl₂ (322 ml) at 0 °C under N₂. The mixture was stirred for 1 h. NBS (6.02 g, 33.8 mmol) was added to the mixture, and the resulting solution was stirred for 15 min at the same temperature. The mixture was quenched by addition of sat. aq. Na₂S₂O₃ and sat. aq. NaHCO₃. The resulting solution was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using (AcOEt-Et₃N (20/1) to AcOEt-MeOH-Et₃N (20/1/1)) as the eluent to give **13** (4.15 g, 9.16 mmol) in 57%. **13**: Colorless amorphous; $[\alpha]_D^{26}$ -359.5 (c = 1.68, CHCl₃); IR (KBr) cm⁻¹: 1647, 1512, 1246, 741; ¹H NMR δ : 2.37—2.46 (2H, m), 2.62 (1H, dt, *J* = 4.8, 12.6 Hz), 2.79 (1H, dd, *J* = 8.1, 15.6 Hz), 3.24—3.36 (1H, m), 3.50 (1H, t, *J* = 8.1 Hz), 3.80 (3H, s), 3.82 (3H, s), 4.07—4.15 (1H, m), 4.77 (1H, d, J = 4.5 Hz), 5.24 (1H, d, J = 4.5 Hz),

5.62—5.79 (2H, m), 6.85—6.92 (4H, m), 7.17—7.26 (4H, m) ; 13 C NMR δ : 30.8, 34.1, 43.1, 51.0, 56.2, 58.9, 70.4, 85.1, 114.9, 115.2, 125.5, 128.3, 129.1, 133.6, 137.1, 159.7, 160.3, 170.8; FAB–HRMS m/z: calcd for C₂₄H₂₅BrO₂N₂: 453.1188 (M+H⁺); found: 453.1178.

Compound 14

13 (1.27 g, 2.79 mmol) in AcOEt-AcOH (1/1) (32 ml) was hydrogenated in the presence of Pd(OH)₂ (100 mg) at rt for 12 h under H₂. The solution was filtered by celite pad. Thefiltrate was evaporated in vauo. The residue was purified by SiO₂ column chromatography using (AcOEt-MeOH-Et₃N (20/1/1)) as the eluent to give **14** (1.24 g, 2.72 mmol) in 98%. Colorless amorphous; $[\alpha]_D^{25}$ -220.2 (c = 0.617, CHCl₃); IR (KBr) cm⁻¹: 2934, 1643, 1612; ¹H NMR δ : 1.25—1.56 (1H, m), 1.63—1.78 (3H, m), 2.13—2.19 (1H, m), 2.43 (1H, m), 2.85—3.01 (1H, m), 3.42 (1H, t, *J* = 7.0 Hz), 3.80 (3H, s), 3.81 (3H, s), 3.93—4.01 (1H, m), 4.76 (1H, d, *J* = 7.3 Hz), 5.15 (1H, d, *J* = 7.3 Hz), 6.85—6.89 (4H, m), 7.13—7.26 (4H, m); ¹³C NMR δ : 21.1, 26.6, 27.8, 34.1, 40.9, 52.3, 55.1, 55.1, 60.4, 69.6, 84.2, 113.6, 113.8, 127.5, 128.0, 132.3, 135.6, 158.4, 158.9, 170.3; FAB–HRMS m/z: calcd for C₂₄H₂₇BrO₂N₂: 454.1282 (M+H⁺); found: 454.1256.

Compound 15

MeI (1 ml) was added to a solution of **14** (940 mg, 2.06 mmol) in CH₂Cl₂ (6 ml) at rt under N₂. The mixture was stirred overnight. The solution was evaporated in vacuo. The residue was dissolved with MeOH (12 ml) and CH₂Cl₂ (1 ml). 10% aq. NaOH was added slowly to the resulting solution at 0 °C. The mixture was stirred for 15 min at the same temperature. The resulting solution was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using hexane-AcOEt-Et₃N (5/10/1) as the eluent to give **15** (859 mg, 1.76 mmol) in 85%. Colorless amorphous; $[\alpha]_D^{27}$ –24.7 (c = 1.02, CHCl₃); IR (KBr) cm⁻¹: 2936, 2245, 1686, 1512, 1250; ¹H NMR δ : 1.35—1.90 (6H, m), 2.17—2.30 (5H, m), 2.45—2.53 (1H, m), 3.70—3.74 (7H, m), 4.57—4.90 (3H, m), 6.34—6.73 (4H, m), 7.03—7.11 (4H, m); ¹³C NMR δ : 19.6, 26.9, 31.3, 32.3, 34.3, 37.9, 52.3, 55.0, 63.6, 64.9, 113.3, 113.4, 129.1, 129.5, 131.2, 132.9, 158.3, 158.3, 177.1; FAB–HRMS m/z: calcd for C₂₅H₃₁BrO₃N₂: 453.1188 (M+H⁺); found: 452.1099.

(3aS, 7R, 7aR)-7-Bromo-octahydroindol-2-one (16)

Conc. H₂SO₄ (2 ml) was added to a solution of **15** (982.2 mg, 2.01 mmol) in CF₃COOH (20 ml) at rt. The mixture was stirred overnight under reflux. After being cooled to rt, the solution was evaporated in vacuo. The residue was neutralized by sat. aq. NaHCO₃, and was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using AcOEt only as the eluent to give **16** (376 mg, 1.72 mmol) in 86%. Colorless crystals; $[\alpha]_D^{20}$ -32.3 (c = 1.83, CHCl₃); IR (KBr) cm⁻¹: 3209, 1690; ¹H NMR δ : 1.39—1.56(1H, m), 1.60—1.83(4H, m), 2.15—2.31(3H, m), 2.66—2.81 (1H, m), 3.70 (1H, t, *J* = 7.7 Hz), 3.91 (1H, ddd, *J* = 4.3, 8.6, 11.3 Hz), 6.80 (1H, brs); ¹³C NMR δ : 21.8, 25.9, 33.9, 34.3, 36.2, 56.1, 62.2, 177.7; *Anal.* Calcd for C₈H₁₂BrNO: C, 44.06; H, 5.55; N, 6.42; Br, 36.64. Found: C, 44.19; H, 5.44; N, 6.41; Br, 36.28.

(3aS, 7R, 7aR)-7-Bromo-1-(3,4-methylenedioxybenzyl)octahydroindol-2-one (18)

NaH (60% in oil, 28 mg, 0.70 mmol) was added to a solution of **16** (128.3 mg, 0.59 mmol) in THF (4 ml) at 0 °C under N₂. After being stirred for 5 min, a solution of **17** (186 mg, 1.09 mmol) in THF (2 ml) and NaI were added to the resulting mixture at 0 °C, successively. The solution was stirred at 50 °C for 2 h. The mixture was quenched with sat. aq. NH₄Cl, and was extracted with AcOEt. Organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using hexane-AcOEt (20/1) as the eluent to give **18** as a mixture of *N*-

junction (199 mg, 0.565 mmol) in 96%. Colorless crystals; $[\alpha]_D^{19}$ -48.7 (c = 3.20, CHCl₃); IR (KBr) cm⁻¹: 2935, 1693, 1489, 1244; ¹H NMR δ : 1.44—1.98 (6H, m), 2.25—2.32 (2H, m), 2.47—2.52 (1H, m), 3.61 (3/4H, t, *J* = 6.6 Hz), 3.75 (1/4H, t, *J* = 5.4 Hz), 4.17—4.25 (3/4H, m), 4.30—4.37 (1H, m), 4.47—4.53 (1/4H, m), 5.95 (2H, s), 6.75 (3H,s); ¹³C NMR δ : 20.2, 21.5, 26.5, 26.7, 29.9, 32.9, 33.3, 33.5, 34.2, 35.4, 36.6, 44.5, 44.8, 52.5, 62.5, 63.4, 100.8, 108.0, 108.1, 108.1 108.2, 121.1, 121.3, 130.2, 146.6, 147.6, 147.7, 174.7, 175.4; FAB–HRMS m/z: calcd for C₁₆H₁₈BrO₃N: 352.0548 (M+H⁺); found: 352.0560.

$(-)-\gamma$ -Lycorane-5-one $(19)^{2b}$

AgBF4 (100 mg, 0.514 mmol) was added to a solution of **18** (110 mg, 0.31 mmol) in CF₂CH₂OH (1 ml) at rt under N₂. The mixture was stirred overnight at the same temperature. The mixture was quenched by sat. aq. NaHCO₃, and was extracted with AcOEt. Organic layer was dried over Na₂SO₄, and evaporated in vauo. The residue was purified by SiO₂ column chromatography using hexane-AcOEt (1/3) as the eluent to give **19** (44.7 mg, 0.165 mmol) in 53%. Colorless crystals; $[\alpha]_D^{25}$ –96.0 (c = 1.00 ,CHCl₃); IR (KBr) cm⁻¹: 1691; ¹H NMR δ : 1.09—1.44 (3H, m), 1.71—1.75 (3H, m), 2.09 (1H, d, *J* = 16.2 Hz), 2.37—2.48 (1H, m), 2.58 (1H, dd, *J* = 7.0, 15.9 Hz), 2.72—2.79 (1H, m), 3.76 (1H, t, *J* = 4.3 Hz), 4.32 (1H, A in ABq, *J* = 17.5 Hz), 4.53 (1H, B in ABq, *J* = 17.5 Hz), 5.93 (2H, d, *J* = 3.2 Hz), 6.60 (2H, d, *J* = 7.6 Hz); ¹³C NMR δ : 23.6, 27.8, 30.2, 32.9, 40.2, 42.6, 55.6, 100.9, 106.5, 108.3, 123.1, 131.4, 146.4, 146.4, 175.3.

$(-)-\gamma$ -Lycorane²⁾

LiAlH₄ (25 mg, 0.66 mmol) was added to a solution of **19** (44.7 mg, 0.165 mmol) in THF (5 ml) at 0 °C. The mixture was stirred for 1.5 h under reflux. After being cooled to rt, H₂O, 10% aq. NaOH, AcOEt, and celite were added successively to the solution. The solution was stirred for 30 min to make precipitate, which was filtrated by short celite pad. The filtrate was evaporated in vacuo. The residue was purified by SiO₂ column chromatography using hexane-AcOEt-Et₃N (10/5/1) as the eluent to give (–)- γ -lycorane (38.0 mg, 0.148 mmol) in 89%. Colorless oil; [α]_D – 19.5 (c = 0.65, CHCl₃) (lit.^{7a} [α]_D –17.1 (c = 0.25, EtOH); IR (KBr) cm⁻¹: 2925, 1483; ¹H NMR δ : 1.25—1.53 (4H, m), 1.60—1.78 (3H, m), 1.99—2.21 (3H, m), 2.36 (1H, t, *J* = 4.6 Hz), 2.69—2.75 (1H, m), 3.37 (1H, dt, *J* = 3.8, 9.2 Hz), 5.87 (2H, d, *J* = 1.4 Hz), 6.48 (1H, s), 6.61 (1H,s) ; ¹³C NMR δ : 25.1, 29.2, 30.4, 31.6, 37.3, 39.4, 53.6, 57.0, 62.7, 100.4, 106.0, 108.1, 127.1, 132.9, 145.3, 145.7.

References

- 1) H. Bock and B. Solouki, Chem. Ber. 1974, 107, 2295-2298.
- 2) (a) H. Yoshizaki, H. Satoh, Y. Sato, S. Nukui, M. Shibasaki and M.; Mori, *J. Org. Chem.* 1995, 60, 2016—2021. (b) M. Ikeda, S. Ohtani, T. Sato and H. Ishibashi, *Synthesis* 1998, 1803—1806. (c) M. G. Banwell, J. E. Harvey and D. C. R. Hockless, *J. Org. Chem.* 2000, 65, 4241—4245.